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0. INTRODUCTION.

The class of normal operators on Hilbert spaces played a very special role in
the theory of linear operators. This is due to the fact that for this class there is
an almost complete theory. Thus, attempts to extend one or another property of
normal operators is quite natural. In particular, to define the notion of hermitian
operator (or hermitian element of a Banach algebra) it is of fundamental impor-
tance to extend directly in the theory known for the Hilberts space case. The
first successful attempt to define the notion of hermitian element of a Banach
algebra was made by L. Vidav (1956). Shorthly after this G. Lumer (1961) intro-
duced the very useful notion of a semiinner product which permits to define this
notion of hermitian operator in much the same way as for the case of Hilbert
spaces. The purpose of the present paper is to point out several possibilities to
define the closs of hyponormal operators in the case of Banach algebras (as well
as for the special case of A =L(X), the Banach algebra of all bounded linear ope-
rators on a complex Banach space). As it is known the class of hyponormal
operators on Hilbert space has some very interesing properties (and this is clear,
to some extent, from the numerous papers dedicated to the study of this class).
It is worth mentioning that this class was introduced independently by the
american mathematician P.R. Halmos and by the societ-russian mathematician
A.T. Taldykin as a result of very different investigations in operator theory. P.R.
Halmos was led to consider this class from the problems connected with some
researches of F. Riesz, J. Radon, J. Schauder and S. Nikolskii.

In what follows we propose several definitions of hyponormality, which are,
to some extent, the analogue of the hyponormality notion as it known for
Hilbert space operators. The first definition we suggest is for the case of Banach
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algebras elements and uses the notion of hermitian element introduced by L
Vidav. Next we consider the above definition in the case of the algebra A =1(X)
of all bounded linear operators on a complex Banach spaces. There we obtain,
under some assumptions, results which are similar to the case of Hilbert space
operators.

Anhoter definition we propose is suggested by a conjecture of S. Friedland
1982) related to some functions associated with operators in L(X), namely the
following one : if T is in L(X) then for each x # o we can define (in the usual
way) the element e'Tx. Then we consider the function

g1, x(0)= lleTxll.

The basic results of S. Friedland is that for operators on Hilbert space a ne-
cessary and sufficient condition for the normality of T is that the family of
functions

(gT,x(t)’ gT *x(t))

must be a family of convex functions (on R). The conjecture of S. Friedland is
taht T is hyponormal if and only if

(8T x(1)

consists of convex functions. We prove this conjecture using some of Berberian’s
constructions, which are, as it is pointed out in the paper of W. Luxemburg (11)
somehow nonstandard. Further we discuss other possible definitions.

1. HYPONORMAL ELEMENTS OF BANACH ALGEBRAS.

Let us consider A a complex Banach algebra with identity (which is denoted
by 1). Following 1. Vidav we say an element h of A is hermitian if for all t in R,

ity =1.

Using the hermitian elements of A we introduce the following class of ele-
ments. '

Definition 1.1. The element a in A is said to be descomposable if
a=h+ik

were h )k are hermitian elements.
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The class of normal elements in Banach algebras can be defined in two dis-
tinct ways.

Definition 1.2. The element n of A is said to be normal if the following con-
ditions are satisfied:

1. n is decomposable, n =h + ik,

2.hk =kh.

Definition 1.3. The element n of A is said to be normal if the following con-
ditions are satisfied:

1. n is descomposable, n =h + ik,

2. for all integers p and q the elements hPk? are hermitian and

hPk% =k%hP,

The fact that the bove definition introduces two different classes of ele-
ments follows from the example of G. Lumer of a hermitian operator h with the
property that h? is not hermitian.

Now we are ready to introduce the notion of hyponormal element in a
Banach algebra. :

Definition 1.4. The elements a is said to be hyponormal if the following
conditions are satisfied:

1. ais decomposable, a =h + ik,

2. the element

i (hk-kh)
has the spectrum in [0, ).
If A =L(H) then the above definition reduces to the well known definition

of hyponormal operators be cause of the fact that the above element is supposed
to be with the spectrum in [0, ) is equivalent with its positivity.

Definition 1.5. The element a of A is said to be co-hyponormal if the follo-
wing conditions are satisfied:

1. a is decomposable, a=h + ik,

2. the element a = h-ik is hyponormal.

From just the definition we get easily the following.

