SOME PROBLEMS ARISING FROM PREDICTION THEORY AND A THEOREM OF KOLMOGOROV

by

JOSE J. GUADALUPE HERNANDEZ and JOSE L. RUBIO DE FRANCIA

1. INTRODUCTION.

Let $T = \{ e^{2\pi i x} | 0 \le x < 1 \}$ denote the unit circle identified in the natural way with the interval [0, 1] and provided with normalized Lebesgue measure m, so that m (T) = 1. Denote by P the vector space of all trigonometric polynomials, and consider the subspaces

$$P_{+} = \{ g e P | \hat{g}(k) = 0 \text{ for all } k \le 0 \}$$

 $P_{0} = \{ g e P | \hat{g}(0) = 0 \}$

If μ is a positive finite Borel measure in T, the distance in L^p (μ) between 1 and P_+ is given by the beautiful formula

$$\inf_{g \in P_{+}} \int |1 + g(x)|^{p} d\mu(x) = \exp \int \log w(x) dx$$

$$(0$$

where $d\mu(x) = w(x) dm(x) + d\mu_s(x)$ is the Lebesgue decomposition of μ . The identity (1) has important consequences in the Theory of Functions, Fourier Analysis, Orthogonal Polynomials and Prediction Theory. It was first proved by Szegö in the case: p = 2, $\mu < < m$, and subsequently generalized by several authors (see Helson [4]). The same question can be asked for P_0 insted of P_+ , i.e., which is the value of

$$d_{p}(\mu) = \inf_{g \in P_{O}} \int |1 + g(x)|^{p} d\mu(x)$$
 (2)

Observe that $d_p(\mu) > 0$ means that no character in T can be approximated in the metric of $L^p(\mu)$ by linear combinations of characters different from it. In

terms of Prediction Theory, $d_2(\mu) > 0$ means that, for a certain stochastic process represented by μ , the strict past and the strict future together do not determine the present (see [10]). When p = 2, an answer to this question was given by Kolmogorov:

Theorem 0: Let $d\mu(x) = w(x) dm(x)$. Then

$$d_2(\mu) = (\int_{T} w(x)^{-1} dm(x))^{-1}$$

In particular, $d_2(\mu) > 0$ if and only if w(x) > 0 a.e. and $w^{-1} \in L^1$ (T).

The proof of theorem 0 is simple and based on orthogonality arguments in the Hilbert space L^2 (μ). Our aim here is to present a different approach which is suitable to deal with L^p (μ), 0 , and even with Orlicz spaces. Some other related problems will be considered along the way.

2. THE MAIN RUSULT FOR ORLICZ SPACES.

The following notation will be used throughout. Φ and Ψ will be two conjugate Young functions in $[0, \infty)$, and $L_{\Phi}(\mu)$, $L_{\Psi}(\mu)$ will denote the corresponding Orlicz spaces defined on the measure space (T, μ) . Here μ is a positive finite Borel measure in T with Lebesgue decomposition:

$$d\mu(x) = w(x) dm(x) + d\mu_s(x)$$
.

When μ is absolutely continuous, we identify μ with the weight w (x), and write $L_{\Phi}(w)$ instead of $L_{\Phi}(\mu)$. Finally, for every trigonometric polynomial f e P, we denote by Hf(x) = $\tilde{f}(x)$ the conjugate of f, and by

$$S_n f(x) = \sum_{|k| \le n} f(k) \exp(2 \pi i k x)$$

the n-th partial sum of f.

Theorem 1: The following statements are equivalent:

a) inf
$$\{||1 + g||_{L_{\Phi}(\mu)}: g \in P_0\} = c > 0$$

b)
$$w(x) > 0$$
 a.e. and $w^{-1} \in L_{W}(w)$

c)
$$m(\{x: |I|f(x)| > t\}) \le Ct^{-1} ||f||_{L_{ab}(\mu)}$$
 (feP)

d)
$$m(\{x: |S_n f(x)| > t\}) \le Ct^{-1} ||f||_{L_{d_t}(\mu)}$$
 (feP; $n \ge 0$)

where C > 0 denotes an absolute constant which depends only on μ .

