ON THE GRADUATED DERIVATIVES
By

JAVILR PERALTA

0. INTRODLCTION

In the present paper we start out from the concepts of linear connection,
conneclion of second order  developed in | 2] by means of a pair of operators
(C.D)  and connection of order n 22 .- see |3] - all of them intrinsically
defined on a differentiable manifold,

Some differences between the second order connections and those of the
order n, when n — 2, have led us to the problem of characterizing algebraically
these concepts which are defined in the module of vectors on a ring, and of
extending them Lo the case ol derivations, although they are not covariant,
according Lo all that is made in {4]. The instrument we construct to unily theser
ideas is the graduated extension of an additive map, inspired by | 5], and the con-
sequent notion of derivative of degree n. Our sludy is made following two equi-
valent ways, the one by derivations and the other by differentiations.

In the paragraphs 1. 2 and 3 we translate ¢lassical definitions of connections
and derivatives on a manilold to the A-module M of vectors of a ring A and we
deduct their main properties. Primary derivatives are the algebraic translation of
the derivatives with respect o a linear connection which, in the case of being
with respect 1o the vector zero, we call banal derivatives. Bompiani derivatives
and connections belong to the transfer to the A-module M of connections of the
second order defined by a pair of operators (C.4)) introduced locally in [1] and
developed in [2] afterwards. I'he differentiations and conneclions of order
2 2 thal we define on M are the same which are treated in | 3] on manifolds,
from which we have cxcluded the axiom (1)3) inherent (o~the differentiable
structure. as we are only interested in their algebraic behaviour,

r
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In the paragraphs 4 and 5 the conceptl of graduated extension of an addi-
tive map and one of additive map of degree n arc introduced. These are going to
make up essential algebraic instruments for the definition in the paragraph 6 of
derivative of degree n.

In the paragraph 7 we compare the derivative definition of degree n with all
that we said in the above mentioned paragraphs 1, 2 and 3, and we (ind its defi-
nition io be equivalent Lo the banal derivative if n == 0, equivalent to the non-ba-
nal primary derivative il n = 1, a gencralization of the Bompiani derivative il
X1 # 0 £ X, and cquivalent to the definition of derivative of order n > 2 if
X; 40,1 <01 < n. Invirtue of which, of course, we deduced that the derivatives
of degree n form the underlying algebraic structure of the different derivatives
on a manifold from which we have started out  except in the case of the Bom-
piani derivatives | and that the degree is the algebraic transtation of the order.

[. PRIMARY DERIVATIONS

et A be a commulative integral domain of characteristic zero.
A vector of Aisa map X : A —= A verifying:

X(at b) =~ X(a) + X(b) ; X(ab) =aX(b) + bX(a) ; foralla,beA.

For the usual definitions of addition. multiplication by elements of A and
bracket, the vectors of A form an A-module and a Lic algebra, which we shall
denote by U(A). Hencelorth, let M be the A-moduldU(A).

Il P and Q are two A-modules, we shall denote the A-modules of maps,
additive homomorphisms and Adincar maps of P into Q by#£ (P, Q), 3¢(P, Q) and
L(P, Q), respectively,

Definition 1.1

I X e M, it is said that Dy is a primary derivative with respect to X, when
Dy is a map M — M, verilying the conditions:

() Dx (Y LZ)—=DxY tDxZ ; (d) Dx(aY) —aDxY 4 X(a)Y ; Y, ZeM,aeA.

LetD(M) be the set of primary derivatives on M. An casy verification shows
that D(M) forms an A-module and a Lie algebra for the usual operations, and
that Dy -+ Dy, aDy and |Dx, Dy | are, respectively, primary derivatives with
respect Lo X + Y, aX und [ X, Y].

In particular, the difference of two derivatives with respect Lo a same vector
X,Dx DY isa derivative D) with respect to vector zero.
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Definition 1.2

A primary derivative is called banal when it is a derivative with respect to
veetor zero.

It is casy 1o verifly that every banal derivative is an A-lincar map and thal the
set Do (M) of banal derivatives is a submodule and a Lic subalgebra of T(M).

