DESCRIPTION OF INVARIANT SUBSPACES OF $L^p(\mu)$ BY MULTIPLICATION OPERATORS

per

M. L. REZOLA

ABSTRACT

In this paper we give a description for the closed subspaces of $L^p(X, \mathcal{A}, \mu)$, $1 \le p < \infty$, which are invariant under multiplication by a selfconjugate family of essentially bounded functions. This work is a continuation of [3] and [4] and the results obtained form part of the author's doctoral dissertation [5].

1. Introduction and Notation

In what follows, (X, \mathcal{A}, μ) will be a σ -finite measure space, $L^p(\mu)$, $1 \le p < \infty$, the classical Banach space associated with the pair (X, μ) and I_{ξ} the *conditional expectation* operator (or the averaging projection with respect to f, where f is a σ -finite sub σ -algebra of \mathcal{A} .

S will always be a closed subspace of $L^p(\mu)$ and II a selfconjugate family of $L^\infty(\mu)$. We say that S is *II-invariant* when $\varphi S \subseteq S$ for every $\varphi \in H$. We denote by $\sigma(H)$ the smallest sub σ -algebra of $\mathcal A$ making all the functions in H measurable and by S° the *polar* of S, i.e.,

$$S^{\circ} = \left\{ g \in L^{p'}(\mu) : \int_{X} fg d\mu = 0 \text{ for all } f \in S \right\},$$

$$-\frac{1}{p} + \frac{1}{p'} = 1$$

Dedicado al Prof. L. Vigil con motivo de su 70 aniversario.

The H-invariant subspaces S of $L^p(\mu)$ are essentially determined by the σ -algebra $\sigma(H)$. More exactly, if H_1 and H_2 are two different families of $L^\infty(\mu)$ such that $\sigma(H_1) \subseteq \sigma(H_2)$, then, the H_1 -invariant subspaces and the H_2 -invariant subspaces are the same if and only if the σ -algebras $\sigma(H_1)$ and $\sigma(H_2)$ are equivalent (i.e., they have the same μ -complection). This is a consequence of the following result.

1.1 *Lemma*. (see [3], [5])

If S is II-invariant, then the closure of S in $L^p(\mu)$ is $L^{\infty}(\sigma(II))$ -invariant.

When $\sigma(H)$ is σ -finite, we have a description for the H-invariant subspaces of $L^p(\mu)$ by using the conditional expectation operator, $E_{\sigma(H)}$.

1.2 Theorem.

S is H-invariant if and only if there exist a family $(g_i)_{i \in I}$ of $L^{p'}(\mu)$ such that $S = \bigcap_{i \in I} Sg_i$ where

$$Sg_i = \{ f e L^p(\mu) ; E_{O(II)} (fg_i) = 0 \quad \mu\text{-}a.e. \}$$

See [4] for the proof. The reader can also look at Theorem 3.2 below whose proof is quite similar.

1.3 Remarks.

a) The last result contains Beurling's theorem concerning invariant subspaces of $L^2(T)$ by the bilateral shift. In fact, in this case, $H = \left\{e^{it}, e^{-it}\right\}$ and o(H) consists of all Borel subsets of T, so that $E_{\sigma(H)}$ is the identity operator and

$$S = \bigcap_{i \in I} Sg_i = \{ f \in L^2(T) : f = 0 \text{ a.e. in } E \}$$

where E is the support of the family $\{g_i\}_{i\in I}$.

- b) Theorem 1.2 is also true in $L^*(X, \mathcal{A}, \mu)$, if we consider the weak-* topology in $L^*(\mu)$ and the subspace S is supposed to be weak-* closed.
- c) It is possible to extend theorem 1.2 to a more general situation. For example, if S is a closed subspace of $L_B^{\rho}(X, \mathcal{A}, \mu)$, (a Köthe function space, see [7]), where ρ is a saturated, absolutely continuous norm and B is a Banach space such that the dual space B* verifies the Radon-Nikodym property. (Many of the important classical Banach function spaces are contained in this class for suitable ρ 's).

Description of invariant subspaces of $L^p(\mu)$ by multiplication operators 209

2. Application to shift operators,

A natural question arises from the above theorem. How many functions of $L^{P'}(\mu)$ are necessary to obtain the subspace S? Here, this question is solved in a particular, non trivial, situation. When, X = [0,1) and $\sigma(H)$ is the σ -algebra of $\frac{1}{n}$ periodic Borel subsets of [0,1), i.e. $\sigma(H)$ is the σ -algebra

$$\mathfrak{B}_{n} = \left\{ B \subset [0,1); B \text{ is a Borel set and } \frac{1}{n} \stackrel{*}{+} B = B \right\}$$

where + stands for addition (mod. 1) in [0,1). We shall need the following tecnichal lemmas.

