DLESCRIPTION OF INVARIANT SUBSPACES OF LP(u) BY
MULTIPLICATION OPERATORS
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ABSTRAC

In this paper we give a description for the closed subspaces of LP(X, .t ,u),
I'< p <ee, which are invariant under multiplication by a seliconjugate family of
essentially bounded functions. This work is a continuation of [3] and [4] and the
results obtained form part of the author’s doctoral dissertation [5]

1. Imiroduction and Notation

In what follows, (X. :C.u) will be a o-linite measure space. LP(u), 1 <p <o,
the classical Banach space associated with the pair (X,u) and Lg the conditional
expectation operator (or e averaging projection with respect Lo ¥, where Fisa
g-finite subg-algebra of 4.

S will always be a closed subspace of LP(u) and 1 a selfconjugate family of
L™(u). We say that S is [l-invariant when ¢S < S for every ¥ ¢ 1. We denole by
o(1l) the smallest subg-algebra of o making all the Tunctions in 11 measurable
and by 8¢ the polar ol S | i.c.,

= {eel™W: fy fedu=0foralifes),
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The H-invariant subspaces S of LP(u) arc essentially determined by the
v-algebra o(l). More exactly, il Hy and H, are two different families of L™(u)
such that o(H,) € u(I1y), then, the Hy-invariant subspaces ant the 11, -invariant
subspuces are the same if and only il the u-algebras o(H, ) and o(H1;) are equiva-
lent (i.e.. they have the same p-complection). This is a consequence of the follo-
wing result.

1.1 Lemma. (sce |3].[5])
If S is HH-invariant, then the closure of S in LP(u) is L™(a(ll} )-invariant.

When o(11) is o-linite, we have a description for the 1l-invariant subspaces of
LP(u) by using the conditional expectation operator, Eqy).

1.2 Theorem.

S is H-invariant if and only if there exist a family (g;)ie; Of 1P () such that
S= N Sg;where

iel

Sgr={SelPlu); Loy (fej= 0 wae}

Sec [4] for the proof. The reader can also look at Theorem 3.2 below whose
prool is quite similar.

1.3 Remarks.

a) The Tast result contains Beurling’s theorem concerning invariant subspa-
ces of LE(T) by the bilatera) shift. In fact, in this case, [ = {e“, e'“}- and o(H)
consists of all Borel subsets of T, so that Lg¢ppy is the identity operator and

§= Ir:[ Sgi= {lel2(1):(=0ac.inl:}
where I is the support of the family {gi} ic1 -

b) Theorem 1.2 is also true in L*(X, <t ), if we consider the weak-# topo-
logy in 1.*(u) and the subspace S is supposed to be weak-# closed.

¢) It is possible to extend theorem 1.2 to a more general situation. For
example, il § is a closed subspace of L5(X, +t ). (a Kothe Tunction space, see
[7]). where p is a saturated, absolutely continuous norm and B is a Banach space
such that the dual space B* verifies the Radon-Nikodym property. (Many of the
important classical Banach function spaces are contained in this class for suitable
p's).
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2. Application to shift operators,

A natural question arises from the above theorem. How many functions of
1.P'(u) are necessary 10 obtain the subspace S? Here, this question is solved in a
particular, non trivial, situation. When, X = [0,1) and o(ll) is the o-algebra of

periodic Borel subsets of [0,1), i.e. o(H) is the g-algebra
B o= {BC [0.1): Bisa Borel st and 1]1_ + B=B )

where  + stands for addition (mod. 1) in [0,1) . We shall need the following
tecnichal lemmas.

2.1 Lemmna.

Let (X, uj be a o-finite measure space let € be a family of measurable
Tunctions. Then, there exists a unique (u-a.c.j measurable subset A of X, such
that:

ijfixj=0ae x ¢ A, VSfei(

ii} there is a countable fumily of functions ( fiii © 3C with >|_ Ifi(x)1>0

ac.xeA :

(A will be the support of 3C, supp 3, and 3¢~ (0) the set X\ A)

Proof.

We consider the lamily

C= {(-'\j).ie-l: Aj et pairwise disjoint with u(Aj) > 0 and such that for cach
jed, there is £ e 5 with fj(x) # 0 a.c. x ¢ A }

(cach J must be countable because (X.) is o-finile).

