QUASI-EQUIVALENCE OF COMPACTA AND SPACES OF COMPONENTS

por

José M. Rodríguez Sanjurjo

ABSTRACT.

Let X, Y be two compacts with Sh(X) = Sh(Y). Then, the spaces of components of X, Y are homeomorphic. This does not happen, in general, when X, Y are quasi-equivalent.

In this paper we give a sufficient condition for the existence of a homeomorphism between the spaces of components of two quasi-equivalent compacta X, Y which maps each component in a quasi-equivalent component.

1. Introduction.

Two compacts X and Y, lying in the Hilbert cube Q, are quasi-equivalent [3] (notation $X \stackrel{q}{\simeq} Y$) if for every neighborhood (U, V) of (X, Y) in (Q, Q) there are two fundamental sequences (see [1] or [2] for the definition) $\mathbf{f} = \{f_k, X, Y\}_{Q,Q}$, $\mathbf{g} = \{g_k, Y, X\}_{Q,Q}$ such that $\mathbf{g} \cdot \mathbf{f}$ is U-homotopic to the fundamental identity sequence $\mathbf{i}_{X,Q}$ and $\mathbf{f} \cdot \mathbf{g}$ is V-homotopic to $\mathbf{i}_{Y,Q}$, i.e., if there exists a neighborhood (U', V') of (X, Y) in (Q, Q) such that

AMS (MOS) subject classifications (1970), Primary 54E45; Secondary 54C56. Key words and phrases, Shape theory, quasi-equivalence of compacta, spaces of components.

$$g_k \cdot f_{k|U'} \simeq i_{|U'}$$
 in U

and

$$f_k \cdot g_{k|V'} \simeq i_{|V'}$$
 in V

for almost all k.

In [3] is proved that all 0-dimensional infinite compacta are quasi-equivalent. Thus, in general, it is not true that two quasi-equivalent compacta X, Y have homeomorphic spaces of components. This is in contrast with the situation that we have when Sh(X) = Sh(Y). In this paper we give a sufficient condition for the existence of a homeomorphism between the spaces of components (X) and (Y), of two quasi-equivalent compacta X, Y, which maps each component in a quasi-equivalent component.

In \square (X) we consider the metrizable topology induced by the upper-semicontinuous decomposition of the compactum X into components and we make use of the following well-known theorem (see [1] or [2]):

Theorem 1.

Let X, Y be compacta lying in the Hilbert cube Q. Then, for every fundamental sequence

$$\mathbf{f} = \{f_k, X, Y\}_{0,0}$$

there exists exactly one function

$$\Lambda_{\mathbf{f}}: \bigcap (X) \longrightarrow \bigcap (Y)$$

satisfying the following condition.

If $X_0 \in [-](X)$, then $\{f_k, X_0, \Lambda_{\mathbf{f}}(X_0)\}_{Q,Q}$ is a fundamental sequence. Moreover, the function $\Lambda_{\mathbf{f}}$ is continuous and depends only on the fundamental class $[\mathbf{f}]$ of \mathbf{f} . This dependence is covariant, i.e., if $\mathbf{g} = \{g_k, Y, Z\}_{Q,Q}$ is a fundamental sequence then $\Lambda_{\mathbf{g} \cdot \mathbf{f}} = \Lambda_{\mathbf{g}} \cdot \Lambda_{\mathbf{f}}$.

2. Quasi-equivalence and spaces of components.

Let X, Y be quasi-equivalent compacta lying in the Hilbert cube Q. Let $((U_n)_{n\in N}, (V_n)_{n\in N})$ be a decreasing basis of open neighborhoods of (X, Y) in (Q, Q) and

$$\mathbf{f}^n = \{f_k^n, X, Y\}_{0,0}, \mathbf{g}^n = \{g_k^n, Y, X\}_{0,0}$$

fundamental sequences such that

$$\mathbf{g}^n \cdot \mathbf{f}^n \simeq_{U_n} \mathbf{i}_{X,Q}$$

(i.e. $\mathbf{g}^n \cdot \mathbf{f}^n$ and $\mathbf{i}_{X,Q}$ are U_n -homotopic) and

$$\mathbf{f}^n \cdot \mathbf{g}^n \simeq_{V_n} \mathbf{i}_{Y,Q}$$
,

for n = 1, 2, ... By theorem 1 the fundamental sequences f^n , g^n induce maps

$$\Lambda_n: \bigcap (X) \longrightarrow \bigcap (Y), \ \Lambda_{n'}: \bigcap (Y) \longrightarrow \bigcap (X)$$

which fulfill the conditions of theorem 1. We prove the following theorem.

