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1. INTRODUCTION.

Troughout this paper our manifolds will be Hausdorff, infinitely differen-
tiable, and second countable. We fix the following objects: A m-dimensional ma-
nifold M, two closed subgroups G, H of GL (m; R), with G D H, and a G-struc-
ture p:A - M. Let X be a Lie group of transformations of A. We ask: Is there an
H-structure B C A such that £ C Aut (B)? If the answer is affirmative we say
that ¥ is inessential. Thus, inessential groups are groups of transformations of a
substructure of A. In order to avoid trivial cases we will assume that there are
H-structures contained in A. The aim of this paper is to impose conditions on M,
G, H, A, and X so that = be inessential.

2. AUXILIARY RESULTS.

We will write G/H = L. The group G acts canonically on L on the left, and
we denote by E the bundle associated to A with fibre L. There is a projection
A X L - E which we write (a, z) — az. The group X acts on the left on E by
(0,, az) » (o, (a))z, where o, is the bundle isomorphism of A induced by o.
There are canonical bijections between the set of H-structures contained in A,
the set of sections of E, and the set of maps &: A — L such that ® (ag)=g™ ® (a)
for all a € A, g € G. In fact, the H-structure B corresponds to & if and only if
B=®" (H), and ® corresponds to the section s if and only if for all

acA,s(p(a))=ad(a)

The following lemma is easy.
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2.1. Lemma. Let ¢ € Aut (A), and let B be an 1]-structure contained in A deter-
mined by the map &: A — L, or by a section s of E. Then, the following state-
ments are equivalent

a) o€ Aut (B)
b) dog, =&

¢) Forallx e M, we have ¢ (s (x)) =s (¢ (x)).

2.2. Lemma. Let T bca Lie group acting on the manifolds M and N, and f: N -M
an equivariant map;i.c. f (¢ (x)) = ¢ (f (x)) for all x ¢ M and o ¢ Z. Suppose there
is a submanifold P of M such that

a) The map £ X P > M, (0, x) - 0 (x) is a surjective submersion.

b) There is a map s: P - N such that fos’= idp and for all ¢ ¢ ¥ and x ¢ P with
o (x) € P we have s’ (0 (x)) = o (5" (x)).

Then the map s’can be extended to a unique map s: M — N such that fos=idys,
ands (0 (x))=0 (s (x)) forall 0 ¢ Z and x ¢ M.

Proof: Define h: T X P - Nand g: 2 X P >Mbyh (0, x) =0 (s' (x)) and
g (o, x) = 0 (x). [t is clear from the hypothesis that h is constant on the fibres of
g. Hence therc is a s: M - N such that s o g =h, and one checks easily that it is
the required extension.

We will give without proofs some results about a Lie group acting properly
on a manifold.

2.3. Lemma. If T acts {reely and properly on M, the orbit space is a quotient
manifold of M. In fact, M is a principal Z-bundle with base the orbit space.
(It follows from proposition (1.2.3), th (1.1.3), and th. (4.1) in [4]).

2.4. Lemma. Let 2 be a Lic group acting properly on a manifold M. There exists
an open set U and a closed set C such that C C U, ¥ C =M, and for each com-
pactK,{oeZ UNo (K)+#p } is relatively compact

(See |3] 1. lemma 2).
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3. CASE OF A FREL PROPER ACTION.

3.1. Theorem. If £ C Aut (A) is diffeomorphic to RK for some k and acts feccly
and properly on M, then X is inessentijal.

Proof: If Q is the orbit space of Z, we know by (2.3) that M - Q is a principal
bundle with group X. The fibre of this bundle is diffeomorphic to RK. Hence,
this bundle admits a global section. Being a principal bundle it must be trivial.
Therefore there is a submanifold P C M such that the map £ X P—>M, (0, x) >0 (X)
is a diffeomorphism. Let s’ be the associated section to an H-structure contained
in A. We still denote by s’ the restriction to P. If x ¢ P and ¢ (x) € P, then o =idy.
Therefore we may apply (2.2) getting a section s of E. If B is the H-structure
associated to s, we get from (2.1) and (2.2) that £ C Aut (B).

Example: We take G = GL (m; R) and H = O (m; R). Thus, any free proper ac-
tion of R on M induces a group Z to which (3.1) can be applied, and we get that
3 can be considered as a group of isometries of a certain Riemannian metric on
M. The vector field induced by the R-action is a Killing vector field.

4. CASI OF A TRANSITIVE ACTION.

We will denote by Zy the isotropy group of £ at x € M. Consider the pro-
perty: Any Lie homomorphism h: 2y — G has its image contained in a conjugate
of H.