¢ #F¢and € isan inductive set under the partial order:

(Aier, aByjes, il (Ajdjed, is a subfamily of (By)jey,

By Zorn’s lemma, we have a maximal clement of €, (Ajjes-Letfj,jel, be
the functions corresponding 1o Aj and A = U Aj. Then, if [ € 3€ and
jed
B — ! x:f(x)>0 1M A€, necessarily w(B) =0. =

2.2 Lemma.
Let I be a selfconjugate family of essentially bounded functions on [0,1)
such that ofll) = By, If S is an invariant subspace of LP(\0,1j,mj. {m denotes
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Lebesgue measure), 0 < p < oo, then there exists sy, Sa, . . ., Sy belonging to S
such that

n
gx) = L oflx)sifx) xel0,!)
j=1
Jor each g e S and suitable B,-measurable functions, oy, a,. . . .. ay. (The

functions &, i = 1,2,...,n depend on g , and, in general, they are not in
L7 By ) ).

Proof.

n =1 : By applying the above lemma Lo supp S . we obtain a countable
pairwisc disjoint family (Aj)jey and their corresponding functions of S, (fj)jes-
These functions can be modified so that i fj{" < 27 | j ¢ J. The lunction
s(x) = il i',-(x)x‘.\j(x)., belongs to S and verifies the result,

-

Next, we will give only the proof for n = 2. because for n 2 3 the ideas arc
the same although the notation is more complicated.

n =2 : We take the lollowing lamilies of functions on [0,1/2)

By = {a(x) . g(x+12): ¢ ¢S}

oo ey 8 BHH2) oy
Vg = ydet( h(x) I‘l(x+1,-"2)) aheSy

and we denote by N; and Ny, the sets F71(0) and F31(0). If A is a Borel subsct
of [0,1/2) we define A as the set X = A U (A ,I, ).

The result holds in (N;)™, taking 5, (x) =0 =5,{x) . AsNa \N; = U Aj,
jel
by lemma 2.1 (we suppose that the corresponding functions fj verily If; P <27y
the functions

s;(x)= ; i'jx.\.(x)
-1 ™ ac x e]0,1
52(x%) =0/ 10-1)

belong 1o S. Moreover, ifhe S,

det ( h(x) h(x+1/2)

(%) fi(x+1/2) )=0 ac. X €A
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then, there exist c¢p j(x) such that

h(x) = ch j(x) fj(x)

h(x+1/2) = cpj(x) fj(x+1/2) a.e. X €4

We can extend cpj Lo 10,1) , by defining them on ?\'j as chj(x+1/2) = cpj(x) -
Thus, cpj is % ,-measurable and calling a; (x) = P chi(%)XXj(x), we conclude

o

that i1

h(x) = 0y (%) (%) + ap(x)s(%) ae. xceN; \N,
for all oz, P 5 -mecasurable.

Likewise, [0,1) \ N, =(]0,1/2)\ N3) 7 and |0,1/2) \ N, is contained in supp
I3 , then there are two families of functions (fj)jes , (g)e) in S such that

f(x)  ij(x+1/2)

de
YCgto gxe1/2)

)#0 ac. XeN\
The functions
50 2 [EONR;(X)
jel
2(0= Z 500k
j=
belong to S and beasides, il'h € S, there exist apj , byj verifiying

h(x) = apj(x)j(x) + bpy(x)gi(x)
h(x+172) = apj(x){j(x+1/2) + bpj(x)g;(x+1/2)

a.c. X¢€ .-\j
We define dhj and bhj on .-Tj, by m‘l—!,—-pcriodic extension and denote
o ()= T anx) Xx(x)

jcl :
Q)= I bylx) Xx,(x)

j€l

which are 3 5 -measurable, Thus

I(x) = &y (x)s1(x) + oz (x)s5(x) ac. xef[0,1)\N; .
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If n =3, we should consider the families of functions on {0,1/3)

Iy = { g(x), g(x+1/3), g(x+2/3) :g ¢ S}

o 8x) g(x+1/3) Loa(x) e(x+2/3)
12_{d“(h(x) heer1/3) ) 9 G hixe2i3) )

i (T2
Ut 1/3) n(x+2/3) &
g(x)  g(x+1/3)  a(x+2/3)
Iy = l det  f(x) [(x+1/3) ((x+2/3) fghe S}
h(x) h(x+1/3) h(x+(2/3)

and we should continue in the same way as above. =
[l p = + oo the last result is true. It is necessary to take the functions [
i AP 1l v fXaw ¢S
with [l <1 .sothat ¥ fJX_,\j ¢S .

i1

2.3 Theorem.

Let pand n be fixed, with 1 K p <oound ne N, IfS is an ll-invariant subs-
pace of 1P0[0,1) j, H={ Q2eint  amint } , then, there exist
 hyg, Ly e L7 00,1) ) such that

1

s {rerrs 3 peals Ly -

;=0 ace !
j=1

Proof.

