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1. INTRODUCTION.

Let T ={c2™*| 0 < x < 1} denote the unit circle identified in the natural
way with the interval [0, 1] and provided with normalized Lebesgue measure m,
so that m (T) = 1. Denote by P the vector space of all trigonometric polynomials,
and consider the subspaces

P, ={gePig(k) =0 forall k <O}
P, ={geP|é(0)=0}

If u is a positive finite Borel measure in T, the distance in LP (1) between 1 and
P _ is given by the beautiful formula

inf  [il +g(x) Pdu (x) =exp [ log w (x) dx M
geby 0<p<e)

where d u (x) =w (x) dm (x) + d g (x) is the Lebesgue decomposition of u. The
identity (1) has important consequences in the Theory of Functions, Fourier
Analysis, Orthogonal Polynomials and Prediction Theory. It was first proved by
Szegd in the case: p = 2, p < < m, and subscquently generalized by several
authors (see llelson [4]). The same question can be asked for P, insted of P,
i.e., which is the value of

dp () = inf [+ g (P du () @)
gelo

Observe that dp (u) > 0 means that no character in T can be approximated in
the metric of LP (u) by linear combinations of characters different from it. In
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terms of Prediction Theory, d; (1) > O means that, for a certain stochastic
process represented by p, the strict past and the strict future together do not de-
termine the present (sce [10]). When p =2, an answer to this question was given
by Kolmogorov:

Theorem 0: Let dp (x)=w (x) dm (x). Then

da (W) = (£, w ()" dm GO)Y
In particular, d,(u) >0 if end only if w (x)>0 ae and w™' e Lt (1).
The proof of theorem 0 is simple and based on orthogonality arguments in
the Hilbert space L2 (u). Our aim here is to present a different approach which

is suitable to deal with LP (i), 0 < p < oo, and even with Orlicz spaces. Some
other related problems will be considered along the way.

2. THL: MAIN RLSULT FOR ORILICZ SPACES.
The following notation will be used throughout. & and ¥ will be two con-
jugate Young functions in [0, e ), and Lo (u), Ly (1) will denote the corre-

sponding Orlicz spaces defined on the measure space (T, u). Here u is a positive
finite Borel measure in T with Lebesgue decomposition:

du (x) =w (x) din (x) + dug (x).
When u is absolutely continuous, we identify u with the weight w (x), and write

Lo (w)instead of Ly, (u). Finally, for every trigonometric polynomial [ e P, we
denote by Hf (x) = (x) the conjugate of f, and by

Snf(x) = 2 f(k)exp (2 mikx)
kl<

=n

the n-th partial sum of f.

Theorem 1: The following statements are equivalent:

a) inf {1 +gliLg ) gelol=¢>0

b) w(x)>0 ae. and w! e Ly (w)
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c) m({x:Hf&)I>t})<Ct" UL g o) (feP)
d) m({x:[SpfEI>t})<Ct? ||flqu,(#) (feP; n=0)

where C > Q denotes an absolute constant which depends only on u.

Proof: (a) implies (b). For everyl e P we have the inequality

iFO) < ¢ HllLg () 3)
In fact, this is obvious when £(0)=0, and when f (0) # 0 we apply (a) to the tri-
gonometric polynomial [f(0)]™* fe 1 +P,. Let Eq,(u) denote the closure of P in
Lo (u), which coincides with the closure of L™ (u) in Lo () (by Lusin’s
thcorem and Weierstrass® approximation theorem). By (3), the mapping f - £ (0)
extends to a continuous linear functional on Eqg (u), and it is known (|6]) that

all such functionals are represented by functions in Ly (u), i.e., there exists
h e Ly () such that

SE@dm @) =fO)=/f@hEx)du® (fcP) )
It follows that hdy = dm, i.e.
h=0 pg- ae, h@)=w&'m ae.
Therefore, h e Ly (1) is equivalent to w™ e Ly (w).
(b} implies (¢) and (d). We shall need the extension of Holder’s inequality
gl < Wil g lleilLg

where il-iL,, and |l1lp,, are the Orlicz norms. By Kolmogorov’s inequality

(see {LI])
m ({x: [Hf (x)| >t}) < At [if (x) ldm (x) =
= At fiflwT wdm < AW Ly, () TR, (W)

Since |jw™ L (w) <ee and {1, (w) < ||l g (u)> We have proved (c). The
same argument can be applied to { Sy, } noN instead of H to prove (d).