I)t{ﬁnili(m 1.3

The map D : M —=D(M), with D : X — Dy, is culled primary derivation.
If Dyx+y — Dyt Dy, the primary derivation is said additive. I D is A-lincar,
that is, additive and Dyx = aDy, the primary derivation is said covariant. A co-
variant primary derivation is also called a primary connection.

Therefore, a primary conneclion is defined by the following axioms:
() Dyiy Z=DXZ + Dy 7 5 (b) DyxY=aDxY:(c) Dx(Y +7) = DxY +DyZ;
() Dx(aY) = aDg¥ + X(a)Y ;forall X, Y,Z e M,ac¢ A.
Definition 1.4

If X ¢ M, the map DX : M —= M is called primary differential of X when, if
Y € M. then (DX)Y = Dy X is a primary derivative of X with respect to Y. The
map D : M —> (M. M), such that X — DX, is called primary differentiation,
Definition 1.5

We shalt call exterior differentiation on M the map d, thal augments
the degree ol each exterior form by one unit, and which is defined - since
5o~ LMUG) - by:

(1) da(X) — X(a),ae A, X e M.

(2) r!dwl'(.x()? Xl LIECEEY Xl’) = l%) ( I)lxl(wl(x()‘ s Xl- vy XT)) +
+ 2 D™ wr(1Xi, Xl Xo, s Xio oor X wees Xp), 0060, (X, oony Xp)eM™

Proposition 1.1
If D is a primary derivation on M, ils primary differentiation satisfies:
C)DX+Y)=DXEDY (D) DaX)—aDX 1 X®da: X, YeM,acA.
11D is additive, the differentiation verifics:
(A DX) (Y +7) —(DX) Y -+ (DX)Z. Then we shall say 13 is additive.
If D is covariant, the differentiation verifics also:
(B) (DX) (aY) — a(DX)Y. Then we shall say D is covariant.

Proof
(D) is a consequence from (d): (aDX + X®da)Y = aDyX - da(Y)X =

= aDyX + Y(2)X = Dy(aX) — I(aX)Y. Analogously, (A). (B) and (C) are con-
sequences, respectively, from (a), (b) and (¢). i1
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Proposition 1.2

If D is a map M~ sE(M M) satisfying (C) and (D), and we define the
following map for all X ¢ M:

Dx:M—M
Y — (FY)X,

then one deduces (¢) and (d).
If D verifies (A), (respectively (B)), Dy verifies (a), (respectively (b)).

Proof
Trivial. -.

Therefore, it is indifferent 1o define, in the first place, the primary deriva-
tive and to deduce the primary differential from it, or to define first the primary
differential and to deduce the primary derivative from it.

‘The next proposition can be casily verificd.

Proposition 1.3

We can define a primary connection, indistinctly, by means of a covariant
detivation D : M —=0)(M), which verifies (a), (b), (¢) and (d), or by means of a
covariant differentiation D: M — G} =~ £ (M, M), which satisfies (\\), (B), {C)

and (D). Both are related by: Dy X = (DX)Y.

2. BOMPLIANL DERIVATIONS

Bompiani defined the notion of connection of second order in a differen-
tiable manifold V by its components in cach local chart (U,x! ... x"). Such com-
ponents consist of two system of functions C:‘i([',, D}(jp such that, for cach global
veclor field X. the expression

kq

. k . K i
X" +Cpd  XP + Dy XP

1Jp

defines a global tensor field of type (1,2).

