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SUMMARY

If 9 is a regularly decreasing sequence of strictly positive continuous weights
ona locally compact Hausdorff space X and F is a complete (gDF) locally convex
space, it is proven that 9,C(X, L) and 9C(X. L) coincide algebraically and topo-
logically with CVo(X, L) and CV(X, E) respectively.

The general problem of a projective description of weighted inductive limits
of spaces of continuous functions has been treated by Bierstedt, Meise and
Summers in (2) and (3) and by the first two authors in (4). We will use the
notations of (2). Our terminology for locally convex spaces is standard and can
be found in (9) and (10).

To fix some notation we will let X denote an arbitrary completely regular
Hausdor(f space. In general V will be a Nachbin family on X, and its clements
will be written ve V. ¢ = (Vy) stands for a sequence of Nachbin families on X
such that Vy 2 Vper. We denote by V the maximal sysiem associated to
9. 1M Vp= {Xvy : A>01} [lorastrictly positive weight vy, we write ¢ = (vy)
and suppose that the sequence is decreasing. In what follows F s a separated locally
convex spuce (L.e.s.) and es(E) in the system of all its continuous seminorms,

In (2) 0.5. the so-called “basic problem™ is stated as follows: Given a
sequence 3 on X and a le.s. k. determine when

(i) 9oC(X, L) = CVo(X. L) and
(ii) 9C(X, E) = CV(X. E)

hold algebraically and topologically.

Problem (i) is completely solved in (2) if 9 =(vy) is a decreasing sequence of
continuous weights on a locally compact space. It is proven that, if I is a Banach
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space, (i) holds if and only if the sequence 9 is regularly decreasing, i.c.,
(RD) Given n €N there cxists m 2 n so that, for every € >0 and everyk 2 m
it is possible to find 8 (k, €) > 0 with v(x) = 9 (k, €) vy (x) whencver
Vm(Xx) 2 € vp(x). The case of a strongly boundedly retractive inductive limit of
Banach spaces L is also treated there.

The article (4) deals with problem (ii). Under some conditions which we
specify in section Il and which are implied by (RD) if the weights vy of 9 are
continuous, it is shown that 9C(X) = CV(X) holds algebraically and topolo-
gically.

In the first scction of this article we prove that (i) holds algebraically and
topologically if & = (vp) is a regularly decreasing sequence on a locally compact
space X, and E is a complete (gDF)-space (see(9) Ch 12). To do this we utilize
the “Desintegration Theorem”, a device discovered by Defant and Govaerts (5).

A lcs. E is said to satisfy the countable neighbourhood property (c.n.p.) if
given any sequence (pp) C cs(E) there are Ay > 0 and p € ¢s(F) such that
Pn < An p, n € N. Every (gDF)-space satisfies the c.n.p. In section II we prove
that the algebraic equality (ii) holds and that both spaces have the same bounded
sets if F satisfies the c.n.p. If moreover & =(vy,)is a regularly decreasing sequence
of continuous weights then (ii) holds also topologically.

Two examples are provided: In the first one we find a Fréchet space E and
a regularly decreasing sequence ¢ on X such that 9,C(X, E) is not a topological
subspace of CVo(X, E), and in the second we show that 9C(X, E) can be pro-
perly contained in CV(X, L) for a Fréchet space E, even if & is, again, regularly
decreasing.
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cher Austauschdienst (ID.A.A.D.) for the grant which gave him the oportunity
to visit the Universitat-Gesamthoschule-Paderborn during the months of May and
June of 1983. 1 especially thank Professor Bierstedt for his valuable suggestions
and encouragement.

1. On the topological isomorphism 9,C(X, L) = CVq(X, E)

We assume in this section that X is locally compact. In this case Co(X, L)
is densely conrtained in CVo(X. E) for any Lc.s. L' and any Nachbin family V.
Our first Lemma is a slight modification of (2) Lemma 1.1.

Lemma 1. If 9 is a sequence of Nachbin families on X and L is a L c.s. satisfysing
the c.n.p., then 9,C(X, I)and CYo(X, L) induce the same topology on C. (X, E).



A projective description of weighted inductive limits of spaces 117

Prodf: Take W a neighbourhood of the origin in 9,C(X, E). We can find v, € V,
and pp € cs(E), n € N, such that

1‘(n(2Jl By)CW ., where

Bo= {feCValo (1) sup  va(x) pa(f¥)) < 1}

Since L satisfics the c.n.p., we find A, > 0, n € N, and p € c¢s(E) with
PnS<Anp,neN

Clearly v =inf {2y 2" vp : n &N} belongsto V.