Proof: (a) implies (b). For every f e P we have the inequality

$$|\hat{f}(0)| \le c^{-1} ||f||_{L_{\Phi}(\mu)}$$
 (3)

In fact, this is obvious when $\hat{f}(0) = 0$, and when $\hat{f}(0) \neq 0$ we apply (a) to the trigonometric polynomial $[\hat{f}(0)]^{-1}$ for $1 + P_0$. Let $E_{\Phi}(\mu)$ denote the closure of P in $L_{\Phi}(\mu)$, which coincides with the closure of $L^{\infty}(\mu)$ in $L_{\Phi}(\mu)$ (by Lusin's theorem and Weierstrass' approximation theorem). By (3), the mapping $f \rightarrow \hat{f}(0)$ extends to a continuous linear functional on $E_{\Phi}(\mu)$, and it is known ([6]) that all such functionals are represented by functions in $L_{\Psi}(\mu)$, i.e., there exists he $L_{\Psi}(\mu)$ such that

$$\int f(x) dm(x) = \hat{f}(0) = \int f(x) h(x) d\mu(x)$$
 (feP) (4)

It follows that $hd\mu = dm$, i.e.

$$h = 0$$
 μ_s a.e., $h(x) = w(x)^{-1} m$ a.e.

Therefore, h c $L_{\Psi}(\mu)$ is equivalent to w^{-1} c $L_{\Psi}(w)$.

(b) implies (c) and (d). We shall need the extension of Hölder's inequality

$$||fg||_{L^1} \leqslant ||f||_{L_\Phi} ||g||_{L_\Psi}$$

where $||\cdot||_{L_{\Phi}}$ and $||\cdot||_{L_{\Psi}}$ are the Orlicz norms. By Kolmogorov's inequality (see [11])

$$m (\{x: |Hf(x)| > t\}) \le \Lambda t^{-1} \int |f(x)| dm(x) =$$

$$= A t^{-1} \int |f| w^{-1} w dm \le A ||w^{-1}||_{L_{\mathcal{M}}(W)} t^{-1} ||f||_{L_{\mathcal{M}}(W)} (w)$$

Since $||w^{-1}||_{L_{\Phi}(w)} < \infty$ and $||\cdot||_{L_{\Phi}(w)} \le ||\cdot||_{L_{\Phi}(\mu)}$, we have proved (c). The same argument can be applied to $\{S_n\}_{n\in\mathbb{N}}$ instead of H to prove (d).

(c) implies (a). For every f e P we have

Hf (x)
$$e^{2\pi ix}$$
 H (fe^{-2\pi i.}) (x) = - i [f(0) + f(1) $e^{2\pi ix}$]

and from (c) we obtain

$$m(\{x: |\hat{f}(0) + \hat{f}(1)e^{2\pi ix}| \ge t\}) \le 4Ct^{-1}||f||_{L_{\Phi}(\mu)}$$
 (feP)

Now, if $\hat{f}(0) = 1$, there is an interval of length 1/2 such that, for all x in that interval: Re $(\hat{f}(1) e^{2\pi i x}) \le 0$, and therefore $|1 + \hat{f}(1) e^{2\pi i x}| \ge 1$. Then

$$1/2 \le 4 \,\mathrm{C} \,||f_1||_{L_{(1)}(\mu)}$$
 (f e 1 + P_o)

which is (a).

(d) implies (a). It suffices to use the inequality for S_0 $f = \hat{f}(0)$, which gives (3) for every $f \in P$, and (3) is equivalent to (a).

Remarks: 1.— A retrospective look at the proof of the theorem shows that the best C in (c) and (d) is equivalent to 1/c and to $||w^{-1}||_{L_{\Psi}(W)}$, i.e.

$$1/c \le k_1 ||w^{-1}||_{L_{\Psi}(w)} \le k_2 C \le k_3/c$$

for some constants k_1 , k_2 , $k_3 > 0$ independent of μ .

2.- If Ψ satisfies the Δ_2 condition:

$$\Psi$$
 (2 t) \leq (Const.) Ψ (t), t $>$ 0,

then (b) can be written as

$$\int \Psi(w(x)^{-1}) w(x) dm(x) < \infty$$

3. THE CASE OF LP SPACES.

The proof of theorem 1 shows that, in general

$$\inf\{||1+g||_{L_{\Phi}(\mu)}: g e P_o\}^{-1}$$

equals the norm of w^{-1} as an element of $[E_{\Phi}(w)]^*$. When $\Phi(t) = t^p$, $1 , this is exactly <math>||w^{-1}||_L p'$ (w). Thus we have

Theorem 2: Let $d_p(\mu)$ be defined by (2). If $1 , we have <math>d_p(\mu) > 0$ if and only if $w^{-p'/p} \in L^1(T)$, and, more precisely

$$dp(\mu) = \{ \int w(x)^{-p'/p} dm(x) \}^{-p/p'}$$

Observe that Kolmogorov's theorem 0 is a particular case of theorem 2. The case p=1 can be treated exactly as in theorem 1 (and it is even simpler), with L_{Φ} and L_{ψ} replaced by L^1 and L^{∞} respectively. We limit ourselves to state the results:

Theorem 3: The following statements are equivalent:

- a) $d_1(\mu) = \inf \{ \int |1 + g| d\mu : g \in P_0 \} > 0$
- b) there exists k > 0 such that $k \le w(x)$ a.e.
- c) If extends to a bounded operator from $L^1(\mu)$ into $L^1_*(T) = \text{weak-}L^1(T)$.