Di Comite defined the notion of connection of order n in an analogous way.
The conditions which must fulfill the components C,1) in the intersection of two
local charts are, of course, complicated. We are going Lo give an algebraic intrin-
sic version of these concepts.
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Definition 2.1
Let Cbe a map between the A-module MxM and the A-module of additive
homomorphisms J((MG?)
C: MxM — 3(MTG?)
X1 X2)— Cx, x2)
which verifies the axiom:
(C3) G(Xl,xz) (aY) = u(‘:;xl,xz)Y + X (@)X ®8Y + X(a)X,®Y
X;.X2, YeM, aeA,
Let Dbe a map between the A-module MxM and the A-module of additive
homomorphisms J((M ,M):
D: MxM — F((M M)
(thz)*ﬂ)(xl‘xz)
satisfying the axiom:

N | AV = of + ol daC n aNY -
(Ca) D(x,,xz) (aY) = d,D(thz)Y F cl(dd®c,(xhxz)Y) F X (X (@)Y ;
acA, Xy, X3, YeM ; where ¢} is the contraction of the first contravariant index
and the first covarianl. index.

Then, the map D = D is called Bompiani derivation defined by the pair of

operators (C.D), and I)(Xl X,) is said Bompiani derivative with respect to
(Xl =X2 )

Definition 2.2
A Bompiani derivation 1) defined by the pair (G, D) is called biadditive ifC
and Dare biadditive homomorphisms. The Bompiani derivation is said covariant
or Bompiani connection if it is biadditive, D is A-bilincar and C verifies the
axioms:
b} — . C ‘. Y g .
(("')('mxl. x,)Y .dC(xh xp)Y XX ®Y jueA, X1, X,, YeM.

. B
(("2)("(X1,:IX2)Y-—-zl(‘zle_ Y sacd, X, X, YeM.

X2)

Definition 2.3.

I YeM, we shull call Bompiani differential of Y the following map:

DY : MxM — M

(le XZ) _>‘1)(Xl- xz)Y »
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and Bompiani differentiation the next map:

D M—AM2 M)
Y — DY.

I the derivation D is biadditive or covariant, the differentiation is said
biadditive or covariant, respeclively.

Proposition 2.1

Let V be a primary derivation on the A-module M, and we defline for all

Xi. X3, YeM: G X, x2)Y = X1®VX2Y + X2®VX1Y (Vx2X1)®Y,
Iy R T ha i (2 DY indicae a 1 N
.f.)(xl’ Xz)Y = VXZVle VV ‘(1Y' I'hen, the pair (C,)) induces a Bom

Xy
piani derivation on M.

Morcover, i V is additive, the Bompiani derivation is biadditive, and if V
is covariant, also the Bompiani derivatjon is covariant.

Proof
U > e s
If Visa primary derivation, lhcn(,(xb X, €M B3 and .D(xl‘xz)cd((.\i M),

as consequence of Definition 1.1., axiom (¢). The axioms (¢) and (d) imply:
q )

((:3)60(1 x)(@Y) 7 Xa®Vy (aY) X, ®Vy (aY)  (Vy X)B(aY)=
= X,@(HVXZY + X,(a)Y) + X2®(:|VX1Y + X, (a)Y) zl(VX2X1)®Y —=

=4 ’(X1~X2)Y + X (a)X,®Y + X, (a)X QY. and

SRy | . . aVy" o - . . ',
((,.,)J_)(xl'xz)(dv) 'szvxl("Y)" vile(_dv) ~Vy, (aVy Y X ()Y

-aVszle (vxzx,)(u)vwvxzvhv -Xz(u)Vle {-Xl(u)VXZY+

+ X,5(X,(a))Y - aVv Xl..Y' (szxl)(:l)y_-llj) Y H-

VXZ (XI,XZ)

+ ci(da@q Y) b Xp(X (2))Y.

X1,X9)
If V is additive, it may be casily proved that G and 9) are biadditive maps
because of (a) and (¢).
If V is covariant, Dis A-bilinear and (C,), (C5) are verified because:
¢ ) -
"D(uxl -Xz)Y v
v

szu.Xl Y 'V‘7x7(ﬂx1)Y =VX2(HVX1Y) '

avy X+ Xp(mx, ¥ =4V, Vg ¥+ Xa(@)Vy Y -
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“Vavy x5 Y~ Vgmx, Y =20, Ty Y 4 Xa@Vy Y -

X2
o . . = K1 .
dvvxle Y - Xo@Vy Y=aD)y ooy
¢ —_ PA—
J)-(x.,axz)Y_vaxzvx, Y v";.xle V=aVy Uy, Y
— of
- vu\'lxle Y= “’D(x,,xz)Y'

(COCqx, x,)Y = @X)BYy Y+ X8V, ¥ (V) (aX))OY =
-—-aX,Q'észY +uX2®VX' Y (uVXZXI + X3 (@)X, )®Y =
=u(‘3(xhx2)Y Xz ()X, ®Y.