2.1 Lemma.

Let (X, A, μ) be a σ -finite measure space let $\mathcal X$ be a family of measurable functions. Then, there exists a unique $(\mu$ -a.e.) measurable subset A of X, such that:

i)
$$f(x) = 0$$
 a.e. $x \notin A$, $Vf \in \mathcal{U}$

ii) there is a countable family of functions $(f_j)_j \subseteq \mathcal{K}$ with $\sum\limits_{j} |f_j(x)| > 0$ a.e. $x \in A$

(A will be the support of \mathcal{H} , supp \mathcal{H} , and $\mathcal{H}^{-1}(0)$ the set $X \setminus A$)

Proof.

We consider the family

 $C = \{(A_j)_{j \in J}; A_j \in \mathcal{A} \text{ pairwise disjoint with } \mu(A_j) > 0 \text{ and such that for each } j \in J, \text{ there is } f_j \in \mathcal{H} \text{ with } f_j(x) \neq 0 \text{ a.e. } x \in A_j \}$

(each J must be countable because (X,μ) is σ -finite).

 $e \neq \phi$ and $e \neq$

$$(A_j)_{j\in J_1}\;\alpha\,(B_j)_{j\in J_2}\;\text{if}\;(A_j)_{j\in J_1}\;\text{is a subfamily of}\;(B_j)_{j\in J_2}$$

By Zorn's lemma, we have a maximal element of \mathbb{C} , $(\Lambda_j)_{j\in J}$. Let f_j , $j\in J$, be the functions corresponding to Λ_j and $\Lambda = \bigcup_{\substack{j\in J\\ j\in J}} \Lambda_j$. Then, if $f\in \mathcal{H}$ and $B = \{x, f(x) > 0\} \cap \Lambda^c$, necessarily $\mu(B) = 0$.

2.2 Lemma.

Let II be a selfconjugate family of essentially bounded functions on [0,1) such that $\sigma(II) = \mathfrak{B}_n$. If S is an invariant subspace of $L^p(\{0,1\},m)$, (m denotes

Lebesgue measure), $0 , then there exists <math>s_1, s_2, \ldots, s_n$ belonging to S such that

$$g(x) = \sum_{j=1}^{n} \alpha_{j}(x)s_{j}(x) \qquad x \in [0,1)$$

for each g e S and suitable \mathcal{B}_n -measurable functions, $\alpha_1, \alpha_2, \ldots, \alpha_n$. (The functions α_j , $j = 1, 2, \ldots, n$ depend on g, and, in general, they are not in $L^{\infty}(\mathcal{B}_n)$).

Proof.

n=1: By applying the above lemma to supp S, we obtain a countable pairwise disjoint family $(A_j)_{j\in J}$ and their corresponding functions of S, $(f_j)_{j\in J}.$ These functions can be modified so that $\|f_j\|^p<2^{-j}$, $j\in J.$ The function $s(x)=\sum\limits_{j=1}^{\infty}f_j(x)\chi_{A_j}(x),$ belongs to S and verifies the result.

Next, we will give only the proof for n = 2, because for $n \ge 3$ the ideas are the same although the notation is more complicated.

n=2: We take the following families of functions on [0,1/2)

$$F_1 = \left\{ g(x), g(x+1/2) : g \in S \right\}$$

$$F_2 = \left\{ \det \left(\begin{array}{cc} g(x) & g(x+1/2) \\ h(x) & h(x+1/2) \end{array} \right) : g, h \in S \right\}$$

and we denote by N_1 and N_2 , the sets $F_1^{-1}(0)$ and $F_2^{-1}(0)$. If Λ is a Borel subset of [0,1/2) we define $\widetilde{\Lambda}$ as the set $\widetilde{\Lambda}=\Lambda\cup(\Lambda+\frac{1}{2})$.