Proposition 1.6. If a is a hyponormal element of the Banach algebra A then
ua +v '

is hyponormal for all complex numbers u, v.
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The following proposition gives a method to obtain new hyponormal ele-
ments from the known ones.

Proposition 1.7. Let a be a hyponormal element of A ,a =h + ik. Suppose
further thak k™! exists and is hermitian. Then the element

b=h-ik™
is hyponormal.
Proof. First we compute the commutador which defines the hyponormality:
(k™) — (k™ h) =k (i(hk-kh)k .
This is a hermitian element and we must show that its spectrum is in [0, =°].

Let us consider s in (—°°, 0) and then it is in the resolvent set of i(hk-kh).
Thus we have,

k7'i(hk-kh) )k™! =k~!(i(hk-kh) —s + s-sk?)k ! =
=k!( (i(hk-kh)—s) ) (1 +(i(hk-kh)--s) ' s(1-k?) )k .

Now the element i(hk-kh)—s is hermitian so we have a growth condition sa-
tisfied (11). This condition is of the form

ky/lsl

~and since we may suppose without loss of generality that 1-k* has a norm sma-
ller than the (universal) constant k; we obtain finally that

I(i(hk-kh)—s)? s (1-k*)|| < 1.

This implies clearly that s is the resolvent of the above element ant the asser-
tion is proved.

Remark 1.8. If 1(X) = A, where X is a Hilbert space then the proof of the
above assertion is almost trivial. Of course the condition k™! is automatically
satisfied. The following example shows that it is a necessary hypothesis.

Example 1.9. Let us consider the Banach algebra of all 3 x 3 matrices say
A with the norm is defined as follows. We consider each matrix acting as an
operator on the C* equiped with the following norm:
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“(X,}’,Z)“ =Ssup Ieitx + y + e_itZ|.
teR

-1 0 0
0 0 0
0 0 1
is hermitian (with respect to the norm defined by the norm on C® on the algebra
A. The operator with the matrix

_3/2 0 0
0 2 0
0 0 2

is clearly hermitian and invertible. The inverse is not hermitian since its spectral
radius is strictly smaller than the norm. We present now a type of convergence
for elements in Banach algebras.

The matrix

Definition 1.10. Let (a,) be a sequence of decomposble elements of the
Banach algebra A. We say that (an) is bounded—#*— convergent to the element a
of A if the following conditions are satisfied:

1. (ay) is 2 bounded sequence, a is decomposable,

2. for each state ¢ of A,

lim p(an)= ¥(a),
lim p(an )= @(a).
Then we have the following result.

Proposition 1.11. The set of all hyponormal elements of A is closed for the
bounded— * — convergence.

Remark 1.12. If may be of interest to know the analogue of the strong con-
vergence from the space of operators on a Banach space in the case of Banach
algebras.

It is a well known fact that if T is a hyponormal operator on a Hilbert space
then the following inequality holds: for any z in the resolvent set

Iz-T)™ 1l = 1/d(z,0(T) )
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where d( ) is the distance between z and the set o(T). The class of hermitian
elements of the algebra of all bounded operators on a Hilbert space can be cha-
racterized using the functions

[1(T-z)7 |

for z on the imaginary axis. This result can be extended to hermitian elements of
Banach algebras.

Proposition 1.13. The element h of the Banach algebra A is hermitian if and
only if for each complex number of the form z = it the following inequality
holds:

II(h-z) |l = d(z, a(h)).
Proof. Let ¢ be a state of A and thus if h is a hermitian element we have

lp(h-z)] = kp(h) — zI Z [t

and thus

lith-z)™! | = 1/d(z, o(h)).
The converse assertion follows exactly as in (5) and thus we omit it.

Remark 1.14. Some improvements of the results in (5) are given in (14),

(13).

Remark 1.15. From the example 1.9 we see that the G;-property is not
valid for hermitian operators. It is of interest to know if G;-property holds for
hyponormal (or at least for hermitian operators) in the case ofsome usefull alge-
bras, such as the algebra of all bounded linear operators on uniformly convex
spaces.

2. HYPONORMALITY FOR OPERATORS ON BANACH SPACES.

Let us consider X be a complex Banch space and A = 1(X), be the Banach
. algebra of all bounded linear operators on X. An element T in L(X) is said to be
hermitian if the following equivalent conditions hold:

1. for all x in X and t in R, [le*Tx]| =IxII,
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2.if [,] is them semi-inner product on X (in the sense of G. Lumer (1961))
then
[Tx,x]

is a real-valued function on X,
3. fortER , t>0

IT+itT =1+ 0(t).
We say that an element T in L(X) is decomposable if it is of the form
T=h+ik
where h,k are hermitian elements of L(X).