Since 1 is selfconjugate. then S and §° are L*(o(11) )-invariant by using
lemma 1.1. Now, o(ll) = Dy and l)};‘ applying lemma 2.2 to $°, we obtain
) s . 1 ., N - , N sapl .3, ._n
hy.ha, ...y ¢ S7 such that g(x) = j%l o, (x)hj(x) for cach g ¢ $* and (o) -

Syp-measurable {unctions. Llence, by thclorcm 1.1, we have:
feSiland only il Lgyy (fg) = j)_.:l o Egqrpy (Mhy) =0 forallg ¢ S° or

cquivalently. Loy (Thy) =0k =12, ....n .
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2.4 Remarks.

a) Il p = + oo the theorem holds by considering the weak-# topology in
1."(u) and a weak-#* closed subspace S.

b) Il p == 2 , we have obtained an implicit description for the invariant subs-
paces by the bilateral shift of finite multiciplicity, in the Hilbert space L2(]0,1)),
because these subspaces can be seen as the invariant subspaces by the multiplica-
tion operators associated to functions ¢t27' (n is the multiplicity of the shift).
If we identify the spaces 1.2(]0,1)) and Lz ([0,1/n) ) by the map f > F = (k|

such that fj(t) ={(t + j_-1 ), we have obtained in theorem 2.3 that
n

(*) S= {fcL3([0.1)) ; F(O).M() =0 ac. f.
=12,....n}

By denoting as M(1) the subspace of @" , which is orthogonal to the family
{ Hy(t), Ha(t), ..., Iln(l)} (with 0 < dim M(t) < n), then (*) is equivalent (o
the customary explicit deseription for these subspaces which appears for example
in{2].

2.5 Theorem.

Let 1% be the 2-dimensional torus, and let 1f = { [, .f, }owith filx,p) = 2 TX
and fofx.y) = ¢ 2T 11 S is an H-invariant subspace of LPI1%), | < p < oo,
then there exist a countable fumily (&liex Of LP'Y(T?) such that

S={LelP(T%; [ fixy)egilxydy =0 ae - x,jeN)
T ] J

Proof.
Since I is selfconjugate, theoremn 1.2 can be applied, and it suffices to ob-
serve that g(H) = { B x T ;B Borel subsct of T } , and thercfore:

'L‘:U(“) ‘(.‘(,_\/’) - fl r(’(.})d) =

If'p == 2, we have got an implicit description for the invariant subspaces by the
bilateral shift of countable multiplicity in the Hilbert space L2(1?), because the
multiplication operator by ¢*™* transforms ¢nan = Cn+lm ((CnomdnmeN™
= (2TRx*my) o is an orthonormal basis of L2(T?) ). Morcover, we can
identify L*(T?) with L2 L2(T) (1) by the map : > [ such that Ii(x) (y) = (x.y)
and then we have

S={lel2(1?); <F(x). Gj(x)>=0 ac. x,jeN}
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or cquivalently § -- { Fe 1.2(T?); [(x) € M(x) a.c. \} . where M(x) denotes the
orthogonal complement of the family { Gir(x) } keN » lor cach x ¢ T (This
characteritation can also be seen in |2]).

3. The case of non o-finite ¢

In 1his section we shall obtain two results similar to theorem 1.2, when o(11)
is not supposed o be o-finite.

let G be a o-compact locally compact abelain group, df a Haar measure on
G, m another measure on G given by dm(¥) = A(¥)d¥ , where the weight A is a
multiplicative measurable homomorfisme from G to R, and (X, 4 o.40) 2
g-{inite measure space. Let (X, + ) be the product space (X, x G, «t , &
BA(G) , o 0 m).( B (G)is the g-algebra of Borel subsets of G) , and let ¥ be.
the subg-algebra of +t |

¥= {ﬁ_l(:\()) Ay et = AgxG:iAgect o }

(7 is the canonical proyection from X to Xo). Under these hypothesis, G ¢an be
considered as a bijective transformation group on X, which carries .t -mcasura-
ble sets to -t -measurable sets and dilates the measure according to A, i.c.:

HOU(A) ) = AW )u(A) . veG.Aet

Morcover, the o-algebra f coincides with
{A e 4 ¥(A) — A forall A ¢t } and an Il-measurable function f on X is
T-meastrable if and only il f{(x.) = f(x.¢) for all ¥ € G | x € X,, (¢ is the unit
clement on G) .

‘The following lemma is an inmediate consccuence of Fubini’s theorem.