Theorem 2.

If the sequences of maps
$$(\Lambda_n)_{n\in\mathbb{N}}$$
, $(\Lambda_n')_{n\in\mathbb{N}}$ converge continuously to $\Lambda: \square(X) \longrightarrow \square(Y)$, $\Lambda': \square(Y) \longrightarrow \square(X)$, respectively, then

- i) Λ and Λ' are mutually inverse homeomorphisms.
- ii) For every $X_0 \in \square(X)$ and for every neighborhood \mathfrak{A} of X_0 in $\square(X)$ there exists a closed neighborhood of X_0 , $\mathfrak{A}_0 \subset \mathfrak{A}$ such that

$$p^{-1}(\mathfrak{A}_0) \stackrel{q}{\simeq} \widetilde{p}^{-1}(\Lambda(\mathfrak{A}_0))$$

where $p: X \longrightarrow \square(X)$ and $\widetilde{p}: Y \longrightarrow \square(Y)$ are the natural-projections. Moreover if for some pair of components $X_0 \in \square(X)$ $Y_0 \in \square(Y)$ and for a subsequence of indices $n_1 < n_2 < \ldots \land n_i(X_0) = Y_0 \land n_i(Y_0) = X_0$ then $X_0 \stackrel{q}{\simeq} Y_0$.

Proof.

Part i). Let X_0 be a component of X. Let us set $Y_0 = \Lambda(X_0)$, $Y_n = \Lambda_n(X_0)$, $X_n = \Lambda'_n(Y_n)$. We must prove that $X_0 = \Lambda'(Y_0)$. The map $\Lambda'_n \cdot \Lambda_n : \Box(X) \longrightarrow \Box(X)$ is induced (in the sense of theorem 1) by the fundamental sequence $\mathbf{g}^n \cdot \mathbf{f}^n$. Thus,

$$\{g_k^n \cdot f_k^n, X_0, X_n\}_{0,0}$$

is a fundamental sequence. Since, by hypothesis,

$$\mathbf{g}^n \cdot \mathbf{f}^n \simeq_{U_n} \mathbf{i}_{X,Q}$$

then

$$g_k^n \cdot f_k^n|_{X_0} \simeq i|_{X_0}$$

in U_n^0 , for almost all k, where U^0_n is the component of U_n containing X_0 . Hence $X_n \subset U_n^0$.

The set \mathfrak{A}_n of all the components of X contained in U_n^0 is an open neighborhood of X_0 in $\square(X)$. Let us prove that the family $\{\mathfrak{A}_n\}_{n\in N}$ is a basis of neighborhoods of X_0 in $\square(X)$. Let \mathfrak{A} be an open neighborhood of X_0 in $\square(X)$ and $A=p^{-1}(\mathfrak{A})$. Take an open-closed of X, B, such that $X_0 \subset B \subset A$ and separate B and X-B by two open sets of Q, V_0 and V_1 . Take $U_n \subset V_0 \cup V_1$. Then $U_n^0 \subset V_0$ and

$$\mathfrak{A}_{n} \subset p(U_{n}{}^{0} \cap X) \subset p(V_{0} \cap X) = p(B) \subset \mathfrak{A}.$$

Therefore we have $\lim_{n\to\infty} X_n = X_0$, because $X_m \in \mathfrak{A}_m \subset \mathfrak{A}_m$, for every $m \geqslant n$. On the other hand, it is clear that $\lim_{n\to\infty} Y_n = Y_0$. Since Λ'_n is continuously convergent then $\lim_{n\to\infty} \Lambda'_n(Y_n) = \Lambda'(Y_0)$. Hence $X_0 = \Lambda'(Y_0)$. The proof that Λ is the left-inverse of Λ' is similar. Part ii