Proceeding now as in (2) Lemma 1.1. we prove that

{feCdX.E) :  sup 'v(x)p(f(x))<l}
xEX

is included in W N C(X, L). Since the injection 9oC(X, E) C CVy(X, E) is
continuous, the conclusion follows.
Q.E.D.

Applying (2) Lemma 1.2. we obtain

Theorem 2. If 8 = (Vy) is a sequence of Nachbin families on X and E a Le.s.
satisfying the c.n.p., then 3,C(X, L) is a topological subspace of CVo(X, E), and
consequently of 9C(X, E).

Our next theorem will be applied later but it is interesting by itself. It has
been also observed by Defant and Hollstein (personal communication). The defi-
nition of e-space can be seen in (7).

Theorem 3. If ¥ is a (DF)-space (a (8DF)-spuce) and L is a normed e-space, then
their injective tensor product E @, T is a (DI)-space ( a (gDI7)-space).

Proof: We supose that F is a (gDF)-space. It is proven in (8) that ¢o(F) is then a
(gDF)-space (and a (DF)-space if F is a (DF)-space). Every bounded subset of
co(F) is clearly contained in the closure in ¢o(F) of a bounded subset of ¢, ®, F.
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Therefore this last space is also (gDF). By Defant and Govaerts’ Desintegration
Theorem (see (5)) there is a surjective topological homomorphism

p:(E ®1") ®,(c6o ®.T) E ®,.F,

where EE ®, 1! denote the tensor product of E and |' endowed whith the
topology the topology of Chevet and Saphar (sce (5)), and it is clearly a normed
space. Then the projective tensor product (E ®; 1') ®,(co ®, F) is a
(gDF)-space, by (9) 15.6.2. Since every quotient of a (gDT")-space is a
(gDF)-space, the conclusion follows.

Corollary 4. Let v be a strictly positive continuous weight on X. If E is a
(DF)-space ( a (gDV)-space), then C(v)o(X, L) is ¢ (DF)-space ( a (gDF)-space).

Proof: By (7) Proposition 2.3. C(v)o(X) is a normed e-space. Suppose that L is
a (gDE)-space. Applying Theorem 3, C(v)o(X) ®, L is a (gDF)-space. The con-
clusions follows considering the diagram

COo(X) B —= Co(X, E) —=  C(Wo(X, E) =C()o(X) & L.
The last isomorphisms being a consequence of (1) Theorem 13.

QED.

Theorem 5. If 9 is a regularly decreasing sequence of continuous weights on X
and E is a complete (gDF)-space, then 9,C(X. L) is strongly boundedly retrac-
tive and therefore complete. Moreover 9,C(X, L) coincides with CV (X, L)
algebraically and topologically, and CV (X, E) is a complete (gD1")-space, which
is (DY) If E is a (DF)-space.

Proof: Given n € N, if we fix m €N as in the regularly decreasing condition, we
have that the spaces Clvg)o (X, ). 9,C(X, E), 9C(X, L) and CV4(X, E) induce
the same topology on the bounded subsets of C(vy)o(X. E) for every k 2 m.
Since Cvp)o(X, F) is a complete (gD17)-space for each n @ N, it is not difficult
to see that this is enough to guarantee that 9,C(X, E) is strongly boundely
retractive (scc (2) 0.3.). and thercfore complete. Now applying Theorem 2,
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B0 C(X, E) is a dense topological subspace of the complete space CV,(X, L), and
thus, they must coincide algebraically and topologically.
Q.ED.

Remark 6. Under the assumtions of Theorem 5 we have that 9,C(X, L) =
HoC(X) &, L. This is a consequence of the former Theorem and (1) Theorem 13:

3o C(X, ) = CVo(X. L) = CVo(X) &, L=9,C(X) &, E.

Example 7. Theorems 2 and 5 are not true in general if we assume that E is a
Fréchet space. Consider X the set of natural numbers N endowed with the
discrete topology and v, k € N. the weights vi(n) = n¥
CVo(X) is the co-echelon space of Kothe sp, the strong dual of the Fréchet space
s of rapidly decreasing sequences; and C(vg )o(X, E), for any Lc.s. E, is the space

;n < N. In this casc

{ (xp) © EN - l!i_ll‘lm nk p(xn) =0 for cach p & cs(L) }

Thus for every [réchet space E. 9oC(X, F) is an (LF)-space, and therefore
barrelled. By (6) Ch Il, § 4, n® 3, there is a Fréchet space Eo such that
sh @,, lig = s} @L_. Eo = CVo(X) ée Eo = CV4(X, L) is not barrelied.
Consequently, 3,C(X, Lg), which is a dense subspace of CV (X, Lg). can not be
a topological subspace of it. Observe that in this case 3,C(X, L) =9C(X, L) and
CVo(X, L) =CV(X, E) for cvery l.c.s. L.