3.1. Lemma.
Let fbea function in L1 (X ). Then the function
fix; = F( H X X pdmnf ]
g
exists y, a.c. and it belong to L' X ,.u,) . Furthermore,

on [duy = [y fdu and AL gy < WAL
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~

The function [ admits a natural extension to X :

f () =AE)T1 (xe)
where we identify x with (x,¢) . In general { is not ¥-measurable
3.2 Theorem.

If'S is a closed subspuce of 1P(X, A ujand H is a selfconjugate family in
L7(u) with a(ll) — hd , then: S is H-invariant if and only if there exists u family
(gilier in 1P () such that S = N Sg;, where

iel

Sgi={felPluj; ()~ =0 p, aec)

Proof.

Assume first that S is a closed subspace of 1P(u). For cach A, ¢ .t
geLlP(wand e l.P(u)

’

fyy (07 G000 = f, ()™ (0, (X)ao(x) =

= fX() ([.‘-’X— ! (A ) (x)du(,(x) .

i

= lX “(_‘X,,I_—l (Ag) )(x’-,,:)d“(x,;)

By lemma 1.1, the subspaces S and $” arc l.*'(fl-_in\'uriunl and thus, ¢ §
implics I € Sg Tor all g ¢ $°. On the other hand, if [ e Sg for all g ¢ S® neccesarily
(f)™ = 0 o ae. for all g ¢ $° and, by lemma 3.1, fx fedu -0 forall g e 8°,
which implics ¢ S .

To prove the converse. it suffices to show that $g is a closed and 1-invariant
subspace of LP(u) for every g ¢ LP'(u). But

(W)™ (x) ~h(x.e) (fe)™ (x)

forall I ¢ LP(u) , g e LP'(u) , h el and then, STL is H-invariant. Furthermore it
fn = fin LP(u), then e -> e in L' (u) for all g ¢ LY'(u) and since the operator:
[>T is continuous from L (w) to 1" (), it follows that STL; is closed. =
A comparison between theorem 1.2 and 3.2 shows thal the operator:
f—T isa good substitute Tor the conditional expectation operator: [ > Ly (D.
which cannot be defined for the general kind of g-algebras ¥ considered here.
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When o(IT) is o-finite, the subspace Sg of theorem 3.2 are the same as those
appearing in thecorem 1.2,

~

Sg ={fetl(u); LAlg) -0 u ac.)
In fact:

i) (fg) " dyy =

Ao X fgx_—1 (Ao) du  forall Age ot .

3.3 I'xamples.

We present several examples of g-algebras ¥ and projections: f - T which
{all under the  scope of theorem 3.2. More examples are given in [5].

1°) Let ¥ be the o-algebra of all Borel subsets of R™. which are translation

invariunt with respect to a vector w and T (x)— Z f(x+nw),x ¢ R" :then | Tis
LG/

¢-measurable. Taking: Xo = {x e R"0<x.w<1} and G as the group of
transfation by kw ., k ¢ Z , with their natural. measures, theorem 3.2 can be
applied in this context.

2%) Let ¥ be the o-algebra of all Borel subsets of R™ which are radial and
fix) = I8 o f(rs")do(x), x ¢ R™ , r =i x li (do(x") denotes Lebesgue measure

on Sp.p — .’ xeR" (| x|=1 } ), Sp-1 which is F-measurable. In this case, if we
take: X = [0, + =) with the measure duo(r) = wp.; 1™ dr (wy. is the total
measure of Sp.1). and as G the quotient group 0(n)/K (0(n) is the group of all
orthogonal transformation on IR™ and K its the normal subgroup which fixes
a point x¢ of Spop) with normalized Haar measure, then theorem 3.2 can be
applied again.

3°) l c Y be the g-algebra of all dilatation-invariant Borel subsets of IR" and
T (x ) I(l\)r" ldr, x ¢ R™ r = | x || . which is not Y-measurable. Now, if
Xo Sn 1 with its measure and G is the group of h()m()l(.cws on R™ (G can be
identificd with the group (0,+ =) with measure dm( ¢ )= r" d r) again. we have
a good sitwation for the zipplicznion theorem 3.2. 5

The following situation is not included in the theoremn 3.2 and we shall now
give a theorem for it. Let X be a locally compact abelian group, G a closed sub-
group of X and X the quotient group X/G cquipped with 'rhmr respective Haar
measures m and mg. We can take a suitable Iaar measure m on X such that
Weil's formula holds: 11 f ¢ L'(X) and we define

~

F(X)= [, (%) Y (¥)

then FeL.'(i)arM % Tdm - Jy fdm.
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.\'ow,~f is the subg-algebra of Borel subsets of X, then ¥ = { 7 1(B) ;
Be B (X) } , where 7 denotes the canonical projection from X onto X. This
situation is very similar the one d’g’scrihcd above, but, in general, it is not clear
that the o-algebras B(G) & B(G) and B (X) can be identificd.

