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ABSTRACT

We prove the existence of weak solutions for the equation
— Au + B(u) > f, where g is a maximal monotone graph in R with
0 € p(0) and f e L} (RY) is strictly bounded at infinity by the graph §.

These results continue those of Ph. Bénilan, H. Brézis and M.
Crandall in the case fe L!'(RV).

O. INTRODUCTION

Let B be a maximal monotone graph (m. m. g.) in R with 0 € 5(0),
for instance a continuous nondecreasing function on R such that
0 € 8(0). We shall be concerned with existence of solutions for the
problem

(P) = (Pgy) — Au + B(u)> f on R¥

when fe L} (RY), N > I, f bounded at infinity.

For fe LY(RY), (P) has been thoroughly studied by Ph. Bénilan,
H. Brézis and M. Crandall in [2], their results being basic for our
paper. Let us quote the existence part in [2] for reference:

N > 3. For every f e L!(R") there exists a unique % € M¥¥~2(RV)
with Au e L(R¥), satisfying (P).

N = 2. Let 0 eInt 8(R). Then for every fe L!(R? there exists
a ueWhl(R?) with |grad u|e M?(R? and 4du e L!'(R?) satisfying
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(P). If {f 50 or g~1(0) = {0} solutions are unique. In case of non-
unicity two solutions in this class differ by a constant.

N = 1. Let 0 €Int g(R). Then for every fe L!(R) there exists a
u € Wtoo(R) with '’ € L(R) satisfying (P). Uniqueness as for N = 2.

Moreover the operator T:f—-w = f + Au on L'(RM) is an
ordered contraction: with appropriate definition the composition
— A o 7' is T-accretive in L!(RV).

In the following we call these B. Br. Cr.’s solutions usual solu-
tions for (P) on RY.

The paper begins by deriving an L°°-estimate for large x for the
usual solutions of (P) when fe L!(RY) is «strictly bounded at infini-
ty by p» in the following sense: let g+ = lim B(r), f~ = lim B(7)

be the extrema of f. Then

(C) B~ < lim inf f € lim sup f < B+

|%]— o0 |%|— o0

This allows for instance to prove that # — 0 uniformly at infinity
when f e L!(R¥) converges to 0 uniformly and we obtain an estimate
of the convergence.

In a second section we apply these estimates to obtain weak
solutions of (P) when fe L} _(RY) and satisfies condition (C), as
(repeated) monotone limits of usual solutions for approximate pro-
blems. The solutions thus obtained inherit the comparison proper-
ties of usual solutions and are themselves usual if fe L!(R") and are
bounded at infinity.

In [3] Ph. Bénilan and M. Crandall prove that — 408~ suitably
defined is accretive in LI[(1 + (#)2)~%] for 0 < a < Z%, N>1
(and so in particular solutions are unique in that functional setting).
As constants do not belong to this space, our work deals on a more
general situation.

We shall follow to a large extent the notations in [2]. Thus B will
be a ball in RY, Bg(x) the ball of radius R > 0 centered at %, 2 C R¥
an open set, 0@ its boundary, L?(£2), 1 < p < oo the Lebesgue
spaces, L? (£2) the corresponding local spaces and L§(RY) = {f € L?(Q):
f has compact support in Q}. M?(2), 1 < p < oo are Marcinkiewicz
spaces (see for reference [2], Appendix), Wh?(Q2), k2 > 0,1 < p < ©
the Sobolev spaces and W ?(Q) and W§?(Q) have the usual defini-
tions. If »: R¥ > R and 1€ R, [# > 4] denotes the set {x: u(x) > 1}.
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We make use of several classes of functions on R as

P = {peC'(R) n L=(R): p nondecreasing)}
and Py= {peP:p(0) =0}

B being a graph, for » € Domain (8) = D(B), B(r) is in general a set.
We denote: §+(r) = sup f(r) and g~(r) = inf B(r). Also g1, the inver-
se graph, may be multivalued and we set for s € Range (8) = R(f),
B3(s) = sup f7(s) and B='(s) =inf B'(s).

