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|. INTRODUCLION.

In [4], Hilden proved that all 3-fold dihedral branched coverings of S™, n=3
or 4 with orientable branch set can be embedded in $3 X S? in such a way that
the branched covering space map can be factored through the embedding. The
objective of this paper is to gencralize this result to those types of branched
coverings ol ", n = 3 or 4 which have representations onto either the rotation
group ol a tetrahedron, an icosahedron, or a polygon with an odd number of
sides. The central idea is that these branched coverings of 8™ all have representa-
tions factor through their corresponding binary polyhedral subgroups of con-
tinuous unit quaternions.

The main results of this paper are:

Theorem 6. If p : M™ - S". n = 3 or 4 is a tetrahedral branched covering space
with branch set a polyhedral knot or link if n= 3 or a locally flat link of two-
spheres if n=4. Then there is a locally flat embedding ¢ : M® > S® X S? so that
diagram (1) is commutative.

S™ X 2
¢ l n

l\lln - . Sn

p

Theorem 7. If M™ - S™, n = 3 or 4 is an icosahedral branched covering space or
an r-fold (r odd, and r > 3) dihedral branched covering space branched over a
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polyhedral knot or link if n = 3, or a locally flat knot or link of two-spheres if
n == 4. Then there is a locally flat immersion ¢ : M" - S® X S? so that diagram
(1) is commutative.

2. DEFINITIONS AND ASSUMPTTONS.

All work will be done in the piecewise lincar category. For the standard de-
finitions and notations of branched covering space theory, we refer to [4] or
[6]

A branched covering space p : M™ = S™, n = 3 or 4 with orientable branch
set K is suid Lo be a tetrahedral branched covering space if it has an associated
representation p @ my (8" - K) » 24 which maps the fundamental group onto
the alternating group A4 by sending cach meridian generator to a 3-cycle. Since
A4 is isometric to the rotation goup of a regular tetrahedron, this representation
may be thought of as sending meridians to 120° rotations of a regular retrahe-
dron about an axis through a vertex and the midpoint of the vertex’s opposite
face.

A branched covering space of S™, n = 3 or 4 is called an icosahedral
branched covering space if it has a representation p @ m; (S K) > 24, which
maps the fundamental group onto the alternating group As or 24, by sending
meridians 1o permutations which are the product of certain disjoint 5-cycles.
There is a natural isomorphism between this subgroup of 23, and the rotation
group of a regular icosahedron. Under the isomorphism the permutations which
arc the product of two disjoint 5-cycles are mapped to 72° clockwise rotations
about an axis through two diametrically opposite verlices.

If r is an odd positive integer larger than two, a branched covering of S",
n =3 or 4, is called an r-fold dihedral branched covering space whenever its as-
sociated representation p @ my (8" - K) - Z; maps the fundamental group onlo
a dihcdral subgroup Dy of order 2 r by sending meridians Lo permutations which
are products of (r - 1)/2 disjoint transpositions. This representation has a geo-
metrical representation as a map onto the rotation group of a regular r-gon in
which meridians are sent to 180° rotations about a vertex and the midpoint of
its opposite cdge.

The proofs of the main results depend on a [actorization of the above re-
presentations through certain subgroups of continuous unit quaternions. Let
Q denote the binary tetrahedral group, let 1 be the binary icosahedral group and
let H, denote the dicyclic group of order 4, r odd. Lach of these groups are
subgroups of the topological group of continuous quaternions, [1, p. 68]. For
cach of these groups there is a natural two to one homomorphism, n, of the
binary polyhedral group onto its corresponding group of rotations. In each case
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the kernel of the homomorphisme is - - 1, the only element of order two in the
topological group of all unit quaternions.

3. LINK GROUPS AND BINARY POLYHIDRAL GROUPS.

In this sections we show that the tetrahedral, icosahedral, and dihedral
representations of knot and link groups factor through their corresponding sub-
groups of unit quaternions.

Lemma 1. Let u, denote the fundamental group of the complement of a poly-
hedral knot or link in S or the fundamental group of the complement of a
link of locally flat twospheres in S*. If there is a tetrahedral representation
p : m — Zg4 then there is a homomorphism 0 : w1 - Q so that n 0 = p.

Proof. Every polyhedral knot or link in $2 has a Wirtinger presentation [5, pg.
57] as does every link of locally flat two-spheres in 8% [3, pg. 132]. The Wir-
tinger presentation of m, has the form (x, ..., Xu; 11, ..., Iy » where cach
Xj is a meridian and the relator rj either has the form

o1 ] -1
Kk Xj Xk =Xj+1 OF Xk Xis1 Xk = X{.

Since p maps cach generator X 10 a 3-cycle, the set 07! p (x) has exactly two
elementis; one element has order three, the other is of order six. Let 0 (x) be the
element of order six in 7' p (x). Since the two elements of 77 p (x) are ne-
gatives of each other: 0 (X x; Xi!) = % 0 (Xj+1). Suppose that

6 (xk Xi X' ) = — 0 (Xj41)-

Then
[0 (xk xi ki) =0 (xk) 0 (x1)® 8 (xk)™" =—0 (xj41)>.

Since 0 (xi)® and 0 (xj.;)? have order iwo they both must equal - 1. Thisis a
contradiction.

An analogous argument for the relations of the form x xj,; X§' = Xj shows
that 0 preserves all the relators in the Wirtinger presentation of ar; . The construc-
tion of 0 makes it clear that 0 =p.

Lemma 2. If n, is a knot group as in Lemma 1 and p : 1y —~ Z1, Is an icosahe-
dral representation, then thereisamap 8 : my - 150 thatn 8 = p.
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Proof. ‘This argument is essentially the same as the one given in Lemma J. The
difference lies in the order of the elements in the set 7' p (x): One of these has
order {ive and the other order ten. Define 0 (x) to be the element of order ten.