The result holds in $(N_1)^{\sim}$, taking $s_1(x)=0=s_2(x)$. As $N_2\setminus N_1=\bigcup_{j\in J}A_j$, by lemma 2.1 (we suppose that the corresponding functions f_j verify $|f_j|^p<2^{-j}$) the functions

$$s_1(x) = \sum_{j=1}^{\infty} f_j X_{Aj}(x)$$

$$s_2(x) = 0$$
a.e. $x \in [0,1)$

belong to S. Moreover, if h ϵ S,

$$\det \left(\begin{array}{cc} h(x) & h(x+1/2) \\ f_i(x) & f_i(x+1/2) \end{array} \right) = 0 \qquad \text{a.e.} \quad x \in A_j$$

Description of invariant subspaces of $L^p(\mu)$ by multiplication operators 211 then, there exist $c_{h,j}(x)$ such that

$$\begin{aligned} h(x) &= c_{h,j}(x) \ f_j(x) \\ h(x+1/2) &= c_{h,j}(x) \ f_j(x+1/2) \end{aligned} \quad \text{a.e.} \quad x \in \Lambda_j$$

We can extend c_{hj} to [0,1), by defining them on $\widetilde{\Lambda}_j$ as $c_{hj}(x+1/2)=c_{hj}(x)$. Thus, c_{hj} is \mathfrak{B}_2 -measurable and calling $\alpha_1(x)=\sum\limits_{j=1}^\infty c_{hj}(x)\chi_{\widetilde{\Lambda}_j}(x)$, we conclude that

$$\begin{split} h(x) &= \alpha_1(x) s_1(x) + \alpha_2(x) s_2(x) \qquad \text{ a.e. } \quad x \in \widetilde{N}_2 \setminus \widetilde{N}_1 \\ \text{for all } \alpha_2, \ \mathcal{B}_2\text{-ineasurable}. \end{split}$$

Likewise, $[0,1) \setminus \widetilde{N}_2 = ([0,1/2) \setminus N_2)^{\sim}$ and $[0,1/2) \setminus N_2$ is contained in supp F_2 , then there are two families of functions $(f_j)_{j \in J}$, $(g_j)_{j \in J}$ in S such that

$$\det \left(\begin{array}{cc} f_j(x) & f_j(x+1/2) \\ g_i(x) & g_i(x+1/2) \end{array} \right) \neq 0 \qquad \text{a.e.} \quad x \in A_j$$

The functions

$$s_1(x) = \sum_{j \in J}^{\infty} f_j(x) \chi_{\widetilde{A}_j}(x)$$

$$s_2(x) = \sum_{j=1}^{\infty} s_j(x) \chi_{\widetilde{A}_j}(x)$$

belong to S and beasides, if h ϵ S, there exist a_{hj} , b_{hj} verifiying

$$\begin{array}{l} h(x) = a_{hj}(x)f_{j}(x) + b_{hj}(x)g_{j}(x) \\ h(x+1/2) = a_{hj}(x)f_{j}(x+1/2) + b_{hj}(x)g_{j}(x+1/2) \end{array} \quad \text{a.e.} \quad x \in A_{j} \end{array}$$

We define a_{hj} and b_{hj} on \widetilde{A}_j , by an $\frac{1}{2}$ -periodic extension and denote

$$\alpha_1(\mathbf{x}) = \sum_{\mathbf{j} \in J} -a_{h\mathbf{j}}(\mathbf{x}) \; X_{\Lambda\mathbf{j}}(\mathbf{x})$$

$$\alpha_2(x) = \sum_{i \in J} b_{hj}(x) \chi_{\widetilde{A}_j}(x)$$

which are B2-measurable. Thus

$$h(x) = \alpha_1(x)s_1(x) + \alpha_2(x)s_2(x) \qquad \text{a.e.} \quad x \in [0,1) \setminus \widetilde{N}_2.$$

If n = 3, we should consider the families of functions on [0,1/3)

$$\begin{split} F_1 &= \left\{ \, g(x) \;,\; g(x+1/3) \;,\; g(x+2/3) \;;\; g \in S \, \right\} \\ F_2 &= \left\{ \, \det \, \left(\, \frac{g(x)}{h(x)} \; \frac{g(x+1/3)}{h(x+1/3)} \right) \;,\; \det \, \left(\, \frac{g(x)}{h(x)} \; \frac{g(x+2/3)}{h(x+2/3)} \right) \;,\; \det \, \left(\, \frac{g(x+1/3)}{h(x+1/3)} \; \frac{g(x+2/3)}{h(x+2/3)} \right) \;,\; g,h \in S \, \right\} \\ F_3 &= \left\{ \, \det \, \begin{array}{c} g(x) & g(x+1/3) & g(x+2/3) \\ h(x) & h(x+1/3) & h(x+2/3) \end{array} \right. ;\;\; f,g,h \in S \, \right\} \end{split}$$

and we should continue in the same way as above.

