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INTRODUCTION.

Rings having von Neumann regular classical left quotient rings Q are consi-
dered in the Tirst section of this note. Conditions for Q to be strongly regular and
semi-simple Artinian are given. Next, we introduce a gencralization of injective
modules, noted NCI modules, which are proved to be an effective intermediate
class of modules between injective and continuous modules. Among the results
proved arc the following: (1) If A has a von Neumann regular classical left
quotient ring, then a finitely generated left ideal of A is essential if, and only if,
it contains a non-zero-divisor (this is motivated by a well-known result of A. W.
Goldie [4, Theorem 3.34]); (2) I A has a classical left quotient ring Q, the
following are equivalent: (a) Q is strongly regular;(b) Foreveryae A, aca? Q;
(c) A is reduced and Q is right p-injective; (3) A is left self-injective regular ifT A
is left non-singular such that every finitely generated non-singular lefi A-module
is NC1; (4) A NCI left A-module is continuous; (5) A is left and right sell-in-
jective strongly regular iff A is a reduced left NCI ring; (6) IT A is an LT left
NCI ring which is a direct sum of an ideal and a left ideal C such that 5C is
non-singular, then C is a left and right sell-injective regular left and right V-ring.
Certain well-known results of B. Osofsky ([9, Lemma 3] and [10, Theorem]) on
right sclf-injective regular rings hold (or right non-singular right NCI rings.

Throughout, A represents an associative ring with identity and A-modules
arc unitary. Recall that (1) A has a classical left quoticnt ring Q if Q is a ring
containing A such that (a) every non-zero-divisor of A is invertible in Q and (b)
every element of Q is of the form q=b"" a, 2 ¢ A, b being a non-zero-divisor of
A; (2) A satislics the left Ore condition if, for any a, b € A, where b is a non-
zero-divisor, there exist d, ¢ € A, ¢ non-zero-divisor, such that ca = db. It is well-
known that A has a classical left quotient ring iff A satisfics the left Ore condi-
tion (cf. [2, P. 390]). A well-known theorem {4, Theorem 3.35] asserts that A
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has a semi-simple Artinian classical left quotient ring iff A is a semi-prime left
Goldie ring.

As usual, an ideal of A means a two-sided idcal and A is called left duo if
cvery left ideal is an ideal. A is called reduced if it contains no non-zero nilpo-
tent clement. A is fully idempotent (resp. fully left idempotent) iff every ideal
(resp. left ideal) of A is idempotent. If N is a left submodule of

aM, Cly(N)=1y e M/LyC N

for some essential left ideal L of A} is the usual closure of N in M. M is called
singular (rep. non-singular) iff Z A(M) = Cl y(0) =M (resp. Z ,(M)=0). Z, J
will denote respectively the left singular ideal Z (A) and the Jacobson radical
of A.

§. VON NLUMANN REGULAR CLASSICAL QUOTIENT RINGS.

Lemma 1.1. If a has a classical left quotient ring Q, then any left ideal of A con-
taining a non-zero-divisor is an essential left ideal.

Prool. Let L be a lefi idea) of A containing a non-zero-divisor c. Since ¢ is
invertible in Q, Qc = Q. Foranyo#qeQ,q=pc,peQ, and if p=b" a,2 € A,
b non-zero-divisor of A, then o # bq = b (pc) = ac e L which proves that 5L is
essential in 5 Q and therefore A L is essential in A A.

Our next result is analogous to [4, Theorem 3.34]. Note that if A has a von
Neumann regular classical left quotient ring, then A necds neither be regular nor
satisfy the maximum condition on left annihilators.

Theorem 1.2. Suppose that A has a von Neumann regular classcial left quotient
ring Q. Then a finitely generated left ideal F of A is essential iff it contains a
non-zero-divisor.

Proof. I F contains a non-zero-divisor, then F is essential by Lemma1.1. Con-

versely, suppose that s F is essential in 5 A. If

n n
l'-‘=_21.Ayi, then QF=,ZIQYi and QQF
i=

1=

is essential in QQ. Sinte Q is von Neumann regular, then gQ F is generated by an
idempotent which implies QFF = Q. If
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.
1= iEI qi¥i- 9 € Q,

we can find a non-zero-divisor ¢ € A, ay, .. ., 4y € A such that
gi=c' a5 (1 <i<n).