CC, axg) Y =Xi®Y, 0 ¥ F@X)®Yy Y (T, X, )RV =
—aC

b4 . ]
Xy, Xa) ¥

3. DERIVATIONS O ORDLR n

Definition 3.1
Let { /\'""} o<m<n - N & 2, where cach A™™ is a multiadditive wap

AT x M— (M", M), verifying the conditions:

(Do) AM™ay, Ay, X) — X B WL; (day(1)® ... ®da,(n)). where Sy is the
id ()
symmelric group of order n.

(A1) A (1 ye o g (mys X) = A" May 8, X) ;0 < m < n L 0€Sy,.

(L) A"y, e ay, BX) = b A™ g ag, X) A DGy a, by X

osmsn |

We shall say that the (n + D-tuple { AM "} o<m<n delines a differentia-

tion of order n A™ .= A°™ on M, and that A"X is the differential of order n of
XeM.

Definition 3.2

IF3(M", M) is the A-module of multiadditive maps and .LM™, M) the A-mo-
dule of A-multilincar maps of M" into M, we shall say that a differentiation of
order n defined by the (n + 1)-tuple { 7("'"} 0y 1 multiadditive if A"
map AMx M —=5((M", M), 0 < m < n, and it is covariant or a connection of

order 1 if ™" is a map A™x M — L(M", M), 0 <m <n.

is 4
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Definition 3.3

I A" = A°™ is a differentiation of order n defined by the (n | 1)-tuple
{ A'""} we shall call derivative of order n with respect to (Xy, ...,

X,)eM™ the Tollowing map:

osm<n’

An(xl e X11) M — M
Y — (A"Y)(X;, oo Xp)s

and the next map, derivation of order n:

n. n
AV Ry Xn) == A (o

Il the differentiation is multiadditive or covariant, we shall say that the de-
rivation is multiadditive or covariant . respectively.

4, GRATUATED EXTENSIONS OF AN ADDITIV] MAP

Definition 4.1

Let A be a unitary commutative ring such that it has no zero divisors and its
characteristic is zero. I 1’ and Q are two A-modules and I' : P — Q is an addi-
tive map, we shall call graduated extensions of I the maps IF (M. A"y p— Q,
neN. which are defined iteratively by: FO) = andiftn=>1: K, .., an. p) =
=D Gy an,ap) aFD (ag, L ag, p).

It is casy to verily that (") is a multiadditive map, for all neN.

Proposition 4.1

. n i (_l)l‘l-k ‘
l'("-'(ﬂ] s e i, P) = k>;0 lr%ﬁn m‘u(,(kﬂ) v des(n) l'(a,,(l) g (%)P) (4.1).
Proof

It can be scen in {OF -

Corollary 4.1

(" verifies the following propertics:

D ™ Gy, ag.p) = (@7 (1)s oor 7 (n)» P) - TESY.
(i)
1M @y 1 ag.p) =0, 1 <i<n.
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Proof

1) is a consequence of Proposition 4.1.
Let us prove 2). It follows from 1) that we can suppose that 1 is on the [irst
place and it is casy to prove that () (1, .id5, 02y, p) = 0.0

Proposition 4.2
If IF and G are two additive maps of P into Q, then:
1) FD =W s i G is A-lincar.

2) (T + (;)(ﬂ) =M 4 g
3) (ab)M) = up (-

Proof

1) i ) = (";(1), as I and G arc additive maps, I G is additive. Because
of F(ap)  al(p) = G(ap) - aG(p), I G is A-incar.