11. On the topological isomorphism $C(X. E) = CV(X, L).

In this section ¢ = (vg) denotes a decreasing sequence of strictly positive
weights on a completely regular Hausdorff space X and E is a l.c.s. with the
countable neighbourhood property; unless the contrary is specifically stated.

Theorem 8. If ¥ is a decreasing sequence on X and i salisfies the c.n.p., then
(a) 9C(X, E) =CV(X, E) algebraically,

(b) for any bounded subset B of CV(X, E) there is n € Nsuch that B is a boun-
ded subset of Cvp(X, L), and

(¢) 9C(X., F) is a regular inductive limit.
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Proof: Consider B a bounded subsct of CV(X, E) (to prove (a) it is enough to
take B = {f } with f € CV(X, E)). Suppose that { vp(x) f(x) : xeX,fc B} is
not bounded in E for cach n € N. Therefore there exist py € ¢s(E), n € N, such
that

{ W) palfx)) : xeX, feb}

is not a bounded subset of IR. Since E satisfies the c.n.p. there exist p € cs(E)
and Ap > 0,n €N, withpn <Ay p,nEN.

Proceeding by recurrence we can determine a sequence (xn) in X with
Xn # Xm , N1 ¥ m; and a sequence (fy) in B such that

vn(Xn) Pn(fa(xn)) >nA, forcachneN.

We define v : V——— R by putling v(x) =0 if X # Xp, and v(xp) = vp(xq), n € N.
If we fix n € N and take k 2 n, we have that

Toa) ) _ . _(a)
= = = —_—
Vn(xk) v (xk) va(Xn)
and therefore
X o = SR Vo) = max o) i=l,..nl =:a
x€X  wvp(x) kSN vn(xg) Vn(Xj) D j=lhe t o
Taking ¥(x) : = |2tN {an.vn(x)},onehaslhatiie\iandvgv‘
n

Since B is a bounded subset of CV(X, E), there exists M 2 0 such that
v(x) p(f(x) <M for each x € X and f ¢ B. Bul

V (xn) p(fn(xn)) = >‘l-ll i-'i(xn) Pn(fn(xn)) = 7\r_ll va(Xn) pn(fn(xn)) >n,

which is a contradiction.
Part (c) follows easily from (b).
Q.E.D.

Corollary 9. If 9 is a regularly decreasing sequence on X and E satisfies the
cn.p., then 9C(X, L) is a strongly boundedly retractive inductive limit; and
hence complete if v, € ¢ are continuous, E is complete and X is a Ky -- space.”
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Our previous results extend some propositions of (2)5.

Example 10. Theorem 8 is in general not true for Fréchet spaces E. Consider
again X = N endowed with the discrete topology and the weights vi, k € N,
vk(n) = n'k, n € N. Clearly if E is a L.c.s. we have that

Clvip) (X, E)= { (xn) G EN . sggl nX p(xq) <+ oo foreach p € cs(l;')}
ne.

Take now E =s. A fundamental system of seminorms of E is given by pi((yn)) =
sup { ' lypl : neN }, foreach (yp) €Ll and r € N. We define N — E, by
putting f(n) = ¢y, the canonical unit vector in s. We claim that f € CV(X. E) \
IC(X, k). Given v € V therc exist a >0, k € N, with v(n) < nk oy ., for cach
n € N. Since pr(ep) =n*, n €N, onc has that nsg% v(n) py(cp) = “521; v(n)n' <oy,

r ¢ N, and thus f € CV(X, ). Now suppose the existence of k & N such that
sgg vk(n) pr(ey) < + oo for each r € N. Since vg(n) pr(en) = n™"k for each
nc

r ¢ N, we reach a contradiction.

Our next aim is to show that, under some conditions introduced in (4), the
topological isomorphism CV(X, E) = 9C(X, L) holds if E satisfics the ¢.n.p.. We
follow methods developed in (4).

At. this point we need some definitions. For any l.c.s. E and corresponding
to a Nachbin family V on X and 10 an increasing scquence J =(Xp ) of subsets of
X we associate the space

XC

CVo(X,J, F)= {feCV(X. F) : lim_ swpy VO P(Ix)) =0
for cachv € V and p € cs(E) } .
endowed with the topology induced by CV(X, k).
If V={Av : A>0} for a single strictly positive weight v on X. we will
write C(v)o(X, J, E) instead of CV4(X, J. E).

