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1. INTRODUCTION.

The study of different types of behaviour of a linear transformation T from
a sequence space A into another sequence space (for instance, the &-nuclearity,
8-type, compactness, continuity, boundedness and so forth so on of T) may
be considered as an ouigrowth to the development of the overall theory of
d-nuclear spaces. In gencral, the problem of obtaining such a behaviour of
T is too complicated to yield any satisfying solution unless we confine to special
circumstances. Accordingly, one attempts to study this problem when either
the space or the operator or both in question arc restricted to a certain degree
of generality and satisfaction, and that is what we are going to do precisely
here. Indeed, we consider transformations (matrix or otherwise) from sequence
spaces Lo scquence spaces and study their behaviour outlined above. Our basic
results are Theorem 3.11 and 4.2 which respectively characterize the normal
boundedness and é-nuclearity of matrix transformations [a;;]in tems of analytic
condicions comprizing the components aj;’s.

2. PRELIMINARIES.

As usual we assume the reader to be familiar with the rudiments of locally
convex spaces and for that reason it suffices to refer 10 some of the standard
texts on the subject matter, e.g., [1] and [5]. secondly, one’s familiarity with
the clements on sequence spaces and matrix transformations thercon will un-
doubtedly relieve him of any tension which he might expect to come ahead. So
10 he in tune with the discussion that follows, let us recall a few relevant facts
from the theory of sequence spaces. (cf. [3] and [5] for several unexplained
terms and results). A sequence space N is a subspace of w, the family of all se-
quences from the scalar field K such that A contains the space generated by the
unit vectors, that is, A D g=sp {e":n>1} , where
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I, i=n;

0, i#n.

Let us recall the sequence spaces 2! and ™ which are respectively the
collections of absolutely summable and bounded sequences from w; also let
mg denote the space generated by the set of sequences having coordinates
zeros or ones. A sequence space A is called monotone (resp. normal) if mg A C A
(resp. 2°° A C N). By A* we mean the Kéthe dual of A:

M={yew: p},(x)z_gl IX; yil <o, foreachx in A }.
i>

A sequence space A is called perfect it A = A** = (A*)*, Clearly every perfect
sequence spacec A is normal and each normal sequence space A is monotone;
however, the reverse conclusions are not necessarily true (cf. [3]).

Unless specified otherwise, it should be understood unambiguously that
whenever we talk of a topology on a given sequence space A, this topology is
nothing but the normal topology n(\, \*) generated by {py : y e \*,y > 0}.
It is known that n(A, A*) is compatible with the dual system <\, A*> and so
for any locally convex topology F on A compatible with < A, X>, bounded
sets in A are the same rclative to either of the topologies a(A, A*), n(A, A%),
(A, X*) or F. Simple (einfach) bounded sets in A(P) and their properties were
first considered by Kothe in [6], this notion was subsequently extended to an
arbitrary secquence space in [2]. A bounded subset of a sequence space A is called
simple if it is contained in the normal hull of a point in A, further, A is called
simple, if each bounded subset of it is simple. It is not difficult to see, for
instance, one may consult [3], Exer. 2.5.12 that every normal simple sequence
space A is perfect.

If A and u are two sequence spaces, we write [aj;] for the matrix transforma-
tion T .A -y, thatis, forx e A

Tx)j = ¥ aj xi, i>1.
( )l i>1 ij &j v et

The following result in this direction is essentially due to Kdthe and Toeplitz
{71 (cf. [3), Prop. 4.3.2); it will serve an useful observation for future reference.

Proposition 2.1. Let A and p be two sequence spaces with A being monotone.
Then a linear transformation T : A — u is a matrix transformation if and only if
Tiso (A, \*) - o (4, £*) continuous.

For our work we will also require ([2], [3], Th. 4.6.6).
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Proposition 2.2. Let X and u be two normal sequence spaces with u being simple.
Let T =[aj;]. Then T is a matrix transformation, T : XA > if and only if for each
X in A there exists y in u, y > 0 such that

> la"x'|<Y', l>].
i> 1) A =J1 -

Finally, let us recall a few definitions concerning a linear operator T: X > Y
where X and Y arc locally convex spaces; T is said to be hounded (resp. pre-
compact, compact) if for some ncighbourhood U of zero in X, T(U) is bounded
(resp. precompact, relatively compact) in Y.

3. CONTINUOUS AND BOUNDIED OPERATORS.
Let A and p be two sequence spaces and let T : A — u be an operator. The

continuity (resp. boundedness) of T can be expressed comparatively in simpler
analytical forms which we shall use later on. First we have.