Remark 2.1. There exist Banach spaces for whith the set of all hermitian
element in L(X) reduces to the trivial family (tI); & r. Such an example is the
space of all lipschitz functions of order « € (0,1).

The class of hyponormal operators is defined as follows.

Definition 2.2. The element T in L(X) is a hyponormal operator on X if the
following conditions are satisfied:

1. T is decomposable, T =h + ik,

2. for each x in X,

[i(hk-kh)x,x] 2 0.

If T in L(X) is decomposable we say that T =h-ik is the X-adjoint of T

Definition 2.3. We say that the sequence of decomposable operators (Ty)
is X-strongly — # —convergent to the decoposable operator T if the following
conditions are satisfied:

1. sup [Tyl <ee,

2. for each x in X,

lim Tox =Tx , lim Tyx = Tx.

Obviously we have the following result.

Proposition 2.4 If (Ty) is X-strongly — * —convergent sequence of hypo-
normal operators then T is a hyponormal operator. :
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For the following result we suppose that the Banach space X has the follo-
wing property: ‘
(H)if T is a hermitian operator then [T?k,x]= 0 implies that Tx =0.
We conjecture that this hypothesis is satisfied of all Banach paces.

Theorem 2.5. If the Banach space has the (H?)-property then for any hypo-
normal operator T in L(X) from Tx =0 it follows that Tx =0.

Proof. Obviously we have that TTx =0 and thus
[TTx,x]=0
which implies that
[(h® +k*)x,x] — [(~h? +k*)x,x] =0
or
[k?(x),x] =0.
This gives that kx = 0. Since Tx = h(x) + k(x) =0 = h(x) we get that
h(x) =0.
This obviously implies that Tx =0.
The result just obtained may be formulated using the following notion.
Definition 2.6. We say that the closed linear subspace X; of X is reducing
for the decomposable operator T of L(X) if
1. X, is invariant under T,

2. X, is invariant under T.

Corollary 2.7. Let T be a hyponormal operator on the Banach space X satis-
fying the condition (H?). Then for all z in the complex plane C,

N(T-z)
reduces T.

Another very important consequence of the above result is the following
one,

Theorem 2.8. Let T € L(X) be a hyponormal operator on the Banach space
X satisfying the property (H?).
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Then
Re 0p(T) < o(Re T).

(If T is a decomposable operator T=h + ik then h=Re T,k =Im T).
Conjecture 2.9. If T is hyponormal then
Re 0,p(T) C o(Re T).

Remark 2.10. We can prove this conjecture for the following class of Banach
spaces, namely those for which the Berberian’s space associated to X satisfies
again the (H?) property. We consider this Berberian space in some detail.

Another related conjecture is suggested by the the so called Weyl’s theo-
rem.

Conjecture 2.11. For the hyponormal operator defined on the Banach space
X satisfying the condition (H?) the Weyl’s theorem holds. This means the
following equality:

w(T) = o(T) — 7.(T)

where w(T) is the Weyl spectrum of T, o(T) is the spectrum of T and m,o(T)
denotes the set of all isolated eigenvalues of T which are of finite multiplicity.

3. GROUPS OF OPERATORS AND HYPONORMALITY.

Let us suppose that X is a complex Hilbert space and let T be in L(X). We
consider the group of operators

'TxeRr
defined in the usual way. For each x # 0 in X we define the function (on R) by
the formula

t > g7, x(t) = lle*Tx].

These functions have some interesting properties first noted by S. Friedland
(1982). For the proof of the results below we refer to Friedland’s paper.

Lemma 3.1. (S. Friedland) If T € L(X) is hyponormal then

gT,x(t)

is a convex function. :
Related to this result S. Friedland gives the following conjecture.



256 Vasile 1. Istratescu

Conjecture 3.2. (S. Friedland) If T € L(X) then T is hyponormal if and only
if

(+) d?/dt* (log(gr,x(t) ) (0) > 0

for all x in X.
From the Lemma 3.1. it is clear that the above condition is sufficient since,
as remarked by S. Friedland (+) is equivalent to the inequality

d?/dt*(log g1 x (1) ) (0) =1/2 [Ix|I"2 (({T? + T> + 2T T)x x ) —
—((T+Txx?)>0

which is equivalent to

(T + T)x,x? 2((T? + T2 + 2TT)x,x ) [IxI|2

We mention now another equivalent form of (+).