For a decreasing sequence 9 = (vp) of strictly positive weights on X we put

BoC(X, ), E)= ind Cvn)o(X, ], E)

Ced(X. J,E)={fcdC(X, E) : flx\x,, =0forsomemeN}
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Clearly C.(X, J, E) is included in" 8,C(X, J, E) and it is dense in
9,C(X, 1. L) if

(*) X is normal and for cach m € N there is kp, 2 m with X, Cf(km, or
(**) all the weights vy are continuous. (See (4) 6.2.)

The sequence 9 is said to satisfy
(N. 1) if for cach m @ N there is nyy 2 m such that

- Vi (x) , ,
inf ——— > 0f{orallk > nyy,;and
XEXm  Vnp,(x)

(S, D) if for cach n € N there exists n’ > n with

vpo(x
lim sup A ( ) = 0
m>* x€X\Xp vn(X)
Il & = (vy) is a regularly decreasing sequence of continuous weights on X.
then there is an increasing sequence J = (X)) of subsets of X such that 9 satis-
fies (N, J) and (S, J).

Remark 11. If 9 is a sequence on X satifying (S, 1) for a certain increasing
sequence ) = (Xy) of subsets of X, then for every L¢.s. L the spaces 9C(X, k)
and 9,C(X, 3, E) coincide algebraicully and topologically. indecd, it is enough
to prove that given n < N. il we select n” as in condition (S. J). the space
C(vy) (X, E) is included in (C(v,.) (X. J. E). To sec this. wake f < C(v,) (X. E).
Given p € ¢s(E) there is M > 0 with sup v, (x) p(f(x)) : x ¢ X <M. I'or cach
€ > 0 there exists mg € N such that if m 2 mg, then

sup ) €
XGEX\Xm  vp(Xx) M

Therelore if m 2 mg, and x € X\ Xp

(P =) (o) () <e

from where if follows that lim  sup vn(x) p(f(x)) =0
m—>= xGX\X
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Lemma 12. Let 9 be a decreasing sequence on X satisfying condition (N, ) for a
certain increasing sequence J = (Xm) of subsets of X. If conditions (*) or (*¥)
are satisfied and L is a Lc.s. with the c.n.p., then 9,C(X, J, L) is a ropological
subspace of CVo(X. ), L); and consequently of 9C(X, E).

Proff: As a consequence ol our previous remarks and (2) Lemma 1.2., since
FoC(X, J. L) is continuously embedded in CV4(X, J, L), it is enought to prove
that these spaces induce the same topology on C (X, J. I£). To do this we may
assume, replacing (vm) by (Vnp, ), that nyy =m in condition (N, D).

: Vo, (X)
Put 35 . = inf arel
Ho0a .\"C Xn vn(x)

> 0, ncN
Fix U= (0 By)

n=3
a neighbourhood ol the origin in 9,C(X, I, E) with

Bo = { [ Cum)o(X. . B) & S8 va(x) Pa(x) < en} . pn € es(E).

We can determine p € es(k) and Ap >0, n € N, such that py <Ap p.ncN. We
choose inductively a sequence of positive numbers (og) with

a - L
a, =21, pe, > —2MM peN
On €n
o .
Then defining v = - — v, eV, we conclude (see the proofsol 6.5 and 6.6.
neEN €p
in (4) that
W:=1fcC, X, J,E) : sup v(x) p(f(x)) <1
{feCe 9.1 F) + S0 v(x) p(f(x)) <1}
is contained in L.
Q.ED.

Theorem 13. Let ¥ be a decreasing sequence on X satisfying (N. J) and (S, 1) for
a certain sequence 1 = (X, ) of subsets of X. If conditions (*) or (**) are satis-
fied, then 9(C(X, I2) = CV(X, E) holds topologically foe every lc.s. K with the
cn.p.



124 José Bonet

Proof: In general 9,C(X, J, £) C CVy(X. J. E) € CV(X, E). By remark 11
9C(X, E) = 9,C(X, J, E) and by Theorem 8 9C(X, L) = CV(X, E). Thus these
four spaces coincide algebraically. It is enough to apply Lemma 12 to reach the
conclusion.

Q.E.D.

Corollary 14. If 9 a regularly decreasing sequence of strictly positive continuous
weights on X, then 9C(X, E) = CV(X, L) holds topologically for every L¢.s. E
satisfying the c.n.p.
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