Then we obtain
n
c= ¥ ayjel.
i=1

A left A-module M is called continuous iff every left submodule which is
isomorphic to a complement left submodule of M is a direct summand of AM.
Then A is a left continuous ring iff A A is continuous (cf. [12]).

Theorem 1.3. If A has a classical left quotient ring Q, the following are then
equivalent:

(1) Q is left continuous regular;

(2) Lvery complement left ideal of Q is finitely generated and every finitely
generated essential left ideal of A contains a non-zero-divisor.

Proof. (1) implies (2) by Theorem 1.2.

Assume (2). For any q =b™ a € Q, a, b € A, there cxists a complement left
ideal K of Q such that L =Qq ® K is esscntial in gQ. By hypothesis, we can find
a finitely generated left ideal F o A such that QF =K. If we set E = Aa + F,
then QE = Qq + K. We now show that £ is an essential lelt ideal of A. Suppose
that there exists a non-zero left ideal I of A such that E N [ = 0. Then it is easily
seen that L N QI = o, which contradicts the fact that L is essential in QQ.
Therefore, by hypothesis, E contains a non-zero-divisor which implies Q = L,
whence Q is von Neumann regular and then every complement left ideal of Q is
generated by an idempotent. Thus (2) implies (1).

Corollary 1.3 (a). If A has a left self-injective classical left quotient ring Q, then
Q is regular iff every finitely generated essential left ideal of A contains a non-
zero-divisor.

Remark 1. A is regular iff A has a regular classical left quotient ring such
that every principal left ideal of A is a complement left ideal. (Apply Lemmal.l.).
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Lemma 1.4. If A has a classical left quotient ring Q, the following conditions are
equivalent:

(1) Qisvon Neumann regular;

(2) For any a e A, there exists 4 € O such that a = aga. (The proof is direct.)

It is well-known that A is left non-singular iff A has a regular maximal left
quotient ring F, where E is left selFinjective and Al is the injective hullof A A
(cf. for example [4]).

Remark 2. A is left self-injective regular iff A is left non-singular whose prin-
cipal left ideals are complement left ideals such that the maximal left quotient
ring of A is the classical left quoticnt ring of A.

We now prove an important result on classical quotient rings.

Proposition 1.5. If A is a reduced ring having a classical left quotient ring Q, then
Q is reduced,

Proof. Let q € Q such that q> = 0. If q=b™ a, a € A, b non-zero-divisor of
A, then ab™ a = o. Since A satisfies the left Ore condition, there exist d € A,
¢ a non-zero-divisor of A such that ca= db. Then da=dbb™ a=cab* a=0
implies ad = o (since A is reduced), whence aca = adb = o and therefore (ac)? =o
which yields ac = o. Since ¢ is a non-zero-divisor, a = o which proves that q=o0
and establishes the proposition.

Corollary 1.5 (a). Let A be reduced such that the maximal left quotient ring Q
of A is a classical left quotient ring of A. Then Q is left and right self-injective
strongly regular.

Corollary 1.5 (b). Any left non-singular left duo ring has a reduced classical
left quotient ring,

Proof. Apply [15, Lemma 1] to Proposition 5.

Left CM-ring are studied in [19]. Since a semi-prime ring satisfying the ma-
Ximum condition on left annihilators is left non-singular, then [19, Remark 2 (2)]
implies.

Corollary 1.5 (c). If A is a semi-prime left CM-ring satisfying the maximum con-
dition on left annihilators, then either A is semi-simple Artinian or A has a clas-
sical left quotient ring which is a finite direct sum of division rings.

It is well-known that A is von Neumann regular iff cvery left (right) A-mo-
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dule is flat. Also, A is regular iff A is a right p-injective right p.p. ring [6, Co-
rollary 5].

Theorem 1.6. The following conditions are equivalent for a ring A having a clas-
sical left quotient ring Q:

(1) Q is strongly regular;

(2) Forany a e A, there exists g € Q such that a=a* g;

(3) A is reduced and Q is a right p-injective ring,

Proof. Apply [7, Theorem 1], [15, Theorem 1], Lemma 1.4 and Proposition
1.5.