(¢) implies (a). For every f e P we have
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Hf (x) - 2™ H (fe2™) (x) =— i | F(0) + f (1) e2™X]
and from (c) we obtain

m({x: [£0)+ (1) 2™ > t}) < 4CT Ly ) (feP)

Now, if f (0) = 1, there is an interval of length 1/2 such that, for all x in that in-
terval: Re (f (1) e27X) < 0, and therefore |1 + f (1) ¢2™| > 1. Then

1/2<4C [IfilL g (u) (fel+Py)
which is (a).

(d) implies (a). It suffices to use the incquality for S, = 1}(0), which gives
(3) for every f ¢ P, and (3) is equivalent 10 (a).

Remarks: 1 .- A retrospective Jook at the proof of the theorem shows that the best
C in (c) and (d) is equivalent to 1/c and to |[[w™tijL @ (w)s 1€

1/ec <kgliw? lIL g, (w) <k C<ka/c
for some constants k;, k;, k3 > 0 independent of .
2.- If ¥ satisfies the A, condition:
¥ (21) < (Const.) ¥ (1), 1>0,
then (b) can be written as

S¥(w ()1 w (x) dm (x) <eo

3. THE CASE OFF LP SPACLS.
The proof of theorem | shows that, in general
inf {111 + gllp g (u): g€ Po} ™

equals the norm of w™ as an element of [Eq,(w)]* When @(1)=1P, 1 <p <oo,
this is exactly ||w™? il p’ (w)* Thus we have
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Theorem 2: I,e’t dp (u) be defined by (2). If 1 <p < oo, We have dp () >0 if
and only if wP'IP ¢ L (T), and, more precisely

dp () =1 fw (x)P/P dm (x)} P/’

Observe that Kolmogorov’s theorem 0 is a particular case of theorem 2. The
case p =1 can be treated exactly as in theorem 1 (and it is cven simpler), with
Ly and L replaced by L! and L™ respectively. We limit ourselves 1o state the
results:

Theorem 3: The following statements are equivalent:

a) d; W)=inf{fIl +gldu:gePy}> 0
b) there exists k > 0 such that k < w(x) a.c.

¢) Hextends to a bounded operator from 1.' () into LY (T) = weak-L' (T).
Moreover, we have the identity

dy ) = lIwIh = ess in_lf_'w(x)
X ¢C

Theorem 4: dy, (1) =0 forall 0 <p<1.

Proof: I dp, (u) > 0 for some p < 1, then f - f(O) extends to a continuous li-
near functional on LP (u), and (4) will be verified for some function h which is
a countable linear combination of g-atoms ([2]). In particular, supp (h) C supp
{u). (Since there are no u-atoms in the absolutely continuous part of u) and this
makes (4) impossible.

The result of theorem 2, and in particular, the formula for d,, (u), merits
further discussion. First, if we recall that, in a probaility space, the norms ||gll;
converge Lo the geometric mean of ig| as r — 0 (see | 5], 13.32) we have

Corollary 1: d, () is an increasing function of p, and
lim dp (u) =exp [log w (x) dm (x)
p-)OO

If one combines this with Szegd’s formula, it turns out that, although the
left hand side of (1) is greater than dy, (u) for each p > 0, both terms converge to
the same limit when p —> oo,
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Corollary 2: The following statements are equivalent:

a) logweL! (T)

b) inf{fl1 +gPdu:geP,}>0 forall p>0

c) inf{fll+gP du:geP,{>0 forsomep > 0

d) inf{f|1+gP du:geP, }>0 forsomep > 0

¢) inf{{{1 +g”exp L) 8cPo }> 0

In fact, it is obvious from (1) that (a) < (b) « (c), the equivalence (a) « (d)
follows from Corollary 1, and the remark 2 of the previous section applied to