Let $\mathfrak U$ be a neighborhood of X_0 in $\square(X)$. Take an open-closed $\mathfrak U_0$ in $\square(X)$ such that $X_0\in\mathfrak U_0\subset\mathfrak U$. We claim that there is a n_0 such that

$$\Lambda_n(\mathfrak{A}_0) \subset \Lambda(\mathfrak{A}_0)$$
, $\Lambda_n'[\Lambda(\mathfrak{A}_0)] \subset \mathfrak{A}_0$,

for all $n \ge n_0$. If, for instance, there is a sequence $n_1 < n_2 < ...$ such that $\Lambda_{n_i}(X_i) \notin \Lambda(\mathfrak{A}_0)$, for certain $X_i \in \mathfrak{A}_0$, i = 1, 2, ..., then, since \mathfrak{A}_0 is compact metrizable, it must exist a subsequence of $(X_i)_{i \in N}$ converging in \mathfrak{A}_0 . Without loss of generality we can assume that this subsequence is the original one $(X_i)_{i \in N}$ and we call X'_0 its limit. Since Λ_{n_i} converge-continuosly to Λ , then

$$\lim_{i\to\infty} \left[\Lambda_{n_i} (X_i) \right] = \Lambda (X'_0)$$

but this contradicts the fact that $\Lambda_{n_i}(X_i) \notin \Lambda(\mathfrak{A}_0)$ and $\Lambda(\mathfrak{A}_0)$ is open. A similar argument shows the existence of n_0 such that relation $\Lambda_{n'}[\Lambda(\mathfrak{A}_0)] \subset \mathfrak{A}_0$ holds for $n \geq n_0$.

Now, we claim that

$$\widetilde{\mathbf{f}}^n = \{f_k^n, \ p^{-1}(\mathfrak{A}_0), \ \widetilde{p}^{-1}[\Lambda(\mathfrak{A}_0)]\}_{O,O}$$

and

$$\widetilde{\mathbf{g}}^{n} = \{g_{k}^{n}, \widetilde{p}^{-1}[\Lambda(\mathfrak{A}_{0})], p^{-1}(\mathfrak{A}_{0})\}_{Q,Q}$$

are fundamental sequences for $n \ge n_0$. Let V^0 be a neighborhood of $\widetilde{\rho}^{-1}[\Lambda(\mathfrak{A}_0)]$ in Q. Take an open neighborhood V of Y in Q, such that V^0 contains all the components of V which meet $\widetilde{\rho}^{-1}[\Lambda(\mathfrak{A}_0)]$. There is a neighborhood U of X in Q such that

$$|f_k^n|_U \simeq f_{k+1}^n|_U \text{ in } V$$

for almost all k. If we call U^0 the union of all the components of U meeting $p^{-1}(\mathfrak{U}_0)$, then

$$f_k^n|_U^0 \simeq f_{k+1}^u|_U^0 \text{ in } V^0$$

for almost all k, because, in other case, there would be some $X_i \in \mathfrak{A}_0$ such that $\Lambda_n(Xi) \notin \Lambda(\mathfrak{A}_0)$. This proves our claim that $\widetilde{\mathbf{f}}^n$ is a fundamental sequence. The same argument is valid for $\widetilde{\mathbf{g}}^n$.

Furthermore, it is clear that

$$\widetilde{\mathbf{g}}^n \cdot \widetilde{\mathbf{f}}^n \underset{U^{0_n}}{\sim} \mathbf{i}_{p-1}(\mathfrak{A}_0), Q$$

and

$$\widetilde{\mathbf{f}}^n \cdot \widetilde{\mathbf{g}}^n \simeq i_{\widetilde{P}^{-1}[\Lambda(\mathfrak{A}_0)], Q,}$$

where $U_n^{\bullet 0}$ (resp. $V_n^{\bullet 0}$) is the union of the components of U_n (resp. V_n) meeting $p^{-1}(\mathfrak{A}_0)$, (resp. $\widetilde{p}^{-1}[\Lambda(\mathfrak{A}_0)]$). Moreover $(\{U_n^0\}_{n\in\mathbb{N}}, \{V_n^0\}_{n\in\mathbb{N}})$ is a basis of neighborhoods of $(p^{-1}(\mathfrak{A}_0), \widetilde{p}^{-1}[\Lambda(\mathfrak{A}_0)])$ in (Q, Q). Thus

$$p^{-1}(\mathfrak{A}_0) \stackrel{q}{\simeq} \widetilde{p}^{-1}[\Lambda(\mathfrak{A}_0)],$$

and part ii) is proved.