If $p=+\infty$ the last result is true. It is necessary to take the functions $f_{\bf i}$ with $|f_j| \le 1$, so that $\sum_{j=1}^{\infty} |f_j \chi_{\widehat{X}_j}| \in S$.

2.3 Theorem.

Let p and n be fixed, with $1 \le p < \infty$ and n e N. If S is an II-invariant subspace of $L^p([0, l])$, $H = \{e^{2\pi int}, e^{-2\pi int}\}$, then, there exist $h_1,h_2,\ldots,h_n\in L^{p^*}([0,1))$ such that

$$S = \left\{ f e L^p; \sum_{j=1}^n f(t + \frac{j}{n} - j) h_k(t + \frac{j-1}{n} - j) = 0 \text{ a.e. } t \right.$$

$$k = 1, 2, \dots, n \right\}.$$

Proof.

Since H is selfconjugate, then S and S° are $L^{\infty}(\sigma(H))$ -invariant by using lemma 1.1. Now, $\sigma(H) = \mathcal{B}_n$ and by applying lemma 2.2 to S° , we obtain $h_1, h_2, \ldots, h_n \in S^\circ$ such that $g(x) = \sum_{j=1}^n \alpha_j(x)h_j(x)$ for each $g \in S^\circ$ and $(\alpha_j)_{j=1}^n$

 \mathfrak{S}_n -measurable functions. Hence, by theorem 1.1, we have: $f \in S \text{ if and only if } E_{\sigma(H)} \text{ (fg)} = \sum_{j=1}^n -\alpha_j \ E_{\sigma(H)} \text{ (fh}_j) = 0 \text{ for all g } \varepsilon S^\circ \text{ or }$ equivalently, $E_{O(H)}(fh_k) = 0 k = 1,2,...n$.

Description of invariant subspaces of $L^p(\mu)$ by multiplication operators 213

2.4 Remarks.

- a) If $p = +\infty$, the theorem holds by considering the weak-* topology in $L^{\infty}(\mu)$ and a weak-* closed subspace S.
- b) If p=2, we have obtained an implicit description for the invariant subspaces by the bilateral shift of finite multiciplicity, in the Hilbert space $L^2([0,1))$, because these subspaces can be seen as the invariant subspaces by the multiplication operators associated to functions $e^{+2\pi int}$ (n is the multiplicity of the shift). If we identify the spaces $L^2([0,1))$ and $L^2_{\mathbf{C}^n}([0,1/n))$ by the map $f\to F=(f_j)_{j=1}^n$ such that $f_j(t)=f(t+\underline{j+1})$, we have obtained in theorem 2.3 that

(*)
$$S = \begin{cases} f \in L^2([0,1)) ; F(t) . \Pi_k(t) = 0 \text{ a.e. } f. \\ k = 1,2, \ldots, n \end{cases}$$

By denoting as M(t) the subspace of ${\bf C}^n$, which is orthogonal to the family $\left\{H_1(t), H_2(t), \ldots, H_n(t)\right\}$ (with $0 \le \dim M(t) \le n$), then (*) is equivalent to the customary explicit description for these subspaces which appears for example in [2].

2.5 Theorem.

Let T^2 be the 2-dimensional torus, and let $H = \{f_1, f_2\}$ with $f_1(x,y) = e^{2\pi ix}$ and $f_2(x,y) = e^{-2\pi ix}$. If S is an H-invariant subspace of $L^p(T^2)$, $1 \le p < \infty$, then there exist a countable family $(g_i)_{i \in N}$ of $L^p(T^2)$ such that

$$S = \left\{ f e L^p(T^2) : \int_T f(x,y) g_j(x,y) dy = 0 \qquad a.e. \quad x, j \in \mathcal{N} \right\}$$

Proof.