Conversely. il I* G is A-linear, then F(ap) - G(ap) = al‘(p) - aG(p), there-
fore F( =G,

If we develop (I + (_'i)(") (ay, ...,ap. p)and (al*‘)(") (a5, ..., 4y, p) according
to (4.1). 2) and 3) are casily proved. 11

5. ADDITIVE MAPS OF DEGRLE n

Definition 5.1

An additive map ¥ 0 P —= Q is said to be of degree n when M 40 and
l:(l'l-l-l) — 0

Proposition 5.1

I[ 1 is an additive map of degree n. then 1™ 0 for any r<n and FG) -0
for any s >n.

Proof

FOUD 0 aner, ) = FO (ay, et 1 p) - 4y FO (g ey . p) =
= 0, and analogously F® =0ifs>n.
FG) £ 0 for any r < n, since if (7 = 0 with r < n, then 1" = 0.+

As an application of Proposition 4.2, we obtain:
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Proposition 3.2

1) Fvery additive map ol degrec zero is a non-zero A-lincar map, and con-
versely.

2) If IF and G are two additive maps of degree n, then ' + G is an additive
map of degree < n,

3) If I isan additive map of degree n and aeA- { 0} | then al’ js an additive
map ol degrec n.

Proof

1) I is of degree zero, then r( (a.p) — F(ap) ali(p) =0, thercfore I¥
is N-lincar, and as (0 = I, I is non-zero. Conversely, if T is A-linear and V +# 0,
then FO £ 0 and F(ap) = al‘(p), therelore 1 (a, p) = O that is. IV is of de-
gree 7¢ro.

2) I T and G are two additive maps of degree n, I' + G is additive and
1 4 G = ) L) g A (1 + G)M == ) 4 O E) =
= GM then IF + G is of a less degree than n, and if FM s GO hen it is of
degree n.

3) The proofl is trivial because (ul-')(") =al(™ 4nd A has not zero divisors. 0

6. DIRIVATIVES OF DEGRLL n
Again let M be the A-module of the vectors o' A and (X, ..., Xn)eM".

Definition 6.1
Ifn 21, any additive map of degree n D(x,, ..., x;): M — M, such that:
D(Xl, s .\L")(n)(ill seesdn, Y) T ocz; Xilag(1)) - Xn(“o—(n))Y (6.1),
- n

is called a derivative of degree n with respect 1o (X, ..., Xp).

Remarks

1) 1uis equivalent to define a derivative of degree n as an additive map
DX, . Xyt M= M verifying Dx |, .., Xn)(") # G and the relation (6.1).

In fact, then D(x | ..., X,) {n+l Nag,ay. it Y) =

= l)(xl' s x")(")(:)] 5 wees - Zl()Y) tg |.)()(l y e Xn)(n)('ﬁll y erey dyye Y) =

= Z:. Xl("o‘(l)) Xn(au(l‘l))aOY dp UG\"!’;n Xl(“a(l)) xn(an(n))Y'__-():

veSy

that is, D¢x,, ..., xp) i of degree n.
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2) If Dxr ..., Xpp) I @ derivative of degree n, then X; #0 foralli=1, ..., n;
since if Xj = O existed, then Dix,, ..., Xn)(") = 0 because of (6.1), in contra-
diction to D(x, | ... x,,) being a map of degree n.

3) By (6.1) wc have that D(x,, ..., X, is also a derivative with respect to

(X7(1ys s X7 (n)), for all 7€Sn.

Definition 6.2

We shall call every additive map of degree zcro derivative of degree zero. We
shall denote by DP (M) the set of derivatives of degree zero.

Definition 6.3

LetD"(M) be the set of derivatives of degree n > 1. The map
D : M" —DYM), with DD : Xi5 0 Xp) — D(xy, ..., xq) if Xi # 0, is called
derivation of degree n. If Dix,, ..., Xj + Xiy o Xp)= DX, .. X, e Xp) +
+ Dx,, ..., Xi, ..., Xp), 1 <1< n, the derivation of degree n is said multiaddi-
tive. If D is A-multilincar, that is, multiadditive and D(x,y, ..., aXj ooy Xp) =

=abx,, ..., Xi, ..., Xp), | <1< n,the derivation of degree n is said covariant.