Moreover, we have the identity

$$d_1(\mu) = ||w^{-1}||_{\infty}^{-1} = \underset{x \in T}{\text{ess inf }} w(x)$$

Theorem 4: $d_p(\mu) = 0$ for all 0 .

Proof: If $d_p(\mu) > 0$ for some p < 1, then $f \to \tilde{f}(0)$ extends to a continuous linear functional on $L^p(\mu)$, and (4) will be verified for some function h which is a countable linear combination of μ -atoms ([2]). In particular, supp (h) \subseteq supp (μ_s) . (Since there are no μ -atoms in the absolutely continuous part of μ) and this makes (4) impossible.

The result of theorem 2, and in particular, the formula for d_p (μ), merits further discussion. First, if we recall that, in a probability space, the norms $\|g\|_r$ converge to the geometric mean of |g| as $r \to 0$ (see [5], 13.32) we have

Corollary 1: $d_p(\mu)$ is an increasing function of p, and

$$\lim_{p\to\infty} d_p (\mu) = \exp \int \log w (x) dm (x)$$

If one combines this with Szegö's formula, it turns out that, although the left hand side of (1) is greater than $d_p(\mu)$ for each p > 0, both terms converge to the same limit when $p \to \infty$.

Corollary 2: The following statements are equivalent:

- a) $\log w \in L^1(T)$
- b) $\inf \{ (|1 + g|^p) d\mu : g \in P_+ \} > 0 \text{ for all } p > 0$
- c) $\inf \{ (|1 + g|^p) d\mu : g \in P_+ \} > 0 \text{ for some } p > 0 \}$
- d) $\inf \{ \int |1+g|^p d\mu : g \in P_0 \} > 0 \text{ for some } p > 0 \}$
- e) $\inf\{\|1+g\|_{\exp(1,(\mu)}: g \in P_0\} > 0$

In fact, it is obvious from (1) that (a) \Leftrightarrow (b) \Leftrightarrow (c), the equivalence (a) \Leftrightarrow (d) follows from Corollary 1, and the remark 2 of the previous section applied to

$$\Psi(t) = t \log^+ t$$
, yields (a) \Leftrightarrow (e).

There is a final remark to make if the formula for $d_p(\mu)$ is written as

$$\inf_{g \in P_0} \int |1 + g(x)/p|^p w(x) dm(x) = \{ \int w(x)^{-p'/p} dm(x) \} - P/p$$

$$(1$$

Letting $p \to \infty$ and proceeding formally (i.e., replacing \lim (inf...) by \inf (\lim ...)) one gets

$$\inf_{g \in P_{\Omega}} \int e^{\operatorname{Reg}(x)} w(x) dm(x) = \exp \int \log w(x) dm(x)$$
 (5)

It turns out that (5) actually holds, and it is a well known identity (191, 8.3).

4. A RELATED PROBLEM.

The condition w^{-p'/p} e L¹ (T) appearing in theorem 2, which is equivalent to L^p (w) C L¹ (T), seems to be also the answer to several other questions. For instance, it is necessary and sufficient for the existence of some u(x) > 0 such that

$$\int |Hf(x)|^p u(x) dm(x) \le \int |f(x)|^p w(x) dm(x) \qquad (f e P)$$

(see [7], [8], [1]). The problem that we shall consider here is the following. For a given w e L_{+}^{1} (T), H^{p} (w) and \widetilde{H}^{p} (w) denote, respectively, the closures in L^p (w) of the subspaces

$$\mathbb{C} \oplus P_+ = \{ g e P | \hat{g}(k) = 0 \text{ for all } k < 0 \}$$

$$\mathbb{C} \oplus P_- = \{ g \in P \mid \hat{g}(k) = 0 \text{ for all } k > 0 \}$$

and we ask ourselves, for which w is $H^p(w) \cap \widetilde{H}^P(w) = \mathbb{C} = \{ \text{ constant functions } \}$. In terms of Prediction Theory, this condition means, in the case p=2, that the intersection of the past and the future is the present (where past and future refer to the stochastic process spectrally represented by wdm). For some similar questions, see [10].

