GROUPS OF TRANSFORMATIONS OF A G-STRUCTURE WHICH LEAVE INVARIANT A SUBSTRUCTURE

by

A. M. AMORES

1. INTRODUCTION.

Troughout this paper our manifolds will be Hausdorff, infinitely differentiable, and second countable. We fix the following objects: A m-dimensional manifold M, two closed subgroups G, H of GL (m; R), with $G \supset H$, and a G-structure $p:A \to M$. Let Σ be a Lie group of transformations of A. We ask: Is there an H-structure $B \subset A$ such that $\Sigma \subset Aut$ (B)? If the answer is affirmative we say that Σ is inessential. Thus, inessential groups are groups of transformations of a substructure of A. In order to avoid trivial cases we will assume that there are H-structures contained in A. The aim of this paper is to impose conditions on M, G, H, A, and Σ so that Σ be inessential.

2. AUXILIARY RESULTS.

We will write G/H = L. The group G acts canonically on L on the left, and we denote by E the bundle associated to A with fibre L. There is a projection $A \times L \to E$ which we write $(a, \lambda) \to az$. The group Σ acts on the left on E by $(\sigma_o, az) \to (\sigma_o, a)z$, where σ_o is the bundle isomorphism of A induced by σ . There are canonical bijections between the set of H-structures contained in A, the set of sections of E, and the set of maps $\Phi: A \to L$ such that $\Phi(ag) = g^{-1} \Phi(a)$ for all $a \in A$, $g \in G$. In fact, the H-structure B corresponds to Φ if and only if $B = \Phi^{-1}$ (H), and Φ corresponds to the section s if and only if for all

$$a \in A$$
, $s(p(a)) = a \Phi(a)$.

The following lemma is easy.

- 2.1. Lemma. Let $\sigma \in Aut(A)$, and let B be an II-structure contained in A determined by the map $\Phi: A \to L$, or by a section s of E. Then, the following statements are equivalent
 - a) $\sigma \in Aut(B)$
 - b) $\Phi \circ \sigma_0 = \Phi$
 - c) For all $x \in M$, we have $\sigma(s(x)) = s(\sigma(x))$.
- 2.2. Lemma. Let Σ be a Lie group acting on the manifolds M and N, and $f: N \to M$ an equivariant map; i.e. $f(\sigma(x)) = \sigma(f(x))$ for all $x \in M$ and $\sigma \in \Sigma$. Suppose there is a submanifold P of M such that
- a) The map $\Sigma \times P \to M$, $(\sigma, x) \to \sigma(x)$ is a surjective submersion.
- b) There is a map s': $P \rightarrow N$ such that $f \circ s' = id_P$ and for all $\sigma \in \Sigma$ and $x \in P$ with $\sigma(x) \in P$ we have $s'(\sigma(x)) = \sigma(s'(x))$.

Then the map s'can be extended to a unique map s: $M \to N$ such that $f \circ s = id_M$, and $s(\sigma(x)) = \sigma(s(x))$ for all $\sigma \in \Sigma$ and $x \in M$.

Proof: Define h: $\Sigma \times P \to N$ and g: $\Sigma \times P \to M$ by h $(\sigma, x) = \sigma$ (s'(x)) and g $(\sigma, x) = \sigma$ (x). It is clear from the hypothesis that h is constant on the fibres of g. Hence there is a s: M \to N such that s \circ g = h, and one checks easily that it is the required extension.

We will give without proofs some results about a Lie group acting properly on a manifold.

2.3. Lemma. If Σ acts freely and properly on M, the orbit space is a quotient manifold of M. In fact, M is a principal Σ -bundle with base the orbit space.

(It follows from proposition (1.2.3), th (1.1.3), and th. (4.1) in [4]).

2.4. Lemma. Let Σ be a Lie group acting properly on a manifold M. There exists an open set U and a closed set C such that $C \subset U$, $\Sigma C = M$, and for each compact K, $\{\sigma \in \Sigma \mid U \cap \sigma(K) \neq \varphi\}$ is relatively compact (See [3] 1. lemma 2).

3. CASE OF A FREE PROPER ACTION.

3.1. Theorem. If $\Sigma \subset \operatorname{Aut}(A)$ is diffeomorphic to R^k for some k and acts feeely and properly on M, then Σ is inessential.

Proof: If Q is the orbit space of Σ , we know by (2.3) that $M \to Q$ is a principal bundle with group Σ . The fibre of this bundle is diffeomorphic to R^k . Hence, this bundle admits a global section. Being a principal bundle it must be trivial. Therefore there is a submanifold $P \subset M$ such that the map $\Sigma \times P \to M$, $(\sigma, x) \to \sigma(x)$ is a diffeomorphism. Let s' be the associated section to an H-structure contained in A. We still denote by s' the restriction to P. If $x \in P$ and $\sigma(x) \in P$, then $\sigma = \mathrm{id}_M$. Therefore we may apply (2.2) getting a section s of E. If B is the H-structure associated to s, we get from (2.1) and (2.2) that $\Sigma \subset \mathrm{Aut}(B)$.

Example: We take G = GL (m; R) and H = O (m; R). Thus, any free proper action of R on M induces a group Σ to which (3.1) can be applied, and we get that Σ can be considered as a group of isometries of a certain Riemannian metric on M. The vector field induced by the R-action is a Killing vector field.

4. CASE OF A TRANSITIVE ACTION.

We will denote by Σ_X the isotropy group of Σ at $x \in M$. Consider the property: Any Lie homomorphism $h \colon \Sigma_X \to G$ has its image contained in a conjugate of H.