A covariant derivation of degree n is also called a connection of degree n.

Proposition 6.1

The derivatives and derivations of degree n = 1 verify the following pro-
pertics:

D) Dexy, oy Xiy e X F'(X 4, oo, X1 oy Xy 18 @ derivative with respect
10 (X1, s Xi + Xy ons Xp).
2) If b is multiadditive, then D(x,, ..., X; + X1, ..., X" =
= DXy, s Xis oo X F DX X X)), 0 <1<,

3) If Dis covariant, then DXy, aXi, o, X,,)(r) =abx,, .., X, ..., Xn)(r)

O<r<n.

Proof

rom (Dexy, ..., Xi, o Xn) T DKy s Xy o X)) =

= Dxy, .. X, o X,,)(") +D'tx,, ..., Xi, oo xn)(") 1) is deduced. To prove
2) and 3) it is sufficient Lo cxpress D(xy, ., X; + Xy e xn)(r) and
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DXy, oy 0 Xy oons xn)“), respectively, in function of D¢x,, .., X+ X!y Xp)

amd D, ., aXi, o, Xp) according o (4.1). 1

Definition 6.4
1603 ) and XeM, the map DX : M" —= M is called differential of degree n,
when if (Y, ... Yo)eM". Y; 7 0, then (DX)(Yy. . Yn) =Dy, ., Yy X isa

derivative of degree n of X with respect to (Y, ..., Yg)- The map D:M—
— A (M™, M) such that X —= DX, is called differentiation of degree n.

Since every derivative ot degree n Dy | .. vy 8 an additive map, then:
D’(x_ + Y)YV e Ya) = Doy, o, y(XF Y) = (DX)(Yy, -, Yn) +
F(DYXY,, ... Yp)ithatis, (X +Y) = DX + DY therefore the differentiation
of degree n is an additive map. The {ollowing result relales the graduated exten-
sion of the differentiation and one of the derivative.

Proposition 6.2
Dag. e, XNy s Yo) =Dy, o Y ")(r)(al s s 8p, XD

Proof
Apply Proposition 4.1

Proposition 6.3

Lvery differentiation of degree n is an additive imap of degree n D : M—>
b (Mn, M) verifying:

DMy g, X)X ®( z‘s dag(1)® .. ®dagmy)  (6.3).
gEdn

Proof
(X®(_ % dag(1) ® ... ®dag(n)))Yy: oo, Yn) = Y (ag(1))- Yalagm)X =
e Sp uedp
=Dy, ., \-n)(“)(ul oty X) = (DU (g, oy a0, X)NY s Yi)s this proves
the validily of (6.3).
DO (ag . g o, an, X) = D™(ay, i an, 20X) - agDM(ay, ..., an, X) =0

because of (6.3), therefore D) = 0.

Finally D™ + 0, since Dey,, ..., Yn)(") + 0 for all (Yy, ..., Yn), and so
there will exist (ay, .... 4y, X) such that D¢y | yn)(")(ul, wry g, X) 7 0; that
is. (D™ (). ooy ans X)HY 1, vy Ya) £ 0.2

The following results are casily proved:
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Proposition 6.4

If the derivation is multiadditive, the differentiation verilics:
OX)NY1, v Y5 + Yio o, Yo) = DOXAYys o Yi e Yy) +
+(DXXYy, s Vi o Y) (6.4)

Then we shall say that D is multiadditive.
I the derivation is covariant, the differentiation verifies also:

DXV s aYis o, Yo) = a(DXXY 1, oes Yo oo Yy) (6.4

Then we shall say that D is coveriant.

Proposition 6.5

D - M— &(M", M) is an additive map of degree n verifying (6.3) and
we define., lor all (Y, ..., Yy), a map Dy,, .. v, : M — Msuch thar

Dey o, Y )X = (DX)(Y ooy Yy, for all XeM: then Dy,, ... Y, isamapof

degree n. Morcover, il 1) satisfies (6.4), then D is multiadditive, and if D verifics
(6.4"), then D is covariant.