4.1. Theorem: If T C Aut (A) acts transitively and the property above holds,
then 2 is inessential.

Proof: Choosc a frame a e p™ (x). For each ¢ € Zy, 0, (a) € p* (x). Therefore
there is a unique clement h (o) of G such that g, (8) =a h (0). It is clear that h:
Zx —> G is a Lie group homomorphism, and that if 8’ e p™ (x) is written a' = ag,
the corresponding h’ is related to h by h’ (¢) =g™ h (o) g. We may assume then
that a has been chosen with the condition h (£4) C H. We take in (2.2)P={x }.
Hypothesis (a) holds clearly because the action is transitive. We defines’: P - E
by s’ (x) =a H. Then ¢ (x) ¢ P if and only if ¢ € Z, and we have

os'X)=0c(@H)=(ah()H=a(h(c) H)=aH=s"(x)=5"(o (x)).
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If B is the H-structure associated to the extension s of s, it follows from (2.1)
that £ C Aut (B).
We point out some cases in which the property of the isotropy group holds.

(4.2) Suppose Ty is compact and H is a normal subgroup such that G/H is
isomorphic to RX for some k. If h: £y - G is a continuous homomorphism,
then h (Zy) C H. If this were not true the homomorphism b’: 24 - Rk, compo-
sition of h, the projection G — G/H, and the isomorphism G/H - R¥ would not
be constant. Then h (£4) cannot be bounded and Zy is not compact.

(4.3) Let G have a finite number of connected components. There is a compact
subgroup H of G having the following property: If K is a compact subgroup of
G, then K is contained in a conjugate of H. (See [2] (XV.3.1)). Clearly the pro-
perty holds for G and H. It is well known that if G = GL (m; R), we can take
H =0 (m, R). Analogously, if G = GL (n;C), we can take H to be the unitary
group. We get then for example, that if £ is an isotropy compact Lie group of
transformations acting transitively on M, there is a Riemannian metric for which
Z is a subgroup of its group of isometrics.

5. CASL OF° A PROPER ACTION.

(5.1) Theorem: Suppose there is a vector space V and a linear action of Gon V
such that: (2) For a certain vy € V, H is the isotropy group at vg. (b) The orbit
W of v, is an open cone;ie. if weWandr>0,rw e W. If 2 C Aut (A) acts
properly, then ¥ is inessential.

Proof: Let it G/H - W be the canonical diffeomorphism, and j its inverse. Let
®: A - G/H be a map corresponding to an M-structure B C A_ Take C and U as
in (24) and let {: M - R be a map which is 1 on C and 0 outside U. For each
a € A define hy: £ -V by h, (0) =f (p (o, (a))) (i® (g, (2))). Now, define

$':A->G/H , ®'(2)=jfhy(0)do,

where the integral is the left invariant Haar integral on 2. Since one-point scts
are compact, ¢’ (a) is defined and &’ (o (a)) = @’ (a), for the integral is invariant
under left translations. Given g € G one checks that h,y = g1 h,. Then, since the
integral commutes with lincar maps we obtain @ (ag) = g &' (a). If B’ is the
H-structure associated to &’ we have 2 C Aut (B').

Compact groups act properly. Therefore.



Groups of transformations of A G-structure 219

(5.2) Corollary: \f G and H verify the hypothesis of (5.1), any compact group
2 C Aut (A) is inessential.

(5.3) Example: Let G be the group of matrices with positive determinant, and
H = SL (m; R). We take as V the space of alternating m-multilinear maps on R™,
and as vy the determinant. We get that if M is an oriented manifold and £ a Lie
group of transformations preserving the orientation, therc is a volume element
inducing the oricntation such that all clements of ¥ are volume preserving.

(5.4) Example: let G be the conformal group and I1 the orthogonal group of
R™. We take as V the space of multiples of the standard inner product vo. The
conclusion of (5.1) is that for any Lie group of conformal transformations of a
metric g, there is a metric g of the form g’ = hg, with h a positive map, such that
Z is a group of isometries of g.

(5.5) Example: Let G = GL (m; R), and H = O (m; R). We take as V the space
of bilinear symmetric forms on R™ on which G acts by pull-back, and v, is the
standard inner product. The conclusion of (5.1) is that for any Lie group of
transformations Z acting properly on M there is a Riemannian metric g such that
X is contained in its group of isometries.

There is a similar example for G=GL (n;C)and H=U (n;C), where m = 2n.
Examples (5.4) and (5.5) are known, although the result is proved by a diffe-

rent method (See [1] ths. 1 and 4, and |4] (4.3.1)). Besides showing other exam-
ples, our theorem allows us to give a simpler trcatment with the help of (2.4).
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