This paper develops part of the Ph. D. dissertation of the author
at the University of Madrid. The author is indebted to Prof. H.
Brézis for his advising and to Prof. Ph. Bénilan for many useful
comments and information.

1. USUAL SOLUTIONS BOUNDED AT INFINITY

The main result of this section is

THEOREM 1: Let # be a m. m. graph in R such that 0 €§(0) and 0 e
Int B(R) and let fe L'(RV) satisfy condition (C):

f~ <lim inf f < lim sup f < B~

|| —= o0 || — 00

Then the usual solutions of (Pg) are bounded at infinity. Pre-
cisely if w = Au + f (w(x) € f(u(x)) a.e.) we have

(1.1) lim sup w < lim sup f
| 5] —>o00 |x]—> 00

(1.1) lim inf w > lim inf f
[#]— 00 |%|—> o0

Proor: Let us consider first estimate (1.1).

Call ¥+ =1lim sup f and F~ = lim inf f
|%]— 00 x| o0
For ¢ >0 such that g+ — F+ > 2, split f=f +f’ with
f'=fe=/f|Bg(0) and R = R, > > 0 such that "' = f — f" € L>°(RV)
and sup f’' < F+ + e
Take now as f,(s) the m.m. graph e.stgn(s) and pose the problem

(P) = (P,) — 4% + B,(#) 5 f'+ = max (f’, 0)
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%, > 0 having compact support,

From [2] we obtain a unique # =
=W, = Au + f'* € L{(R").

say in Bg(0), R > R, and »
Now rewrite (P) as

% —Aw—w) tw=f"+ (" —f7) +w

wep(u) ae.

(L.2) — A —u) +w < f'+ ¢

In our situation for every p e Py we have — I Alw —u) p (u —u) >
IR¥

> 0 (see |2|, Appendix), so taking p > 0 we have

[wp(n — %) s[(f”—i— e) p(u — n)

Define E, = [u — % > ] for » > 0 and take a sequence p, increasing
to g(s) = signg (s — 7). Then in the limit

el e
J Er J Er

Suppose now that for an 7, |E,| > 0. Then the latter inequality
implies the existence of E, ¢ E,, |E,| > 0 such that a.e. on E,:

Bu(y)) <f'(y) + & <sup f'+ & < F¥ + 26 so u(y) < 3 (F* +
+ 2¢) = CF. But u(v) >7 4+ #%(y) = » a.e. on E, and thus » < C}.
So we have

(1.3) u < U,

_.|._

Cr
As u, has compact support for every ¢ > 0 and liin Cr =p71(FF) =
40

= C* we finally obtain

(1.4) lim sup # < C*

|z]—> o0

It remains to prove that lim sup w < lim sup f. This is obvious if 8 is

x|—> 00 |2]—>c0
continuous, i.e. single-valued, at s = C+. Suppose now that § has a
jump and that lim sup w = B > F*. Then for 2¢e < B — F*,
Ct = B3Y(F* + 2¢) equals C* and so (1.3) gives u < % 4 C+. At
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almost every point where u(x) < #(x) + C* if |x| > R’, #(x) = 0 and
so w(x) < B~(C*) < F*. On the other hand, by virtue of Kato’s
inequality, we have 4(» — %) < 0 on [4 — % = C*], the set where
% — % attains its supremum and thus (1.2) givesw < f"" 4+ ¢ < F+ +
+ 2¢ a.e. on this set. All together we have w < F* + 2¢ for || >'R
and, disposing of ¢, lim sup w < F+.

| %]— co
The lower bound (1.1°) proceeds similarly. Only replace f'*, %, ®,
C#,C* by the corresponding f'~,%,@,C;,C~ = B~(F ) respectively
and obtain analogous estimates (1.2'), (1.3"), (1.4") #

REMARKS. 1. Observe that either bound, (1) or (1'), depends only
on the corresponding half statement of condition (C).

2. In the situation of Th. 1 if fe LY(R¥) converges to zero at
infinity, so does w = Au + f and so does # provided 8~(0) = {0}.