Therefore it is indilferent to define in the first place the derivative and to
deduce from it the differential or to deline first the differential and to deduce
the derivative from il.

Proposition 6.6

We can define a connection of degree n 2 1, indistinetly, by means of a co-
variant derivation of degrec n D @ M™ —= D"(M) or by means of a covariant
differentiation of degree n D : M—= "B}, ~ £LM", M). Both arc related by:
Dxy, oy xgpY = (DY)(X 4o e, Xp).

7. COMPARISON BLTWILLN THE DERIVATIVES OFF DLGREE n AND OTHER
DERLIVATIVLS

Proposition 7.1

The definitions of derivative of degree zero and of non-zero banal derivative
are equivalent.

Proof

1" Dy is a non-zero banal derivative, it is an additive map of M into M, and
Do = Dy(®) # 0. As Dy is Adincar, D) (2, X) = Do(aX)  aldgX = 0 for all
(1, X)eAxM. llence Dy is a derivative of degree zero. Analogously, the converse
can be proved casily.
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Consequently, we have the following relation between the set DO (M) of
derivatives of degree zero and the set Dy(M) of banal derivatives: D°(M) =

=Dy(M) - {0} .

Proposition 7.2

The delinition of derivative of degree one and of non-banal primary deri-
vative are equivalent.

Proof

If Dy is a derivative of degree one, it is an additive map, therefore it verifics
the axiom (¢) of the primary derivatives. According to (6.1), l)x“)(a, Y) =
= X(a)Y; consequently Dx(aY) - aDgY == X(2)Y, and therefore (d) is proved.
According to the remark 2) of Definition 6. 1, X # 0, therefore the primary de-
rivative is not banal.

Conversely, if Dy is a non-banal primary derivative, it is additive because of
(c), and as I)x(‘ )(21, Y)=Dx@Y) aDyxY = X(a)Y, (6.1)is satisficd. As X #0,
it exists aeA such that X(a) # 0, and if Y # 0, then DxV(a, Y) = X(a)Y #0,
since it exists beA such that Y(b) # 0, and X(a)Y(b) # 0, because A has no zero
divisors: therefore Dy 1) # 0. Finally, Dx ?)(ay, a3, Y) = Dx" Na,, a; Y)

. all')x“ )(uz, Y) = X(az)a, Y - a;X(ap)Y = 0, for all (a5, a5, Y)eAZxM, and
consequently I.)x(z) =0..:

Evidently, we have the next relation:D' (M) =D(M)  Dy(M).

Corollary 7.1

If X # 0, the definitions of additive and covariant primary derivations and
additive and covariant derivations of degree one are equivalent.
Corollary 7.2

If X £ 0, the definitions of differential, additive differentiation and cova-
riant differentiation, all threc being primary and of degree one, are equivalent.

Proposition 7.3

If X; # 0 X,, every Bompiani derivative is a derivative of degree two.

Proof

Let 1) be a Bompiani derivation defined by the pair (C,D). The Bompiani
derivative D(x,, x,): M~ Mverifies: D(x, x,» Y =fD(x1, X,)YEI((M, M),
for all YeM, therefore it is additive.
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From (C4) we have: Dix, | Xz)(l Ya, Y) = Dex,, x,)(@Y) aDx, x,)Y =
=Dix,, x)@Y)  aDx, x,)Y =cl(@a®Cix, | x,)¥) + Xa(X, (2))Y, and
hecause of (Cy): Dx,, xz)(z )(al, a5, Y) = ci(dazQOC.(xl, xz)(al?,)) -
— 01¢{(d2,®Cx, | x,)Y) = cl(da ®(X;(a)X,®Y + X3(2;)X;,®Y)) =
= oe?é_z X1(ag(1))X2(20(2))Y.