Proposition 3.1. Let A and u be sequence spaces such that u is perfect. Then a
linear map T : A — u is continuous if and only if

Vvep*,v>0T yert,y>00

sup [py (Te")/py (e™)] < + oo, 32)

Proof: Assuming the continuity of T first, we find
Vveu* ,v>0dyer*,y>0andM£M (x)>0 >
Py (TX) <M py (x), V x €A
= py (TeH) <M Py "), V>,

Hence (3.2) follows.
Let now (3.2) be true. If x € ¢, we find

n .
Tx = X x;Te

i=1

n .
=pv (Tx)<M_ 231 Ixil py (") <M py (x).
i=
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Hence T is continuous from Lo u. It is casily verified that u is complete (cf.
[4], p. 413); more over » = A (indced, by Prop. 2.3.23 of {3], {e™; ¢"} isa
Schauder base for A). Therefore T can be continuously extended to A.

Nex1i we have,

Proposition 3.3. Let A and u be two sequece spaces and T : A — u a continuous
operator. Then T is bounded if and only if

dyert,y>00V vep*,v>0

sup [py (Te")/py ()] < + co. (34)
Proof: Assuming (3.4) to be true first, we find a constant My > 0 corresponding
1o each v e u*, v >0 such that forsome y e A*,y >0

pv (Te™) <My py ("), Va>1.
Since T is continuous we find for each x in A
pv (TX) < My py (x)-
Hence
pyv (TX) <My VxeUy, Uy —{zeX:py (2) <)}

giving thereby the boundedness of T (Uy).

Let now T be bounded. Hence for some y ¢ A*,y >0 and each ve p®,v>0
there is an My > 0 such that

pv (TX) <My VxinUy={zeX.py(1)<1}.

Putting x" = ¢"/py (c") we find that { x" } ¢ U,,. The result now easily follows.
Y Y

Proposition 3.5. A family { M : & ¢ A} C N¥ is equicontinuous on X if and only
if there exists y in A*, y > 0 such that

sup {Ifflfyisi> ), ae A} <+ .
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Proof: This casily follows on the lines of proof of Proposition 3.1.

Concerning operators T on sequence spaces, there is another notion of
boundedness contained in

Definition 3.6. An operator T : X » p is said to be simply or normally bounded
if there exists a zero neighbourhood U in A such that T(U) is simple in y.

It is clear that each simply bounded T is bounded. For the converse we re-
quire the range space to be simple. For instance, consider the space §, the space
of all entire sequences { x;, } with x, /™ - 0 as n — oo. More generally speaking,
all perfect nuclear sequence spaces are simple, where the nuclearily of the space
A is taken in the usual sense as discussed in [8], p. 70. To derive this result we
recall the Grothendieck-Pietsch type criterion for the nuclearity of A (cf. [3],
Th. 4.7.9), namely.

Theorem 3.7. A sequence space A is nuclear if and only if to eachue A*,u>0
there corresponds a v e A*, u < v such that { u,, /vy } lies in ¢!

The following result is essentially due to Kothe ([4], (5), p. 270).

Lemma 3.8. Each perfect nuclear sequence space is simple.

Using Lemma 3.8, we casily derive.

Proposition 3.9. Let X and u be sequence spaces with u being nuclear and perfect.
Then cach operator T : A — u is simply bounded if and only if T is hounded.

On the other hand there are bounded operators which are not simply bound-
cd, for instance, consider.

Fxample 3.10. Let I: ' » &' be the identity operator, ' being equipped with
n(2', 2°) topology. 1 is bounded but not simply bounded (see also the remark
below).

The foregoing example is a special case of the following more general result
characterizing the simple boundedness of matrix transformations.
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Theorem 3.11. Let X and p be sequence spaces where u is normal. Let T = [aj;]:
A - p be a matrix transformation. Then T is simply bounded if and only if there
exists y € A*, y > 0 such that

{ Gup Uayify;Di fe (3.12)

Prof: Let T = [a;;] be simply bounded. Hence there exist y € A*,y >0 and u
€ i1, u > 0 such that

I(Tz)il <uji>1,forzeUy={xehipy (x)<1}.
Therefore

| 2 a5 2] <y, Vzeu,,i>1.
iS ij Al S Ui y, 1=

Letzi=1{0,... ,O,yjl,O,...}.ThcnzjeUy forj> 1.
Thus
lajl yi' <ui,  Vi,j>1
and this proves (3.12).
Let now (3.12) be true. Put

u; = sup [lajjl/y;j], for some y in \*.
]
Consider Uy as before and let z ¢ Uy. Tnen
(T2)i< 2 gl 1< T wyy;lzl
( )1_]_2] S S i¥j %
= [(Tz)il<u;, Vi>1.

Hence T is simply bounded.