Remark 3. If A is a fully idempotent (resp. (1) fully left idempotent (2)
fully right idempotent) ring having a classical left quotient ring Q, then Q is fully
idempotent (resp. (1) fully left idempotent (2) fully right idempotent).

We conclude this section with a few equivalent conditions for a ring to be
semi-prime left Goldie. :

Theorem 1.7. The following conditons are equivalent:

(1) A is semi-prime left Goldie;

(2) A is of left finite Goldie dimension having a von Neumann regular clas-
sical left quotient ring;

(3) A has a classical left quotient ring Q) such that for any essential left ideal
LofA, QL=0Q;

(4) A is left non-singular with a classical left quotient ring Q such that every
divisible non-singular left A-module is injective.

Proof. 1t is well-known that (1) implies (2) [4, Theorem 3.35].

Assume (2). If U is an essenlial left ideal of Q, then L = U N A is essential in
AA and since A is of left finite Goldie dimension, then L contains a finite num-
ber of clements

m
41,...,4am such that I = 'El Ag;
1=

is essential in AL and hence in 5 A. By Theorem 1.2, I contains a non-zero-di-
visor ¢ and since ¢ € U, then Q = U which proves that Q is semi-simple Artinian.
If I is an essential left idcal of A, E contains a non-zero-divisor [4, Theorem
3.34] which implies that Q E = Q and thus (2) implies (3).
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Assume (3). For any essential left ideal L of A, since QL =Q, then
n
1 =_2)1 gili.q;i €Q, lj e L.
i=

Then the proof of Theorem 1.2 shows that L contains a non-zero-divisor. If U is
an essential left idcal of Q, then U N A is essential in 5 A and therefore contains
a non-zero-divisor, whence U =-Q which proves that Q is semi-simple Artinian.
Therefore (3) implies (4) by [5, P. 102 ex. 18].

Assume (4). Q is clearly a non-singular left A-module. If U is an essential left
ideal of Q, ¢ a non-zero-divisor of A, for any u € U, u = c¢™! u € cU implies
U = cU which shows that AU is divisible, non-singular and therefore injective.
Now AQ = AU & AP and since AP is divisible (because AQ is divisible), for any
peP,anyqeQ,q=b"d,b,deA,sincedpeP=bP, dp=bv forsome v eP.
We then have qp = b™ dp =v e P which proves that P is a left ideal of Q and
hence the essential left ideal U of Q is a direct summand of gQ, yielding Q = U.
This proves that Q is semi-simple Artinian and (4) implies (1).

Rings satisfying the left Ore condition whose singular lelt modules arc in-
jective nced neither be regular nor satisfy the maximum condition on left anni-
hilators.

Corollary 1.7 (a). If A salisfies the left Ore condition such that all divisible
singular and divisible non-singular left A-modules are injective, then A is left
Noetherian left hereditary.

Proof. Since cvery divisible singular left A-module is injective, then A is
left hereditary [18, P. 192]. Since a left hereditary left Goldie ring is left Noe-
therian, the corollary then follows from Theorem 1.7 (4).

§. 2. INJECTIVE AND NCI MODULES.
We here introduce the following generalization of injectivity.

Definition. A left A-module M is called a NCI module if, for any left sub-
module P’ containing a non-zero complement left submodule of M and any left
submodule N of M which is isomorphic to P, every left A-homomorphism of N
into P extends to an endomorphism of oM.

A is called a left NCI ring if A A is NC1. If oM is NCl and M=N @ P, then
AN is NCl.
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Remark 4. Any completely reducible left A-module is NCI. Consequently, if
every NCI left A-module is injective, then by [3, Corollary 20.3L], A is a left
Noctherjan, left V-ring. If every simple left A-modulo is p-injective, then A is
fully left idempotent [14]. Consequently, NCI modules need not be p-injective.

Remark 5. If' A is a left NCI ring, then any non-zcro-divisor is invertible.
Therefore, cvery left or right A-module is divisible and A is its own classical left
and right quotient ring.