Since II is selfconjugate, theorem 1.2 can be applied, and it suffices to observe that $\sigma(H) = \{ B \times T : B \text{ Borel subset of } T \}$, and therefore:

$$E_{\sigma(H)} f(x,y) = \int_{T} f(x,y)dy$$

If p=2, we have got an implicit description for the invariant subspaces by the bilateral shift of countable multiplicity in the Hilbert space $L^2(T^2)$, because the multiplication operator by $e^{2\pi ix}$ transforms $e_{n,m} \to e_{n+1,m}$ ($(e_{n,m})_{n,m} \in \mathbb{N} = (e^{2\pi (nx+my)})_{n\in\mathbb{Z}}$ is an orthonormal basis of $L^2(T^2)$). Moreover, we can identify $L^2(T^2)$ with $L^2_{L^2(T)}(T)$ by the map: $f \mapsto F$ such that F(x)(y) = f(x,y) and then we have

$$S = \left\{ \, f \, \varepsilon \, L^2 \left(T^2 \right) \, ; < F(x) \, . \, G_j(x) > \, = 0 \qquad \quad \text{a.e.} \quad x \, , j \, \varepsilon \, N \, \, \right\}$$

or equivalently $S = \{ f \in L^2(T^2) ; F(x) \in M(x) \text{ a.e. } x \}$, where M(x) denotes the orthogonal complement of the family $\{ G_k(x) \}_{k \in \mathbb{N}}$, for each $x \in T$ (This characteritation can also be seen in [2]).

3. The case of non o-finite φ

In this section we shall obtain two results similar to theorem 1.2, when $\sigma(H)$ is not supposed to be σ -finite.

Let G be a o-compact locally compact abelain group, $d\mathcal{F}$ a Haar measure on G, m another measure on G given by $dm(\mathcal{F}) = \Delta(\mathcal{F})d\mathcal{F}$, where the weight Δ is a multiplicative measurable homomorfisme from G to R^4 , and $(X_0, \mathcal{A}_0, \mu_0)$ a o-finite measure space. Let (X, \mathcal{A}, μ) be the product space $(X_0 \times G, \mathcal{A}_0 \times \mathcal{B})$ (G), $\mu_0 \times m$, (B) (G) is the o-algebra of Borel subsets of G), and let \mathcal{F} be, the subo-algebra of \mathcal{A} ,

$$\xi = \left\{ \pi^{-1}(\Lambda_0) : \Lambda_0 \in \mathcal{A} \quad - \quad \Lambda_0 \times G : \Lambda_0 \in \mathcal{A}_0 \right\}$$

(π is the canonical proyection from X to X_0). Under these hypothesis, G can be considered as a bijective transformation group on X, which carries \mathcal{A} -measurable sets to \mathcal{A} -measurable sets and dilates the measure according to Δ , i.e.:

$$\mu(\psi(\Lambda)) = \Delta(\psi)\mu(\Lambda)$$
 , $\psi \in G \cdot \Lambda \in A$.

Moreover, the o-algebra $\mathcal L$ coincides with $\{A \in \mathcal A : \mathcal L(A) = A \text{ for all } A \in \mathcal A \}$ and an H-measurable function f on X is $\mathcal L$ -measurable if and only if $f(x,\mathcal L) = f(x,e)$ for all $\mathcal L \in G$, $x \in X_0$ (e is the unit element on G).

The following lemma is an inmediate consequence of Fubini's theorem.

3.1. *Lemma*.

Let f be a function in $L^1(X)$. Then the function

$$\widetilde{f}(x) = \int_G f(x, \varphi) dm(\varphi)$$

exists μ_0 a.e. and it belong to $L^1(X_0,\mu_0)$. Furthermore,

$$\int_{X_O} \widetilde{f} d\mu_O = \int_X f d\mu \quad and \quad \|\widetilde{f}\|_{L^1(\mu_O)} \le \|f\|_{L^1(\mu)}$$

Description of invariant subspaces of L^p(μ) by multiplication operators 215

The function \widetilde{f} admits a natural extension to X:

$$\widetilde{f}(x,\psi) = \Delta(\psi^{-1})\widetilde{f}(x,e)$$

where we identify x with (x,e). In general \widetilde{f} is not 4-measurable

3.2 Theorem.

If S is a closed subspace of $I^p(X, A, \mu)$ and H is a selfconjugate family in $L^\infty(\mu)$ with $\sigma(H) = \mathcal{L}$, then: S is H-invariant if and only if there exists a family $(g_i)_{i \in I}$ in $L^{p'}(\mu)$ such that $S = \bigcap_{i \in I} \widetilde{Sg_i}$, where

$$\widetilde{Sg}_i = \{ f e L^p(\mu) ; (fg)^{\sim} = 0 \quad \mu_o \quad a.e. \}$$

Proof.