To prove the rest of the theorem, let us consider the fundamental sequences

$$\hat{\mathbf{f}}^{n_i} = \{f_k^{n_i}, X_0, Y_0\}_{Q,Q}
\hat{\mathbf{g}}^{n_i} = \{g_k^{n_i}, Y_0, X_0\}_{Q,Q},$$

for $n_1 < n_2 < \ldots$, and let (U^0, V^0) be a neighborhood of (X^0, Y^0) in (Q, Q). Now let us consider a neighborhood (U_{n_i}, V_{n_i}) , such that $U_{n_i}{}^0 \subset U^0$, $V_{n_i}{}^0 \subset V^0$, where $U_{n_i}{}^0$, $V_{n_i}{}^0$ are the components of U_{n_i} , V_{n_i} containing X_0 , Y_0 respectively, By hypothesis, there is a neighborhood (U', V') of (X, Y) in (Q, Q) such that

$$g_k^{n_i} \cdot f_k^{n_i}|_{U'} \simeq i|_{U'}$$
 in U_{n_i}

and

$$|f_k^{n_i} \cdot g_k^{n_i}|_{V'} \simeq i|_{V'}$$
 in V_{n_i}

for almost all k, If we take U_0 ' (resp. V_0 ') the component of U' (resp. V') containing X_0 (rep. Y_0), we have

$$g_k^{n_i} \cdot f_k^{n_i}|_{U_0} \simeq i|_{U_0}$$
 in $U_{n_i}^0 \subset U_0$

and

$$|f_k^{n_i} \cdot g_k^{n_i}|_{V_0} \simeq i|_{V_0} \text{ in } V_{n_i}^0 \subset V_0$$

for almost all k, Therefore X_0 and Y_0 are quasi-equivalent and the proof is complete.

Remark 1.

It is easy to prove that the families $(\mathbf{f}^n)_{n \in \mathbb{N}}$, $(\mathbf{g}^n)_{n \in \mathbb{N}}$ of fundamental sequences realizing the quasi-equivalence have the following property: If there exists a sequence of indices $n_1 < n_2 < \dots$ such that $\mathbf{f}^{n_i} \simeq \mathbf{f}^{n_j}$ and $\mathbf{g}^{n_i} \simeq \mathbf{g}^{n_j}$ for every par n_i , n_j of indices, then Sh(X) = Sh(Y).

Remark 2.

Let X, Y be compacta and let

$$\Lambda: \square(X) \longrightarrow \square(Y)$$

be a homeomorphism such that:

i) for every $X_0 \in \bigcap (X)$ there is a closed neighborhood \mathfrak{A}_0 of X_0 , with

$$p^{-1}(\mathfrak{A}_0) \stackrel{q}{\simeq} \widetilde{p}^{-1}[\Lambda(\mathfrak{A}_0)]$$

and ii) $\Lambda|_{\mathfrak{A}_0}$, $\Lambda^{-1}|_{\Lambda(\mathfrak{A}_0)}$ are continuous limits of the sequences of maps induced by a countable family of fundamental sequences defining this «local» quasi-equivalence. Then

$$X \stackrel{q}{\simeq} Y$$
,

REFERENCES

- [1] K. Borsuk. Theory of Shape, Lecture Notes Series 28, Aarhus Universitet 1971, pp. 1-145.
- [2] K. Borsuk. Theory of Shape, Monografie Matematyczne, 59, Warszawa 1975, pp. 379.
- [3] K. Borsuk. Some quantitative properties of Shapes. Fund. Math. XCIII (1976), pp. 197-212.

José M. Rodríguez Sanjurjo.

Departamento de topología y geometria.
Facultad de Matemáticas.
Universidad Complutense.
Madrid (3) - España (Spain).