It is well-known that A is lelt sclf-injective regular iff’ A is left non-singular
such that every finitely generated non-singular left A-module is injective iff A is
regular such that every finitely generated non-singular left A-module is projec-
tive (¢f. [1, Theorem 2.1] and [20, Corollary 6]).

Theorem 2.1. The following conditions are equivalent:

(1) A isleft self-injective regular;

(2) For any finitale generated left A-module M, 4M[Z (M) is projective
NCI;

(3) A is left non-=singular such that every finitely generated non-singular
left A-module is NCI.

Proof. (1) implies (2) by [20, Corollary 10].

Assume (2). Then p AjZ is projective which implies Z = o [13, Lemma 3j.
Therefore (2) implies (3).

Assume (3). Let M be a non-zero finitely gencrated non-singular left A-mo-
dule, L the injective hull of oM. Suppose that M # Liand ify ¢ I, y ¢ M, set
IF=M+ Ay and Q=M = F. Then A Q is finitely generated non-singular and the-
the refore NCI by hypothesis, If u: M — [, k: I¥ > Q ure the inclusion maps,
M™ = (y, o)y e M ,j: M —> M’ the isomorphistn y = (y, 0), i: M" = Q the in-
clusion map, then there exists h: Q = Q such that hku (y) =j(y) forally e M.
If p: QM is the canonical projection, then phku (y) = pj (y) =pij (y) =y for
all y € M, which shows that phk: FF = M such that (phk) u = identity map on M.
This proves that oM is a direct summand of Al°, wheuce M = F (bccause oM is
essential in A F), which contradicts y ¢ M. Thus M = L is injective and (3) im-
plies (1).

Proposition 2.2. If M is a NCI left A-module, then oM is continuous.

Proof. Let N be a complement left submodule of M, Q a relative comple-
ment of N in M such that I.=Q @ N is an essential submodule of A M (and hence
Nis a relalivc‘cornplemcnt of Qin M). If p: L = N is the canonical projection,
the set of submodules P of M containing L such that p extendsto a left A-
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homomorphism of P into N has a maximal member K by Zorn’s Lemma. If
g: K = N is the extension of p to K, iz N ~ K the inclusion map, since A M
is NCI, then ig extends to an endomorphism h of AM. If h (M) ¢ N, then (h
M+ENNQFouand forany oFqe(h (M4 NNQ,gq=h(m)+n meM,
n e N, K is strictly contained in k= { y ¢ M/h(y) e l.} (because m ¢ E, m ¢ K).
Now if s: E > L iy defined by s (z) — b (#) lor all z ¢ 1, then ps: E - N extends
p to li, which contradicts the maximality of K. This proves that h is a map of
Minto N. Now ker h " N=o and forany me M, m=h (m) + (u  h(m))e
N @ ker h which proves that M = N @ ker |1,

Now let C be a left submodule of M which is isomorphic to N. If u: C—> N
is an isomorphism, by hypothesis, u extends to an endomorphism v ol M.
Since N is a direct summand of oM, if t: M -> N is the natural projection, then
for any m ¢ M, tv (m) ¢ N implies there exists ¢ € C such that u (¢) — tv (m). But
u (¢) = v (c¢) implies tv(c)=tv (m), whence m -: ¢ + k. where k ¢ ker tv. Since
u is an isomorphism, C N ker tv — o which yields M — C © ker tv,

Applying |12, Lemma 4.1], we get.

Corollary 2.2 (a). If A is a left NCI ring, then A[Z is von Neumann regular and
Z=J

Corollary 2.2 (b). If A is left non-singular, then any quotient module of a NCI
left A-module contains its singular submodule as a direct summand. (cf. |13]).
Applying [ 11, Proposition 1] to Proposition 2.2, we get.

Corollary 2.2 (c). A is quasi-Frobeniusean iff A is a left Noetherian left NCI
ring whose minimal one-sided ideals are annhilators.

Corrollary 2.2 (d). A left non-sigular left NCI, right self-injective ring is left
self-injective regular. (Apply [4. p. 68 ex. 14]).