The case where $7'(0) = [a, b] 2 {0} can be reduced to the case
f10) = {0} by considering upper and lower estimates separately,
translating then g along the x —axis (B(s) = A(s + b) and B(s) =
= B(s 4+ a) resp.) and translating correspondingly u(¥ = u — b,

# = u — a resp). Then we obtain lim sup # < b, lim sup % > a.
{z}— 00 |z]—> 00

3. The proof remains valid if we replace fe LY(R¥) by fe M(R"),
a bounded measure, in as far as § satisfies the appropriate condition
for existence of solutions:

o 2(N—-1)
If N> 3,{ [B(s) —B(— )]s~ ~n—z s< o (See Ph. Bénilan-H.
J1

Brézis |1}).
If N= Z,J (B(s) —B(—s)]e* ds < oo for every a >0 and
0

S+
if N=1 and sup D(f) = S+, inf D(B) =S~, | A{)dt = + .
. ,

(for both see J. L. Vazquez [6]).
4. Due to the T-accretivity property of the operator — A4 4 f§

in LP(RY), 1 < p < oo (see [2]), for every fe L°(R¥) and ¢ > 0 the
w, defined by
- Aue +' ﬂ(ue) + &u, 3f

w, = f + du, — eu,, w, e f(u,)
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satisfies [|@,|}oo < ||fllog, moreover sup f > sup w,, inf f < inf w»,.
In the limit the same is true for w in

—Au + Bu)sf, w = f+ Au

Also if N = | and f e L!(R) we know that the solution # of (P) veri-
fies u €e WL °(R), and ||j(#)||o, < 2||f||?, 7 being the primitive of §:

ﬂw=f}ww.

In that direction we obtain the following.
CoroLLARY 1. In the situation of Th. 1, if moreover fe L (RY)

r

with p > %, N > 2orif N = | with no extra condition, # € L>°(R¥)

and the L*°-bounds can be estimated in terms of f/Bj and ||f||zco(~5B
for R >> 0.
Proo¥: As — Au + B,(u) s f' + € L§(RY) we have — Au e L?(RY),
and % € WEL(RY), so u € WE?(RY) and by Sobolev # is a conti-
nuous function, and # has compact support.

But (1.3) gives u < u + C} where C} = BZ(||fllzoo(~p + ),
and we are done. Similarly for the lower bound
We finish this section by a modification of the proof of Theorem 1 in
case N > 3 that allows for a better estimate of the behaviour of # at
infinity and of Corollary 1.

In fact we replace (P) in Th. 1 by
(P*) —du=f"~
and solve (P’) by setting u = f'+ * E, where Ey = Cy|x]2~V is the
fundamental solution for — 4. Thus % > 0, # = 0(|x]2™") as |¥| > «©
and (1.2) takes the form
(1.2%) — A —u) +w < f”

Arguing as in Th. 1 we arrive at

(1.3%) w < &+ f3i(sup /")

Now sup f”' = sup f and u ~ Cy|x]2~VN s f'+. dx for large %, so
~Bpg(0)

u < pzl(sup f) + O(lx>~N) for |x| >> 0.
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loc

Also, if fe LY (RY), p > :222’ we estimate

o] Loo B2y < IfllLe B - EN]ILo (B 24 20

where R, R; > 0, the balls are centered at 0 and p’ =£—;—l . Thus

the L°°-norm of # on R¥ depends only on ||f||zs 5, and ||f||zeo (~B g »
R > 0.

2. WEAK SOLUTIONS FOR [ LOCALLY INTEGRABLE, BOUNDED AT
INFINITY.

We study now the existence of solutions for — Au+ B(u)s f
under the weaker hypothesis on f that f e LL (RY) and be strictly
bounded at infinity by f.

We shall understand here by a weak solution for — Au + f(u) s f
an # € LL (R¥) such that w = f + du e L] (R¥) and w € B(u) a.e.

We obtain the following main result.