Assume first that S is a closed subspace of $L^p(\mu).$ For each $\Lambda_0\in\mathcal{A}$, g $\in L^{p'}(\mu)$ and f $\in L^p(\mu)$

$$\begin{split} & \int_{A_0} (fg)^{\sim}(x) d\mu_0(x) + \int_{X_0} (fg)^{\sim}(x) \chi_{A_0}(x) d\mu_0(x) &= \\ & - \int_{X_0} (fg\chi_{\pi^{-1}(A_0)})^{\sim}(x) d\mu_0(x) &: \\ &= \int_{X} (fg\chi_{\pi^{-1}(A_0)})(x,\varphi) d\mu(x,\varphi) \end{split}$$

By lemma 1.1, the subspaces S and S° are L*($\frac{c}{x}$)-invariant and thus, f c S implies f ϵ Sg for all g c S°. On the other hand, if f ϵ Sg for all g ϵ S° neccessarily (fg)~ = 0 μ_0 a.e. for all g ϵ S° and, by lemma 3.1, $\int_X -fg d\mu \approx 0$ for all g ϵ S°, which implies f ϵ S.

To prove the converse, it suffices to show that \widetilde{Sg} is a closed and H-invariant subspace of $L^p(\mu)$ for every $g \in L^{p'}(\mu)$. But

$$(hfg)^{\sim}(x) = h(x,e) (fg)^{\sim}(x)$$

for all $f \in L^p(\mu)$, $g \in L^{p'}(\mu)$, $h \in H$, and then, \widetilde{Sg} is H-invariant. Furthermore if $f_n \to f$ in $L^p(\mu)$, then $f_n g \to f g$ in $L^1(\mu)$ for all $g \in L^{p'}(\mu)$ and since the operator: $f \to \widetilde{f}$ is continuous from $L^1(\mu)$ to $L^1(\mu_0)$, it follows that \widetilde{Sg} is closed.

A comparison between theorem 1.2 and 3.2 shows that the operator: $f \to \widetilde{f}$ is a good substitute for the conditional expectation operator: $f \to E\varphi$ (f), which cannot be defined for the general kind of σ -algebras $\widetilde{\varphi}$ considered here.

When $\sigma(H)$ is σ -finite, the subspace \widetilde{Sg} of theorem 3.2 are the same as those appearing in theorem 1.2, i.e.:

$$\widetilde{Sg} = \{ f \in L^p(\mu) ; L_{\underline{\Upsilon}}(fg) = 0 \mid \mu \text{ a.e.} \}$$
.

In fact:

$$\int_{\Lambda_0} (fg)^{\sim} d\mu_0 = \int_{X^{-}} fg X_{\pi^{-1}(\Lambda_0)} d\mu \quad \text{for all } \Lambda_0 \in \mathcal{A}_0.$$

3.3 Examples.

We present several examples of σ -algebras \mathcal{L} and projections: $f \to \widetilde{f}$ which fall under the scope of theorem 3.2. More examples are given in [5].

1°) Let \mathcal{L} be the o-algebra of all Borel subsets of \mathbb{R}^n , which are translation invariant with respect to a vector w and $\widetilde{f}(x) = \sum_{n \in \mathbb{Z}} f(x+nw)$, $x \in \mathbb{R}^n$; then \widetilde{f} is \mathcal{L} -measurable. Taking: $X_0 = \{x \in \mathbb{R}^n \colon 0 \le x : w < 1\}$ and G as the group of translation by $kw : k \in \mathbb{Z}$, with their natural measures, theorem 3.2 can be applied in this context.

2°) Let $\widehat{+}$ be the σ -algebra of all Borel subsets of \mathbb{R}^n which are radial and $\widehat{f}(x) = \int_{S_{n-1}} f(rx')d\sigma(x'), x \in \mathbb{R}^n$, $r = \|x\| (d\sigma(x'))$ denotes Lebesgue measure on $S_{n-1} = \{x \in \mathbb{R}^n : \|x\| = 1\}$), S_{n-1} which is $\widehat{+}$ -measurable. In this case, if we take: $X_0 = [0, +\infty)$ with the measure $d\mu_0(r) = \omega_{n-1} r^{n-1} dr(\omega_{n-1})$ is the total measure of S_{n-1}), and as G the quotient group O(n)/K (O(n) is the group of all orthogonal transformation on \mathbb{R}^n and K its the normal subgroup which fixes a point x'_0 of S_{n-1}) with normalized Haar measure, then theorem 3.2 can be applied again

3°) Let f be the σ -algebra of all dilatation-invariant Borel subsets of \mathbb{R}^n and $\widetilde{f}(x) = \int_0^{+\infty} f(rx) r^{n-1} dr$, $x \in \mathbb{R}^n$ r = ||x||, which is not f-measurable. Now, if f is the group of homotecies on f is the group of homotecies on f is the group of homotecies on f is the group f in f again, we have a good situation for the application theorem 3.2.