Corollary 2.2 (e). A prime left NCI ring either has zero socle or is primitive left
self-injective regular (c1. [ 16, Proposition 2.5]).

The converse of Proposition 2.2 is not true (¢f. Remark 7 below). llowever,
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a continuous uniform left A-module is NCI. (A left A-module is uniform iff
every non-zero left submodule is essentiat).

A well-known result of C. FAITH - Y. LTUMI on ring endomorphisms of
quasi-injective modules [4, Theorem 2.16] holds for NCI modules.

Theorem 2.3. Let M be a NCI left A-module, I = End 4(M), J (L) = the Ja-
cobson radical of k. Then E}J (I) is von Neumann regular and J (E) = [ ¢ Efker
Jis essential in 4M .

Rings whose cssential left ideals are idempotent need not be semi-primne.

Lemma 2.4. Let A be a left NCI ring such that each essential left ideal is an
idempotent two-sided ideal containing a non-zero complement left ideal of A.
Then A is left self-injective.

Proof, Let L be an essential left ideal of A, {: I. = A a non-zero left A-
homomorphism. For any b e 1, b ¢ 1.2 implies

1 n '
[b = IEI ¢j di, where¢j,dje Lyand (b)) = X ¢if(dj)e LI
i i=1

1=

(since L is an ideal of A). This shows that { maps L into L and since A is left
NCI, f extends to an endomorphism of A A, proving that A is left self-injective.

Remark 6. If A satisfies the hypothesis of Iemma 2.4 and either the ma-
ximum or minimum condition on left annihilators, then A is quasi-Frobeniusean.

Theorem 2.5. The following conditions are equivalent:
(1) A is left and right self-injective strongly regular;
(2) A is a semi-prime left duo left NC1 ring;
(3) 4 is a reduced left NCI ring.

Proot. Apply [15, Lemma 1], Corollary 2.2 (b) and Lemma 2.4,
Combining Proposition 1.5 with Theorem 2.5, we get.

Corollary 2.5 (a). If A is a reduced ring having a left NCI classical left quotient
ring Q, then Q is left and right self-injective strongly regular.
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Remark 7. In view of [12, Remark 7.11], Theorem 2.5 shows that NCI mo-
dules are, in geperal, strictly between injective and continuous modules.

Lemma 2.6. Let A be a left NCI ring which contains a non-zero non-singular
left ideal 1. Then every element of I is von Neumann regular.

Proof. For any o # b ¢ |, let K be a non-zero complement left ideal of A
such that L =1 (b) = K is an cssential left idcal. If f: Kb — K is the left A-
homomorphism defined by { (kb) — k for all k € K, then { is an isomorphism
and since A is left NCI, then { extends to an endomorphism h of A A. let h
(1) = d. Then k = kbd implies kb = kbdb for all k ¢ K, whence 1. C1(b - bdb).
Therefore b bdb ¢ Z N 1 =Z (1) — o, which yiclds b = bdb,

Recall that A is LT iff every essential left ideal of A is an ideal.

Proposition 2.7. Let A be an FELT left NCI ring which is a direct sum of two
left ideal B, C, where B is an ideal of A and 4C is non-singular. Then Cis a left
and right self-injective regular left and right V-ring.

Proof. We may assume that B # o (otherwise, C = A has the desired pro-
perty by |19, Lemma 1.1], Lemmas 2.4 and 2.6). Since A is LLT, then so is the
ring C. By Lemma 2.6, for any ¢ € C, Cc = Ac = Ac == Ce, where e =e? € C. This
proves that C is a von Neumann regular ring. let 1. be an essential left ideal of
C, f: L. -> C a non-zero left C-homomorphism. For any b € L, Cb = Cu, where
u=u?eCIfcl.= ¢Cb @cQ, then gl.=AAb @ AQand if i: C = Ais the in-
clusion map, g: AL > AC is the map defined by g (y) =f (y) for all y € I, then
ig: AL = AA which extends to t: aAB® AL > pA by t (b +1)=ig (1) for all
b e B, l ¢ l.. Now B % L. is an essential left ideal of A containing a non-zero com-
plement left ideal B of A and foranydzB@l.,d=v+w,veB,wel,whence
w=wz, z=7% ¢ L which implies t (d) = ig (W) =g (W) =wg (z) € . (since C is
ELT). If j: 1. = B L. is the natural injection, then ji: B® I, > B ¢ L and jt
extends to an endomorphism h of A A (since A A is NCI). If r is the restriction
ofhtoC,thenforanyyel,r(y)=h(y)—jt(y)=t(y)eL.CCandifp: A>C
is the natural projection, then pr is a left A-homomorphism of C into C such
that for any y e L, pr (y) = pt (y) = pig (¥) = pg (y) =g (y)= [ (y). This shows
that { extends to a left C-homomorphism q: C = C, where q (¢) = pr (¢) for all
¢ € C, which proves that C is left self-injective. Then C is a right self-injective
left and right V-ring by [19, Lemma 1.1].