Lemma 3. For odd integers v greater than two, link group w,, and .an r-fold
dihedral representation p : w1y — X, there is a map 0 :7y > 50 that n 0 = p.

Proof. Onc presentation for the dicyclic group H; is¢(A, B : AT = B? =(AB)?).
The clement A? of H; gencrates a normal cyclic subgroup of order 2 1 [1, pg.
75]. The quotient of 11} by this cyclic group is isomorphic to Z,4. Let g denote
the quotient map 1 - Z, whose kernel is gencrated by A?. Let Gy denote the
pullback of Z4 and D over Z;. We now have the following commutative

H, - 1 -D
~. T
A
#l /(" J ’
2,28 -7,

diagram. The maps & and v are projections while the maps a and g arc the coni-
cal maps. Since both i and u arc surjective and both Gy and H; have 4 r cle-
ments, the two groups are isomorphic.

Now let € : Z - Z4 and k : m; » 11} benatural maps. Let p: Hy -7 be de-
fined by sending meridian generator of Hy Lo either + 1 or - 1. As Hilden points
out |4], making a choice is equivalent to choosing an orientation for S™ and cach
component of the link.

The diagram below is commutative since p sends cach meridian generator to
the product of (r - 1/2 disjoint transpositions,

p
1- — D7
~ ~ Q /
v /HT ’
L4 o Zz
o

Since Hy is the pullback of Z4 and Dy there must exist a map 6 : m; - Hrso that
n6=p.



Embeddings and immersions of branched covering spaces 33

4. THL BASIC CONSTRUCTION.

Let R (R) be unordered (ordered) quadruples of points that lie at the ver-
tices of a regular tetrahedron in the standard 2-sphere. The space Ris homeomor-
phic to the orthogonal group O(3). Let R be the component of 0(3) which con-
tains the identity. This component is the special orthogonal group SO (3). We
will consider R to be a subspace of R. Notice that there is a natural map R>R
of ordered quadruples to unordered ones which is a 12-fold regular covering
space map.

Lemma 4. The [irst homotopy group m; (R) is isomorphic to Q. The second ho-
motopy group m, (R) is the trivial group.

Proof. Consider S* to be the topological group of all unit quaterions. There is a
two-fold covering space map $* - R = SO (3). For cach q in $° et T, denote
the rotation in SO (3) to which g is sent by the covering space map. Now let V
be the vertices of a fixed regular tetrahedron in the unit sphere, and define
f:$® - R by the formula f(q) = Tq (V). The subgroup K of $? is defined by
1 (V).

There is a natural map g : $*/K — R defined by g (x) = { (p™ (x)), where p
is the projection S — S3/K. Since f is a quotient space map, g must be a ho-
meomorphism.

Since there is a 2 : 1 homomorphism from K to the group of rotations of
the regular tetrahedron with vertices V., K must be conjugate to Q in $3. Hence
K must be isomorphic to Q. Thus $3/Q is homeomorphic to $3/K which in turn
is homeomorphic to R.

Since Q is a finite group acting without f{ixed points on $2, 7, (S3/Q) is iso-
morphic to Q. The homotopy group m, (R) is trivial as R is covered by R which
in turn is covered by S, and m, (S3)=0.

In a similar way, if S denotes the space of unordered 12-tuples of points
that lie at the vertices of a regular icosahedron in the standard 2-sphere, and T
denotes the space of unordered r-tuples of points that lie at the vertices of a
regular polygon with an odd number of sides, then we have:

Lemma 5. The group m; (S) is isomorphic to the binary icosahedral group and
w1 (T) is isomorphic to the dicyclic group of order 4 1. Both the groups m, (S)
and 7, (T) are trivial.
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With the above lemmas the main theorems can now be proved. The techni-
quc is analogous 1o the one given in [4].

Sketch of proof of Theorem 6. Let N be a tube neighborhood of the branch
set. Using Lemma 4. the first step is to construct a function f : 2-skeleton
(S"  IntN) U 3N = R so that the induced map fx equals the map

0:m (8" - Int N) > 7, (R).

The map { can then be extended Lo alt of 8™ - Int N. Using the extension of f,
amap h : M"  p™ (Int N) > $? is constructed by “lifting paths™ to the regular
covering R of R. The map h is then extended 1o p™! (Int N) by treating this set
as a lincar disc bundle and extending h each disc simultancously by coning.

Sketch of proof of Therorem 7. The proof is exactly the same as ihe one
above except that the dises in 82 which h is extended by the cone procedure
overlap. So the map (p, h) : M" - 8" X §2 is an immersion.

5. REMARKS.

José Montesinos has pointed out to me thatl the space of unordered tuples
of points on the 2-sphere which lic at the vertices of a regular polyhedron is a
Scifert fiber space with threee exceptional fibers. Each exceptional fiber corres-
ponds to an axis of rotation through the polyhedron. The space of unordered
quadruples for the positions of a regular tetrahedron in the 2-sphere is

o0 I--1,(3, D. (3. 1D, (2.1).
or the icosahedron the space of unordered 12-tuples is
(000I - l~(sa])-(2'])3(3-]))

and for the regular polyhedron with an odd number of edges the fiber space is
©o0l 1,(r, 1), (2, 1), (2, 1)), (compare [5]).

Noticeably absent from the list of rotation groups in this paper is 24, the
rotation group of an octahedron. There does not appear to be a method of
constructing a homomorphism from the link group to the binary octahedral
subgroup of continous unit quaternions which projects to a representation of the
link group which sends meridians to permutations with the same cycle structure.
This type of construction was used in lemmas one and two.
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