V() =tlog*t, yiclds (a) « (e).
There is a final remark to make if the formula for d, (i) is written as

inf - [i1+g (PIP W (x) dm () ={ £ w PP dm (x) } -vip
geP

o

Letting p — oo and procecding formally (i.e., replacing lim (inf...) by inf (lim...))
one gels

ir;’f [eRCBX) w (x) dm (x) = exp flog w (x) dm () %)
gelo

It turns out that (5) actually holds, and it is a well known identity (]9], 8.3).

4. ARELATED PROBLEM.

The condition wP/P e L! (T) appearing in theorem 2, which is cquivalent
to LP (w)C.L! (T), seems 1o be also the answer to several other questions. For
instance, it is necessary and sufficient for the existence of some u (x) > 0 such
that

SIHE (X)Pu (x) dm (x) < [ If (x)IP w (x) dm (x) (feP)

(sce [71, [81, |1])- The problem that we shall consider here is the following. For
a given w e L% (T), H? (w) and HP (w) denote, respectively, the closures in
LP (w) of the subspaces
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CsP, ={geP|g(k)=0 forall k <0}

CoP. ={geP|g(k) =0 foral k> 0}
and we ask ourselves, for which w is H? (w) N H® (w) = € = { constant func-
tions }. In terms of Prediction Theory, this condition means, in the case p=2,
that the intersection of the past and the future is the present (where past and fu-

ture refer to the stochastic process spectrally represented by wdm). For some si-
milar questions, sce [10].

Theorem 5 : If wP/P e L1(T), then HP (w) N HP (w) = €. However, if
0 < q<p/p, there exists w (x) > 0 such that w9 ¢ L (T) and

1P (w) N HP (w) OC.
*

Proof:
Assume that
k={fw&)P/?dmx)} P <

If feH? (w)n e (w), then f, f ¢ HP (w), and there exist trigonometric poly-
nomials { P, } and {Qn} of analytic type such that

fim [Py —fliLP () = lim IQn TlILP(w) = O
n n

On the other hand, Holder’s incquality gives us
JIPh (x) = F(x)1dm (x) < k{[fIPh (x) () IPw(x)dm (x)]| tp L0
(0 -> )

ie., f ¢ H! (T). By the same rcason, fe H! (1), and both togehter imply f(x) =cons-
tant, a.c.

On the other hand, given g < p'/p, we choose s such that p— 1 <s<1/q,
and define w (x) = |1 - ¢2™%|. The condition w9 ¢ L! (T) is then veritied. We
shall need the following description of 1P (w) (see [3]):

HP (w)=K-H' (T)= {K () g (x) | g e HP ()}
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where K is the boundary value of the outer function K (z) such that
K ()l = w(x)"/P (ae.xeT)

Then g (#) =K (2)! (1 + z)/(1- z) is an analytic function in the unit disc with
radial limit g e LP (1), since

flg (x)IP dm (x) = flsen x/(1 cos x)|Pw (x)dm (x)<C f01x"'pdx <o

Therefore, g ¢ HP (T), and f (x) = K (x) g (x) =sen x/(1 - cos x) belongs to
HP(w). Since f (x) is real valued, it follows that f ¢ HP(w). Thus, HP(w) N HP (w)
contains non constant functions.

This tecorem leads naturally to formulate the following
Conjecture: HP (w) N HP (W) =C if and only ifwPlPep? (7).

Let us finally observe that all the results proved in this paper make sense
and arc also truc if T js replaced by an arbitrary compact Abelian group with
an ordered dual (scc |4] and [9] for the exlension of some classical facts to this
context). Moreover, if one drops the statements (c) and (d) of theorem 1, (c) of
thcorem 3 and (b), (¢) in Corollary 2, the whole sections 2 and 3 can be genc-
ralized to arbitrary compact groups.
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