The following situation is not included in the theorem 3.2 and we shall now give a theorem for it. Let X be a locally compact abelian group, G a closed subgroup of X and \widetilde{X} the quotient group X/G equipped with their respective Haar measures m and m_G. We can take a suitable Haar measure \widetilde{m} on \widetilde{X} such that Weil's formula holds: If $f \in L^1(X)$ and we define

$$\widetilde{f}(\widetilde{x}) = \int_{G} f(\varphi(x)) dm_{G}(\varphi)$$

then $\widetilde{f} \in L^1(\widetilde{X})$ and $\int_{\widetilde{X}} \widetilde{f} d\widetilde{m} = \int_{X} f dm$.

Description of invariant subspaces of $L^p(\mu)$ by multiplication operators 217

Now, Υ is the sub σ -algebra of Borel subsets of X, then $\Upsilon = \{\pi^{-1}(B) ; B \in \mathcal{B}(\widetilde{X})\}$, where π denotes the canonical projection from X onto \widetilde{X} . This situation is very similar the one described above, but, in general, it is not clear that the σ -algebras $\mathcal{B}(G)$ so $\mathcal{B}(\widetilde{G})$ and $\mathcal{B}(X)$ can be identified.

3.4 Theorem.

Let S be a closed subspace of $L^{\mathfrak{p}}(X, \mathcal{B}/X),m)$ and II a selfconjugate family of $L^{\mathfrak{p}}(\mathfrak{f})$ with $\sigma(H)=\mathfrak{f}$. Then, S is H-invariant if and only if there exists a family $(g_i)_{i\in I} \overset{C}{\longrightarrow} L^{\mathfrak{p}'}(m)$ such that $S=\bigcap_{i\in I} \widetilde{Sg_i}$, where

$$\widetilde{Sg}_i = \left\{ f e L^p(m) : (fg)^{\sim} = 0 \quad \widetilde{m} \cdot a.e. \right\}$$

The proof is exactly as in Theorem 3.2, Weil's identity being now the substitute of Lemma 3.1. Finally, we observe that the remarks 1.3 b) and c), remains true (with a suitable formulation) in this context.

4. An application to Operator Theory in Hilbert spaces.

Let $\mathcal H$ be a separable Hilbert space. We denote by $\mathcal L(\mathcal H)$ the family of bounded linear operators on $\mathcal H$, by o(T) the spectrum of T ($T \in \mathcal L(\mathcal H)$) and by C(T), the algebra of operators commuting with T, $C(T) = \{Q \in \mathcal L(\mathcal H) : QT = TQ\}$.

If T is a normal operator on $\mathcal H$, there exists a unique resolution of the identity E on $(\sigma(T), \mathcal B(\sigma(T)))$ such that $T = \int_{\sigma(T)} \lambda dE\lambda$, i.e.

$$<$$
Tx,y $>$ = $\int_{\sigma(T)} \lambda E_{x,y}(\lambda)$ for all x.y $\epsilon \mathcal{H}$ (see [2], [6]).

Moreover, Q ϵ C(T) if and only if (QE(ω) = E(ω)Q for all ω ϵ 3 (σ (T)) (see [6], pag. 308). Another version of the spectral theorem says that, if T is a normal operator on \mathcal{H} , then there is a finite measure space (X, \mathcal{H} , μ) and function φ ϵ L*(μ) such that T is unitarily equivalent to the multiplication operator M φ on L²(μ). Furthermore, σ (M φ) = essential range of φ = σ (T). We shall denote by E' the resolution of the identity on (σ (T), 3 (σ (T))) associated to M φ , which is defined by: E'(ω) = M $\chi_{\varphi^{-1}}$ (ω), so that E and E' will be unitarily equivalent.

In what follows, we shall identify the spaces $\mathcal H$ and $L^2(X, \mathcal A, \mu)$, the operators T and $M_{\mathcal G}$ and the resolutions of the identity E and E'.