Remark 8. If A =S @ C. where A is Ieft NC1. S is the left socle of A. Cis an
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ideal of A which is an ELT left non-singular ring, then A is a direct sum of a
semi-simple Artinian ring and a left and right self-injective strongly regular ring.

If A is left non-singular, then (1) for any lefl A-module M and lelt submo-
dule N, Cl y(N) is a complement left submodule of M [13] and (2) for any left
ideal I of A, ClI A(I} is the unique maximal essential extension of 1in o A and it
contains cvery essential extension of Iin oA (cf. [17]). If A is a left NCI ring,
then for any direct summands I, P of sAsuchthat INDP =0, 10 Pisalso a
direct summand of 5 A. Then with slight modifications, the proofs of [9, Lemma
3] and [10, Theorem] yiceld.

Proposition 2.8. Let A be a left non-singular left NCI ring which contains an in-
[inits set of non-zero orthogonal idempotents {Ci}ie 1- Then.

(1) For any subsel U of I, there exists an idempotent Ey in A such that
ey Lu=cy forall we U, e, iy =k ey=0oforallvel- U Also £} =
Lg A+ Bews

2) A/(i%)IAe,- + ker h) is not a NCI left A-module, where h: A -->iz__rlAe,-

is the map given by h (a) =< a¢j >, a € A.

Following [8], a left A-module M is called semi-simple if’ the intersection of
the maximal left submodules of M is zero. Then A is a left V-ring iff every left
A-module is semi-simple |8, Theorem 2.1].

Theorem 2.9. The following conditions are equivalent:

(1) A is semi-simple Artinian;

(2) A isan ELT ring whose NCI left modules are injective;

(3) Every finitely generated left A-module is NCI;

(A) A is a semi-prime left NCl-ring satisfying the maximum condition on
left annihilators;

(5) A is an LT ring whose cyclic semi-simple left modules are flat and NCI;

(6) A is a left CM-ring whose cyclic semi-simple left modules are flat and
NCT;

(7) A is a left non-singular ring whose ¢y clic left modules are NCI.

Proof. Obviously, (1) implies (2), (4) and (6).(2) implies (3) by [19, Theorem
1.11] and Remark 4,

Assume (3). If M is-a cyclic left A-module, I an essential extension of A M,
yeLl,yéM F o.M+ Ay, then oM # AF is a linitely generated NCI left A-
module. The proof of Theorem 2.1 then shows that we get M = F, a contra-
diction. Thus M has no proper essential extension which proves oM is injective
and therefore (3) implies (7). (4) implies (5) by I.emma 2.6.
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Assume (5). Since every cyclic semi-simple left A-madule is flat, then J = o,
which, implics that A is left sclf-injective regular by [.emmas 2.4 and 2.6. Now A
is a (left and right) V-ring by |19, Lemma 1.1 ] which implies that every cyclic
left A-module is semisimple {8, Theorem 2.1} and hence NCI. Thus (5)
implies (7).

Assurie (6). Then by Lemrma 2.6, A is either strongly regular or semi-simple
Artinian. In any case, (6) implies (7).

I‘inally, since it is well-known that a von Neumann rcgular ring which
contains no infinite set of non-zero orthogonal idempotents is semi-simple Arti-
nian, then (7) implies (1) by Lemma 2.6 and Proposition 2.8.
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