Moreover D¢y, | 'xz)(z) #0. In fact:

Let us suppose that ﬂzlef\/xl(u) #£ 0, Xa(a) # 0. Then, as X, #0, it exists
a1€A such that X, (a;) # 0, thercfore X,(ay) = 0. As X5 # 0, there is a5 €A such
that X, (a3 ) # 0; consequently X;(a,) = 0. 1f Y # 0, we have:

Dexy, %) 2@y 82, Y) = Xq(a;)X, ()Y #0.

If, on the contrary,aae.-‘\/xl(:i) # 0, Xz(a) £ 0, let us take a; = a, = a,
Y + 0. We obtain: Dx,, xz)(z)(ul, az, Y) = 2X;(4)X2(a)Y # 0. According to
the remark 1) of Deflinition 6.1, we have that D(x,, ‘xz)(3) = 0, therefore
D(x,, X,) is a map of degree two. =

Corollary 7.3

If X; # 0 # X,, every Bompiani biadditive derivation (respectively, Bom-
piani covariant derivation) is a biadditive derivation (respectively, a covariant
derivation) of degree two.

Corollary 7.4

If X; # 0 # X,, every differential, biadditive differentiation and covariant
differentiation of Bompiani is, respectively, a differential, a biadditive differen-
Liation and a covariant differentiation of degree two.

Proposition 7.4

Ifn=22and X{# 0, 1 <i<n, the definitions of differentiation of order n
and differentiation of degree n are equivalent.

Proof

Let A" = A°" be a differentiation of order n defined by the multjadditive
maps { Z"”‘} o<m<u- Let us sce that A" is a differentiation of degree n.

The map A™: M —= A(M", M) is additive, and from (A;), we have:
ARy, s A, by X) = APR(ay, o ap, bX) b AMP(a,, ... am, X).
Because of (4,), we obtain: A™ (b, a;, ..., apm, X) =A™ (ay, ..., a, bX)

- b A™(ay, ..., am, X); therefore A™H 0 AT*LyM —» M, o <m<n .- 1,is
the (m + I)-th graduated cxtension of the additive man A", and by (Ap), (6.3)
is proved.
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Also A™ # 0. In fact, if X # 0,2 ¢ A cxists such that X(a) # 0,
and consequently A™(a, ..., a, X) # 0, since (A" (a, ...a, X)) (X, .... X) =

(X, «.; X) = n!X(a)"X +£ 0, because it exists a € A, such that (n!X(a)" X)(a)
= n!X(a)"* L 0.

Finally, A™1>" = 0, since we have A™!'™a,, a;, .., a5, X) =
=A"a,, ..., 45, 4oX)aoA" 4y, ..., 4. X) = 0.

Conversely, let D) be a diferentiation of degree n. AsD: M — £ (M™, M)
is additive, its graduated cxtensions are multiadditive. Let us prove that D = Dt
is a dilerentiation of order n defined by its graduated extensions
{ DM AM x M — AM M)} o<m <

By 1) of Corollary 4. 1, (A;) is satisfied, and consequently, from it and
from the definition of graduated extension, we obtain: P! )(a Lseerdm, b, X) =
= DDG a1, X) = D™y, oy, bX) bD™ay, ... 2y, X),
therefore (A, ) is proved.

Iinally, (Ag) is verified because of (6.3). .

Proposition 7.5

If n22and Xy # 0, 1 <i<n, the definjtions of multiadditive and
covariant dilTerentiation of order n and of degree n, are equivalent.

Proof

If A" = A" is multiadditive, A™ ™" is a map of A™x M into J((M™, M), there-
fore A"XeT((M™, M) for all XeM, and consequently (6.4) is satistied. Conversely,
if D verifies (6.4), DXeI((M™, M) for all XeM, and because of Proposition 4.1
which allows 1o express every exlension DY) in terms of D, it is deduced that
also DI™(a, . .., am, X)e J(M™, M), for all (a1, ..., a5, X)eA™ x M.

Analogously the proposition is proved il the differentiation is covariant. 11

If we repeat the same reasoning with derivatives, we obtain the following
result:

Corollury 7.5

Ifn22auand X; £ 0, | i< n, the definitions of derivative, multiadditive
derivation and covariant derivation of order n and of degree n, are equivalent.
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