3.4 Theorem.
Let S be a closed subspace of L(X, B (X),mj and 11 a selfconjugate family

of L ¥ ) with ofll) =¥ . Then, S is H-invariant if and only if there exists a

Samily (gijie; ¢ LP'(n) such that S = ﬂl Sg;, where
1e

Sei={felP(mj: (o~ =0 m-ac) =

\

‘The proof is exactly as in Theorem 3.2, Weil’s identity being now the substi-
tute of Lemma 3.1. Finally, we observe that the remarks 1.3 b) and ¢), remains
true (with a suitable formulation) in this context.

4. An application to Operator Theory in Hilbert spaces.

Let 3C be a separable Hilbert space. We denote by L (30) the family of boun-
ded linear operators on 3(, by o(T) the spectrum of 'I' (T € £ (3€) ) and by C(T) ,
the algebra of operators commuting with T, C(T) = {Q ¢L(30):QT =TQ } .
17T is a normal operator on 3C, there exists a unique resolution of the iden-

tity E on (o(T), % (o(T) ) such that T = f(i('l') AdEXN | e

<Txy>= ALy v(N) forall x.y ¢ 3C (see [2], |6]).

a(l)

Moreover, Q ¢ C(T) il and only if (QE(w) = E(w)Q for all w ¢ 3 (o(T))
normal operator on J(, then there is a finite measure space (X, - ) and func-
tion ¥ ¢ L™(u) such that T is unitarily equivalent to the multiplication operator
Mg on L2(u). Furthermore, o(My) = essential range of g = o(T). We shall denote
by L' the resolution of the identity on (o(1), B («(T))) associated to M.
which is defined by: E'(w) = Nixg—t( . s0 that E and E" will be unitarily equi-
valent.

w)

In what follows, we shall identify the spaces 7€ and 1.2(X, 4 ), the opera-
tors T and M, and the resolutions of the identity E and E' .
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4.1 Theorem.

Let S be a closed subspace of 3C and let T be a normal operator on (. Then,
S is T-invariant and T*-invariant (TS S and T*S € Sy if and only if' S is the in-
tersection of a fumily of subspaces Sy of 3(, where, for cach vy ¢ - Sy = {x ¢ 3
Exy=0} .

Proof.
Since Ef o(w) =< E'(w)fg > - fg-1 (oo Tedu forall w e B (o(T) ). by
the theorem 1.2 and the above identification the result Tollows.

4.2 Theorem.
Let T be a normal operator on 3 . The following statements are equivalent:

(a) CIT)={F(T); Fel™alT)}}

(b} The only subspaces S of 3¢ which are T-invariant and T*-invariant are
the ranges of the spectral projections associated 1o I, ie., S —Im Efw) with
we B{of1) ]

Proof.

Obscrve that F(T) ¢ C(T) . and if a(¥) = ¥ then, Fosis F.measurable for
all F € 1."(o(T)).

We shall show that (a) and (b) are equivalent 1o (¢): a(¥) ~ <t
(i.c., they have the same uy-complection).

(a) <= (c).

if Ae.t\¥, then My, ¢ C(T). and it does not belong to {F('T) :
F e L”(o(T) )}-. On the other hand, if ¥~ «t , there exists a ciclic vector of T
in C , because the span of Mg" Me™ Xx (m.n e N)is dense in 1.2 () (sce theo-
rem 2 in | 3] or theorem 1.2 in [4]), and then, we can take, X = o(T) and ¥(7) ~z
for all 2 ¢ o(T), in the spectral representacion, (see [2] , pdg. 13). Morcover, if
QeC(l),QeCF ). ic, QM =M-.Q for all ¥ ¢ L™(o(T). Since {Ml.- :
F e L*(a(T) )} is a maximal abelian albegra (sce [2]. pdg. 21). then, Q ~ Mg
for some G € L™ (0o(T) ) or equivalently Q —((T) .

(¢) <= (b)

I S is T and 1*-invariant and ¥ ~ .t | by using theorem 1.2 of [4] it
follows that S =: L2 (¥ (we) ), where ¥ (wy) is the support of S .

Reciprocally if A e «t , L*(A. .t .u) is a subspace of 7€ which is ¥ and
¢-invariant, and then, there exists w € o(1) such that L2(A, -t u)- hn F(w) -
=L (¢! (w), 4 w)and thus A =¥ N(w)pac., ic. 4~ 7.
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