Lemma 3.3. (S. Friedland) (Lemma 4 in (3) ) If T =P + iQ with P,Q hermi-
tian operators then (+) is equivalent to the inaquality

(+4) i/2(QP-PQ) < (P-5)?

for all real numbers s.
Another useful result for us in what follows is the following.

Lemma 3.4. (S. Friedland) (Lemma 5 in (3) ). If T isatisfies (++) and Px =
sx then

PQx = QPx.

Now we are in the position to prove the conjecture 3.2. First we note that
we may suppose without loss of generality that o <P < 1. Now since P is a
hermitian operator ,0(P) coincides with the approximate point spectrum of P,
0ap(P).

Now we can use the Berberian’s construction (1), (6) and thus we may assu-
me without loss of generality that the spectrum of P coincides with the point
spectrum. For the reader’s convenience we indicate very shorthly the construc-
tion of Berberian. If X is a complex Banach space then we consider the space
m(X) of all sequences x <(x5) ,Xp in X and (Jlxyll) a bounded sequence. If we
consider a fixed generalized Banach limit, denoted by glim on m, the space of all
bounded sequences of complex numbers, then we set

[xa)'] = ghm ( ( Xns>¥n ))
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This is clearly a bilinear form on m(X) and
N=(x, [xx] =0)

is an linear subspace of m(X) and, we can consider the quotient space m(X)/N
which can be clearly organized as a pre-hilbert space. The completion of this
spaces is denoted by h(X). Now every operator T in L(X) induces an operator in
I(X) ) in a natural way. The corresponding operator is denoted by T. The
mapping

T->T

is a faithful * —representation and preserves the spectrum. Also the following im-
portant property holds: if z is in the approximate point spectrum of T,z is in the
point spectrum of T.
Since the operators in our inequality are hermitian, in order to prove the
inequality (+) it suffices to prove it for the corresponding operator in L(h(X)).
Now we can decompose the space h(X) as follows:

h(x) = H1 @ H2

where

H; =(x, x €h(X), Px =sx for some s in ¢(P) ). It is clear that for all u in H,
we have

(/2(PQ-QP)u,u)=0
since for each x with the property that Px = sx we have
PQx = QPx

according to lemma 3.4. Now if u is in the ortogonal complement of H; we have
that Pu =0 and for s =0 in (++) we get that

(1/2(PQ-QP)u,u ) < 0.

" Thus the conjeture 3.2 is proved.
The above conjecture suggests the consideration of a class of operator on
Banach spaces which we call again hyponormal and is defined as follows.

Definition 3.5. Let X be a complex Banach space and T be in L(X). We say
" that T is hyponormal if for each nonzero x in X the function (on R)

t > Jlet x|

is convex.
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The operator T is said to be co-hyponormal if T is hyponormal. From the
result given above we see that above classes reduce to the classes of hyponormal,
respectively co-hyponormal operators when X is a Hilbert space.

Remark 3.6. In the above definition of hyponormal operators the decompo-
sability is not required.

Remark 3.7. We conjecture that this class of hyponormal operators is quite
large compared with the class of hyponormal operators defined using hermitian
elements. In particular there may exist Banach spaces having not nontrivial
hyponormal operators in the sense of Definition 3.5. (i.e these operators are not
of the form zI,z a complex number). Examples of such spaces may be the space
of all continuous complex-valued function in (z,/z| < 1) and holomorphic in
(z,lz| <1) or the spaces HP for (z,]z| < 1) of course for p in (1,%0), p # 2).

4. OTHER POSSIBLE DEFINITIONS OF HYPONORMALITY FOR OPERATORS ON
BANACH SPACES.

Suppose that X is a complex Hilbert space and T is a bounded linear opera-
tor. If T is hyponormal then the following inequalities hold:

LTI S1Txll, x€X

2. 0TxI? SHT2x| fixll, x €X

3T SIT ) IXI® ! n> 1, x €X.

. The inequality in 1 may be used to define the class of operators on Banach
spaces which are decomposbale and the inequalities in 2 and 3 may be used to
define classes of operators on arbitrary Banach spaces. For some results concer-
ning the classes of operators defined using the inequalities in 2 and 3 see (6).
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