THEOREM 2. Let # be a m.m.g. in R such that 0 € §(0) and 0 € Int
B(R) as in Th. 1 and let fe L} (R¥) be strictly bounded by g at
infinity. Then there exists an # € Li.(R¥), weak solution for (P)
and # and w = Au 4 f are bounded at infinity satisfying (1.1),
(1.1') of Th. 1. In case f e L'(R") these weak solutions coincide
with the usual solutions.

ProoF. Our solutions will be obtained as (perhaps repeated) monoto-
ne limits of usual solutions for approximate problems. We shall pro-
ceed by steps, beginning with the simpler cases.

Case 1: f > 0 for large x.

Let R > 0 be such that if f= f' + f" with f' = f|p, we have
" 20, sup [ <p*.

We pose the series of approximate problems.

(Pn) —Au’n +:B(u'n)3fn

%
where f, = f-y, is the «wuty of f by means of y,(x) = o (ln—]),
with o€ C®(R,), 0 < 3 <1, yo=1 on [0, 1] and yxy = 0 outside
[0, 2].

2 — Collectanea Mathematica



18 Juan I,. Vizquez

Then for n >R, f,=f" +fa=f +f" %, Now as in Th. 1
we construct functions % and % depending on f’ and constants C},
C,; depending on B and f”, uniformly in %, such that, according to
(1.3), (1.3): '

2.1) Cr+%<u, <#+CH

and we may take C; = 0.

Let us look at the convergence of {u,}. Except in case f e L}(RV),
the sequence {f,} is strictly increasing and so is {u,} by the results
of [2]. With this and the uniform domination of (2.1) we conclude
the existence of u e LL (R") such that %, * % a.e. in R¥ and in
Ll .(RY) and u satisfies (2.1). In particular

(2.2) 0 < lim inf # < lim sup # < B3!(lim sup f)
| ] = co

| #|— oo |£|— o0

analogous to (1.4), (1.4').

(If fe L§(RY), then f, is constant for large # and we have usual
solutions, that may not be unique when N = 1,2, $71(0) # {0} and
S =0, see [2]).

As to the convergence of {w, = 4u, + f,e€p(u,)}, for R; >0
u, is solution of the problem

—du, +w, = f, w,ef(u,) on Q= Bg(0)
", = i, on Sg, (0) = o2
where #%, is the trace of u, € WEY(RY). Observe that for large = f,
is constant on By, and that #, is nondecreasing convergent in L!(99).
Then, using a result of Brézis |5| we have

16(w, — w,)l|evey < C (1B — BpllLr @a) + 110(f — fo)llr @)

where 6(x) = distance (», d2), and so {w,} is L!(2)-Cauchy and
arguing with an exhaustive sequence of balls we conclude that an
appropriate subsequence converges in L} (RY). But {f,} is non-
decreasing and so {w,} is nondecreasing ([2]), whence there exists
we LL (R¥) such that w, t w a.e. and in LL (RV).

Passing to the limit in (P,) we obtain — A% + w = f. It only
remains to prove that w(x) € f(u(x)) a.e. an this is consequence of
Lemma 3 of [4], for #, > u a.e., w, > win L] (RY) and w, € B(u,) a.e.
Case 3: f < 0 for large x.
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Same process. Now we may put C} = 0 and instead of (2.2) we
have

(2.2) 0 > lim sup #» > lim inf » > B=!(lim inf f)

|z]— o0 |3|—co |#}— 00

Finally if f € L!(R¥) we conclude easily from [2] that the solutions #,
for the problems (P,) converge to a usual solution of (P), by virtue of
the estimates for # — # and grad (¥ — %) in terms of ||f — f||1.

So the Theorem is proved in both cases.
REMARK: The solutions here constructed are uniquely determined if
f¢ LARY) as we have said before. Also w = Au + f is always uni-
quely determined.

Note that in passing to the limit the ordering property of (P) in
L'(R¥) is preserved, a.e. if #;, ¢+ = 1,2 are solutions for f; and w; =
= Au; + f; we have

(2.3) fi1 < frand f; # frae imply #; < 4, and w; < w, a.e.

Case 3: general f.