Theorem 5: If $w^{-p'/p} \in L^1(T)$, then $H^p(w) \cap \widetilde{H}^p(w) = \mathbb{C}$. However, if 0 < q < p'/p, there exists w(x) > 0 such that $w^{-q} \in L^1(T)$ and

$$H^{p}(w) \cap \widetilde{H}^{p}(w) \supseteq \mathbb{C}.$$

Proof:

Assume that

$$k = \{ \int w(x)^{-p'/p} dm(x) \}^{1/p'} < \infty$$

If $f \in H^p(w) \cap \widetilde{H}^p(w)$, then $f, \overline{f} \in H^p(w)$, and there exist trigonometric polynomials $\{P_n\}$ and $\{Q_n\}$ of analytic type such that

$$\lim_{n} ||P_n - f||_{L^p(w)} = \lim_{n} ||Q_n||_{\overline{f}}||_{L^p(w)} = 0$$

On the other hand, Holder's inequality gives us

$$\int |P_n(x) - f(x)| dm(x) \le k \left\{ \int |P_n(x) - f(x)|^p w(x) dm(x) \right\}^{1/p} \to 0$$

$$(n \to \infty)$$

i.e., $f \in H^1$ (T). By the same reason, $\overline{f} \in H^1$ (T), and both together imply f(x) = constant, a.e.

On the other hand, given q < p'/p, we choose s such that p - 1 < s < 1/q, and define w (x) = $|1 - e^{2\pi ix}|^s$. The condition w^{-q} e L¹ (T) is then verified. We shall need the following description of H^p (w) (see [3]):

$$H^{p}(w) = K \cdot H^{p}(T) = \{ K(x) g(x) | g \in H^{p}(T) \}$$

where K is the boundary value of the outer function K (z) such that

$$|K(x)| = w(x)^{-1/p}$$
 (a.e. x e T)

Then g (z) = K (z)⁻¹ (1 + z)/(1- z) is an analytic function in the unit disc with radial limit g e L^p (T), since

$$\int |g(x)|^p dm(x) = \int |\sin x/(1 \cos x)|^p w(x) dm(x) \le C \int_0^1 x^{q-p} dx < \infty$$

Therefore, g c H^p (T), and f (x) = K (x) g (x) = sen x/(1 - cos x) belongs to H^p(w). Since f (x) is real valued, it follows that f c $\widetilde{H}^p(w)$. Thus, $H^p(w) \cap \widetilde{H}^p(w)$ contains non constant functions.

This teorem leads naturally to formulate the following

Conjecture:
$$H^p(w) \cap \widetilde{H}^p(w) = \mathbb{C}$$
 if and only if $w^{-p'/p} \in L^1(T)$.

Let us finally observe that all the results proved in this paper make sense and are also true if T is replaced by an arbitrary compact Abelian group with an ordered dual (see [4] and [9] for the extension of some classical facts to this context). Moreover, if one drops the statements (c) and (d) of theorem 1, (c) of theorem 3 and (b), (c) in Corollary 2, the whole sections 2 and 3 can be generalized to arbitrary compact groups.

REFERENCES

- 1. L. Carleson, P. Jones: Weighted norm inequalities and a theorem of Koosis. Inst. Mittag-Leffler, Report No. 2 (1981).
- 2. M. M. Day: The spaces L^p with $0 \le p \le 1$. Bull. Amer. Math. Soc. 46 (1940), 816-823.
- J. J. Guadalupe: Invariant súbspaces and H^D spaces with respect to arbitrary measures. Boll. Unione Mat. Italiana (6) 1-B (1982), 1067-1077.
- H. Helson: Analyticity on compact abelian groups. In "Algebras in Analysis", Ed. Williamson, Academic Press 1975.
- 5. E. Hewitt, K. Stromberg: Real and Abstract Analysis. Springer-Verlag, Berlín 1969.
- M. A. Krasnosel'skii, J. B. Rutickii: Convex functions and Orlicz spaces. Noordhoff, Groningen 1961.
- P. Koosis: Moyennes quadratiques pondérées de fonctions périodiques et de leurs conjuguées harmoniques. C. R. Acad. Sc. París 291 (1980), sér Λ, 255-257.
- 8. J. L. Rubio de Francia: Boundedness of maximal functions and singular integrals in weighted IP spaces. Proc. Amer. Math. Soc. 83 (1981). 673-679.
- 9. W. Rudin: Fourier Analysis on Groups. J. Wiley, Interscience, N.Y. 1962.
- D. Sarason: Function Theory on the unit cricle. Notes of Lectures, Virginia Polytechnic Inst., 1978.
- 11. A. Zygmgund: Trigonometric Series, I. Cambridge Univ. Press, 1968.
 - J. J. Guadalupe Hernández Colegio Universitario Logroño
 - J. L. Rubio de Francia División de Matemáticas Universidad Autónoma de Madrid