4.1 Theorem.

Let S be a closed subspace of 3C and let T be a normal operator on 3C. Then, S is T-invariant and T*-invariant (TS \subseteq S and T*S \subseteq S) if and only if S is the intersection of a family of subspaces S_y of 3C, where, for each $y \in 3C$: $S_y = \{x \in 3C; E_{xy} = 0\}$.

Proof.

Since $E'_{f,g}(\omega) = \langle E'(\omega)f,g \rangle - \int_{\varphi^{-1}(\omega)} fg d\mu$ for all $\omega \in \mathcal{B}$ (o(T)), by the theorem 1.2 and the above identification the result follows.

4.2 Theorem.

Let T be a normal operator on K. The following statements are equivalent:

(a)
$$C(T) = \{F(T) : F \in L^*(\sigma(T))\}$$

(b) The only subspaces S of 3C which are T-invariant and T^* -invariant are the ranges of the spectral projections associated to E, i.e., $S = Im E(\omega)$ with $\omega \in \Re (o(T))$.

Proof.

Observe that $F(T) \in C(T)$, and if $\sigma(\varphi) = -\frac{\varphi}{T}$ then, Fox is Υ -measurable for all $F \in L^{\infty}(\sigma(T))$.

We shall show that (a) and (b) are equivalent to (c): $\sigma(\varphi) \sim \mathcal{A}$ (i.e., they have the same μ -complection).

If $A \in \mathcal{A} \setminus \mathcal{F}$, then $M_{X_A} \in C(T)$, and it does not belong to $\{F(T): F \in L^\infty(\sigma(T))\}$. On the other hand, if $\mathcal{F} \sim \mathcal{A}$, there exists a ciclic vector of T in \mathcal{H} , because the span of $M_{\mathcal{F}}^m M_{\mathcal{F}}^m X_X$ (m,n $\in N$) is dense in $L^2(\mu)$ (see theorem 2 in [3] or theorem 1.2 in [4]), and then, we can take, $X = \sigma(T)$ and $\mathcal{F}(z) = z$ for all $z \in \sigma(T)$, in the spectral representation, (see [2], pág. 13). Moreover, if $Q \in C(T)$, $Q \in C(F(T))$, i.e., $Q_i M_{F_i} = M_{F_i} Q$ for all $F \in L^\infty(\sigma(T))$. Since $\{M_{F_i}: F \in L^\infty(\sigma(T))\}$ is a maximal abelian albegra (see [2], pág. 21), then, $Q = M_G$ for some $G \in L^\infty(\sigma(T))$ or equivalently Q = G(T).

If S is T and T*-invariant and $\mathcal{Y} \sim \mathcal{A}$, by using theorem 1.2 of [4] it follows that $S = L^2(\varphi^{-1}(\omega_0))$, where $\varphi^{-1}(\omega_0)$ is the support of S.

Reciprocally if $A \in \mathcal{A}$, $L^2(A, \mathcal{A}, \mu)$ is a subspace of \mathcal{H} which is φ and φ -invariant, and then, there exists $\omega \in \sigma(\Gamma)$ such that $L^2(A, \mathcal{A}, \mu) - \lim_{\epsilon \to 0} E(\omega) = L^2(\varphi^{-1}(\omega), \mathcal{A}, \mu)$ and thus $A = \varphi^{-1}(\omega) \mu$ -a.e., i.e., $\mathcal{A} \simeq \mathcal{L}$.

REFERENCES

- [1] NACHBIN, L.: "The flaar Integral", Van Nostrand (1965).
- [2] RADJAVI, H.; ROSHENTHAL, P.: "Invariant Subspaces", Springer (1973).
- [3] RLZOLA, M.L.: "Un teorema de aproximación en espacios L^{p.,} Rev. Mat. IIis. Amer. XL (5-6) (1980), 206-215.
- [4] REZOLA, M.L.: "Subespacios Invariantes en L^P(μ)". Actualites mathematiques, Actes 6e Congr. Group. Math. Expr. Latine, Luxembourg 1981, 437-440 (1982).
- [5] RI.ZOI.A. M.I..: "Subespacios Invariantes y Aproximación en Lspacios de Funciones Medibles", Disertation (1982). Univ. Zaragoza. Fac. Ciencias, Dpto. Teoría de Funciones.
- [6] RUDIN, W.: "I unctional Analysis", Mac Graw Hill (1973).
- [7] ZAANEN, A.C.: "Integration", North Holland Pu. Co. (1967).

M. L. Rezola Departamento de Teoría de Funciones. Facultad de Ciencias. Universidad de Zaragoza (SPAIN)