Remark: Let A=y =2 and T= [ajj] where ajj=1,i>1 and ajj =0 for i #j. Let
y € 2% be such that { yi'l €®'. Hence 1/y; - 0 as i - oo; however, this state-
ment means that y ¢ £°°. Consequently T is not simply bounded.
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4. §-NUCLEAR OPERATORS

Throughout this section, & stands for an arbitrary sequence space. First of
all let us recall.

Definition 4.1. Let X and Y be two locally convex spaces. A linearmapT: X»>Y
is said to be 8-nuclear provided there cxist sequences {ap }, {f} and {yn } with
| an }ed;

{ fa } C X*, £, being cquicontinuous on X; and

{yn} C€Y,{g(yn)}€8* for every ge Y* such that

Tx = on fn (X)yn, VxinX.

z
n>1
The basic problem in the theory of §-nuclear operators is to characterize
operators on locally convex spaces which are §-nuclear. In general this problem

scems to be too complicated to yield any satisfactory solution. However, in
special circumstances we do have a solution contained in

Theorem 4.2. Let A and u be two sequence spaces such that A is monotone.
Assume that § is simple and & = u** and that T = [aj;}: X\ - u isa matrix transfor-
mation. Then T is §-nuclear if and only if

{ (Sl}P [faijl/yil)i } € 8, (4.3)

for somey ¢ A*, y >0.

Proof: Let T be 6-nuclear. Then

Tx= Z ai<x,fi> yi, VxinA
i>1

where {aj} €8, {f} CA® and is cquicontinuouson A and{yi}C L with
{ <y',u>}ed* foreach uinu*. By Proposition 3.5, there exists z in A¥,
z > 0 such that

sup [H'Jil,-’z_i] < + oo, (4.4)
i j
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Letal = {ajj:j>11. Since

(Tx); = '%:l ajj Xj =< x,a >; and
12

n - .
Tx=n@u*) - lim ¥ (Tx)e'= 2 (Tx)e,
n-»oo j=] i>1

i
we find that

1

Tx= 2 <x,al> cl
>1

Comparing the two representations of T, we get

>yl

Y gk fis ¥ o<yld>
i>1 51

= £ Z gk Lel> el
jZ, g <> <yhed>e

Hence

k= T <ek, 1> <ymel>, Vk,i>1

n

T anfRyl, Vki>1.
n>

Therefore

lak| < | leal IF21 ly"|
n

IV

<Mz 3 ool bl 71, (CF (44)).

n

Conscquently

sup [lakl/z ]1<M; = lagl IyPl, Vi 1.
kP“ kl/k]_ /.l_IZI loen | |Y1| | e



The behaviour of iransformations on sequence spaces 85

If bjj = y}-, then for u in u*
(bgl(W)= 2 bjy=<y,u>
izt

and so |bj;] is a matrix transformation from u* to 8*. Hence the transpose

[y!] of [bj;] is a matrix transformation from 6 to u** (cf. [3] for details). Now

p** is simple and {ay } € 8** and so from Proposition 2.2, we find a v € u**

such that

>yl el < vy, Vi 1.
j>p o r =T =

Therefore
st;(pUaLVzk]gMz vi, Vix>1.
Clearly & is perfect (§ = u** = 6% = u*) and so it is normal. But v € §, hence

(4.3) follows.
Conversely, let (4.3) be true. Set

vi= Sljlp [lajji/y;l,
then v ¢ & and we have

i
a .
Tx: 2: Vi <x.—>el, VX(:'?\.
i>\ Vi
For cach u e u*, it is clear that { <u,el>}¢ 8%. To show the §-nuclearity of T,
it is therefore sufficient to establish that {a'fv;} C A* and is cquicontinuous
on A.

Obscrve that A = A® (cf. [3], Proposition 2.2 .7) where A s the g-dual of
A As

2 ajj Xj
j>1 47
converges for each x in A, { al } €AX. Thus

{a'fvi ) CaX.
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Next
lall/ivil lyjl = layl/Ivil ly;1
= lajjl/y; (sup lajily;)
< L
Hence

sup [lafl/v; yj] < + oo

and which in virtue of Proposition 3.5, establishes the requicred equicontinuity.
Combining Theorem 3.11 and 4.2, we derive

Theorem 4.5. Let X and u be two sequence spaces with A being monotone and
u normal and simple. Suppose T = {ajj] : A - u is a matrix transformation. Then
T is u-nuclear if and only if T is simply bounded.

In the proof of this result, we need observe as mentioned earlier that y is
perfect.

The author is grateful to Prof. Dr. G. Kothe for pointing out some omissions
in the original version of this paper and bringing to his notice the papers [4] and
[6], thanks are also extended 1o Dr. Manjul Gupta for some of her useful com-
ments and suggestions.
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