In general we have to go through a double approximation process
and that we shall do in two ways: i) taking positive part of f for large
x and then cutting as in Case 1, ii) taking negative part and cutting.
We arrive at two possible solutions.

i) IS SOLUTIONS
Approximate (P) = (P;) by (Pm) = (P™) where

f@) if jxf <m

f2 @) = {f+(x) if |¢| >m, f*(x) = max (f(x), 0)

for m > 0. Then f» | fa.e. and in L} (RY), and (P™) falls in Case 1,
so we replace (P™) by

(Pp) —Aug + Blug) s fd = f2 2

and obtain solutions w2 e Wki, Wn» = Aur 4 fm e L'(RY), {um
satisfying (2.1) with «, %, C} C; chosen independent of m, » being

both large. Thus the solutions #” = lim % wu? for (P") satisfy (2.1)

uniformly in m.



20 1Juan I,. Vizquez

Convergence of u™: except possibly in case fe L}(RY) the se-
quence #” has a limit a.e. and in L} _(Ry), #. Namely if f ¢ L}(R"),
f may be nonnegative for large |x| or not. If f > 0 for large |%|, f»
is constant for large m and in that case the solution #” constructed
in Case 1 is unique, so # = u™ for every m > > 0. If f is not positive
for large x, {f7} is decreasing nonconstant and it is not difficult to
see that some subsequence of {#™} is decreasing, that there is only one
possible limit # = lim %™ and that # = lim »™.

”
Now the argument used before allows for the existence of #% = lim

”
w™ a.e. and in L} (R¥), w™ being a nonincreasing sequence, and we

have # = lim #” a.e. and in L} (R¥), & € (%) a.e. and — A&t + #= f.
# satisfies (2.1) and @ (1.1), (1.1').

As before if fe LI(RY), # is a usual solution and the comparison
property (2.3) holds.

This solution we shall call inf-sup-solution or IS-solution for
in general:

% = inf sup 4 = lim lim wu?
m " M—>00 ©B—>00

ii) SI SOLUTIONS:

Same process, except the first step: we approximate (P,) by
(Py,), where

o) = {f(x) if |2 < m
= [~ @) if |2 >m, f~(x) = min(f(x), 0)

loc

and m > 0. f,, * f ae and in L (RY) and (P, falls in Case 2.
We obtain a solution u such that, with obvious notation:

# = lim %, = lim (lim«,, ,) = sup (inf«,, ,) and
w = limw,, = lim (imw, ,) =sup (iof w, ),

” m n m ”
wep(u) ae and —Au + w = f.

We call these solution SI- or sup-inf-solutions, and the properties
of i) apply.
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Also from f7 > f,, we deduce that w” > w,, and in the limitw > w
a.e. If f¢ L{(RN), we also have # > u, # and u being well defined.
In case f > 0 for large x or f < O for large %, % = u,®» = w and we
obtain the same solutions studied in cases 1 and 2 resp. #

3. EXTENSION OF THS. 1 AND 2
1) Both theorems may be adapted to the problem

—Au 4 B(u)>f on Q c RY
(Pﬂ)z(Pﬂ'f:”){ u=0on I = dQ

where 2 is as unbounded open set in RY with smooth boundary 082
and B and f are similar to those in Ths 1 and 2. We shall develop this
ideas in [7].
2) The proof of Theorems 1 and 2 apply to show the existence of
weak solutions of (P) when f = f; + f, with f; € LY(R¥) and f, € L™
(RY) and is strictly bounded at infinity by 8. In particular if Range
(B) =R, for fe LY(RN) 4 L>=(RY).

Now the solutions are #ot bounded at infinity in general: the

solutions # = u, of (P,) — Au + f.(%) > fit (see Th. 1) need not be
bounded at infinity and the boundedness of weak solutions depended
on the estimate (1.3) # < u, + ¢;}. However if f; is bounded by a
radial integrable function near infinity, # — 0 uniformly as |x| > o
(cf. [1] for N > 3, [6] for N = 2) and we obtain solutions bounded at
infinity. '
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