4.1. Theorem: If $\Sigma \subset \text{Aut }(A)$ acts transitively and the property above holds, then Σ is inessential.

Proof: Choose a frame a ϵ p⁻¹ (x). For each $\sigma \in \Sigma_x$, σ_o (a) ϵ p⁻¹ (x). Therefore there is a unique element h (σ) of G such that σ_o (a) = a h (σ). It is clear that h: $\Sigma_x \to G$ is a Lie group homomorphism, and that if a' ϵ p⁻¹ (x) is written a' = ag, the corresponding h' is related to h by h' (σ) = g⁻¹ h (σ) g. We may assume then that a has been chosen with the condition h (Σ_x) \subset H. We take in (2.2) P = {x}. Hypothesis (a) holds clearly because the action is transitive. We define s': P \to E by s'(x) = a H. Then σ (x) ϵ P if and only if $\sigma \in \Sigma_x$, and we have

$$\sigma s'(x) = \sigma (a H) = (a h (\sigma)) H = a (h (\sigma) H) = a H = s'(x) = s'(\sigma (x)).$$

If B is the H-structure associated to the extension s of s', it follows from (2.1) that $\Sigma \subset Aut$ (B).

We point out some cases in which the property of the isotropy group holds.

- (4.2) Suppose Σ_x is compact and H is a normal subgroup such that G/H is isomorphic to R^k for some k. If h: $\Sigma_x \to G$ is a continuous homomorphism, then h $(\Sigma_x) \subset H$. If this were not true the homomorphism h': $\Sigma_x \to R^k$, composition of h, the projection $G \to G/H$, and the isomorphism $G/H \to R^k$ would not be constant. Then h (Σ_x) cannot be bounded and Σ_x is not compact.
- (4.3) Let G have a finite number of connected components. There is a compact subgroup H of G having the following property: If K is a compact subgroup of G, then K is contained in a conjugate of H. (See [2] (XV.3.1)). Clearly the property holds for G and H. It is well known that if G = GL(m; R), we can take H = O(m, R). Analogously, if G = GL(n; C), we can take H to be the unitary group. We get then for example, that if Σ is an isotropy compact Lie group of transformations acting transitively on M, there is a Riemannian metric for which Σ is a subgroup of its group of isometries.

5. CASE OF A PROPER ACTION.

(5.1) **Theorem:** Suppose there is a vector space V and a linear action of G on V such that: (a) For a certain $v_0 \in V$, H is the isotropy group at v_0 . (b) The orbit W of v_0 is an open cone; i.e. if $w \in W$ and r > 0, $r \in W$. If $\Sigma \subseteq Aut(A)$ acts properly, then Σ is inessential.

Proof: Let i: $G/H \to W$ be the canonical diffeomorphism, and j its inverse. Let $\Phi: A \to G/H$ be a map corresponding to an M-structure $B \subset A$. Take C and U as in (2.4) and let f: $M \to R$ be a map which is 1 on C and 0 outside U. For each $a \in A$ define $h_a: \Sigma \to V$ by $h_a(\sigma) = f(p(\sigma_o(a)))$ (i.e. $(\sigma_o(a))$). Now, define

$$\Phi': A \rightarrow G/H$$
 , $\Phi'(a) = j \int h_a(\sigma) d\sigma$,

where the integral is the left invariant Haar integral on Σ . Since one-point sets are compact, Φ' (a) is defined and Φ' (σ (a)) = Φ' (a), for the integral is invariant under left translations. Given $g \in G$ one checks that $h_{ag} = g^{-1} h_a$. Then, since the integral commutes with linear maps we obtain Φ' (ag) = $g^{-1} \Phi'$ (a). If B' is the H-structure associated to Φ' we have $\Sigma \subset \operatorname{Aut}(B')$.

Compact groups act properly. Therefore.

- (5.2) Corollary: If G and H verify the hypothesis of (5.1), any compact group $\Sigma \subset \operatorname{Aut}(\Lambda)$ is inessential.
- (5.3) Example: Let G be the group of matrices with positive determinant, and H = SL(m; R). We take as V the space of alternating m-multilinear maps on R^m , and as v_0 the determinant. We get that if M is an oriented manifold and Σ a Lie group of transformations preserving the orientation, there is a volume element inducing the orientation such that all elements of Σ are volume preserving.
- (5.4) Example: Let G be the conformal group and II the orthogonal group of R^m . We take as V the space of multiples of the standard inner product v_0 . The conclusion of (5.1) is that for any Lie group of conformal transformations of a metric g, there is a metric g' of the form g' = hg, with h a positive map, such that Σ is a group of isometries of g.
- (5.5) Example: Let G = GL(m; R), and H = O(m; R). We take as V the space of bilinear symmetric forms on R^m on which G acts by pull-back, and v_0 is the standard inner product. The conclusion of (5.1) is that for any Lie group of transformations Σ acting properly on M there is a Riemannian metric g such that Σ is contained in its group of isometries.

There is a similar example for G = GL(n;C) and H = U(n;C), where m = 2n.

Examples (5.4) and (5.5) are known, although the result is proved by a different method (See [1] ths. 1 and 4, and [4] (4.3.1)). Besides showing other examples, our theorem allows us to give a simpler treatment with the help of (2.4).

BIBLIOGRAPHY

- D. J. ALEKSEVIKII Groups of conformal transformations in Riemannian spaces. Math. USSR Sbornik 18 285-301 (1972).
- [2] G. HOCHSCHILD The structure of Lie groups. Holden-Day. San Francisco (1965).
- [3] J. L. KOSZUL Lectures on fibre bundles and Differential Geometry. Tata Institute. Bombay (1965).
- [4] R. S. PALAIS On the existence of slices for actions of non-compact Lie groups. Ann. of Math. 73 295-323 (1961).