ORTHOGONAL BASES IN 1°(X)

por

JAVIER MARTINEZ MAURICA and CRISTINA PLREZ GARCIA

ABSTRACT

We compute the dimension of $1^{\infty}(X,K)$ for any complete field K endowed with a discrete valuation. As an application we characterize all Banach spaces over K which have a predual.

As a corollary of a result of VAN DER PUT [4], it is easy to verify (see our proposition 1) that the Banach space $I^{\infty}(X,K)$ of bounded functions of an infinite set X into a complete non archimedean field K endowed with the supremum norm has an orthogonal basis whose cardinality is $2^{\pi X}$ if K is local (locally compact). On the other hand, it is well-known that, for any infinite set X, $I^{\infty}(X,K)$ does not have a basis if the valuation of K is dense. In this note we are going to compute the dimension (cardinality of a basis) of $I^{\infty}(X,K)$ for every complete field K endowed with a discrete (and non-trivial) valuation. As an aplication we characterize all Banach spaces over the latter kind of fields which have a predual.

Throughout this note X will be an infinite set, and K denotes a complete discretely valuated field with a non-trivial valuation. For a Banach space E over K the symbol $\dim(E,K)$ or dim E indicates the cardinality of a basis of E ([5] p. 53). Let $\overline{\pi}$ be the clousure in K of this prime field. The symbol $\dim(E,\pi)$ refers to the cardinality of an orthogonal basis of E regarded as a Banach space over π if one such basis exists. Notice that $d = \dim(K,\pi)$ is always defined (see theorem 1 of [1]).

If E,F are Banach spaces by $E \simeq F$ we mean that there exists a linear isometry of E onto F. For other notations we refer to [5].

PROPOSITION 1.— Let K be either trivially valued and countable or local. For every infinite set X, dim $1^{\infty}(X.K) = 2^{\#X}$.

Proof: For K trivially valued, $1^{\infty}(X,K) = K^{X}$ and every orthogonal basis in $1^{\infty}(X,K)$ is an algebraic basis. So, we have dim $1^{\infty}(X,K) = 2^{\pm X}$ for every infinite set X.

For K local and X endowed with the discrete topology, we have $PC(X,K) = 1^{\infty}(X,K)$. Now apply corollary 5.23 and theorem 5.6 of [5] to deduce dim $1^{\infty}(X,K) = 2^{\pm X}$.

Let $\{E_i\}_{i \in I}$ be a family of Banach spaces over K. By X_i E_i we denote the set of all elements a of Π_i E_i for which, the set $\{\pm |a_i|\} \pm i \in I\}$ is bounded. The space X_i E_i can be normed by $\|a_i\| = \sup\{ \|a_i\| \| \pm i \in I\}$. The elements a of Π_i E_i for which, for every $\epsilon > 0$, the set $\{\pm \epsilon : \|a_i\| \| \ge \epsilon\}$ is finite form a closed linear subspace of X_i E_i denoted by \mathbb{P}_i E_i .

I.E.M.M.4 2.- Let E be a Banach space over π and let $(e^i)_{i \in I}$ be an orthogonal basis of E. If J is an index set and, for every $j \in J$, we put $E_j = E$ and $F = c_j E_j$, then $(e^{ik})_{(i,k) \in I \times J}$ is an orthogonal basis of F, where e^{ik} is defined by

$$(e^{ik})_i = e^i$$
 if $k = j$ and $(e^{ik})_i = 0$ if if $k \neq j$.

Proof: It is straightforward to verify that $(e^{ik})_{(i,k) \in I \times J}$ is an orthogonal subset of F.

Now, take $x - (x_j) \in F$ and put $x_j = \sum < x_j$, $e^i > e^i$. To finish the proof it is enough to verify that $x = \sum_{i,j} < x_j$, $e^i > e^{ij}$.

Choose $\epsilon>0$ and consider the finite set $J_o=\{|j|\epsilon|J:||x_j||\geqslant\epsilon\}$. Moreover, there exists a finite subset I_o of I such that for every $|j|\epsilon J_o$, $|j|x_j=\sum\limits_{i\in I_f}< x_j$,

 $e^{i} > e^{i} \mid i < \epsilon$ for all finite subset I_f of I which contains I_o .

Let H be a finite subset of IxJ which contains I_0xJ_0 . For a fixed element $j \in J$, put $H_i = \{ i \in I : (i,j) \in H \}$. Then,

$$\label{eq:continuity} \left\{ \|x - \sum_{(i,j) \in \Pi} < x_j \right\}, e^i > e^i i_1 \, \} = \sup_j \| \|x_j - \sum_{i \in \Pi_j} < x_j \right\}, e^i > e^j \| \|.$$

For $j \in J_o$, we have $H_j \supset I_o$ and so $||x_j|| \sum\limits_{i \in H_j} < x_j$, $e^i > e^i|| < \varepsilon$.

Now consider $j\notin J_o$. Since $||x_j||_1^2=\sup_{i\in I}||< x_j|,e^i>e^i||$ and $||x_j||<\varepsilon$,

we also have $_{i}$ $|x_{j}| = \sum\limits_{i \in H_{j}} < x_{j}$, $e^{i} > e^{i} \mid i < \varepsilon$.

We conclude that $||x-\sum\limits_{(i,j)\in H}< x_j|, |e^i>e^{ij}||<\varepsilon$ and consequently $x=\sum\limits_{(i,j)}< x_j|, e^i>e^{ij}|.$

THEOREM 3. – For every infinite set X, dim $1^{\infty}(X.K) = 2^{(\#X).d}$

Proof: As usual, we denote by $C_0(X,K)$ the closed linear subspace of $1^\infty(X,K)$ of all functions $y: X \to K$ such that |y(x)| converges to zero in the Fréchet filter of X. Notice that, with the above notations, $C_0(X,K) = \bigcirc_X K_X$ where $K_X = K$ for every $x \in X$. Now consider a set I such that $K \sim C_0(1,s,\pi)$ (as Banach spaces over $\overline{\pi}$) where $s: I \to (0,+\infty)$, =I = d and $C_0(1,s,\pi)$ indicates the Banach space of all functions $y: I \to \pi$ such that |y(i)|s(i) converges to zero in the Fréchet filter of I, endowed with the norm $|y| = \max |y(i)|s(i)$. Moreover, if the valuation of $\overline{\pi}$ is discrete we can choose s such that s(i) = 1 for every $i \in I$, and if the valuation of π is trivial we choose s such that $s(i) = \{\lambda_i : \lambda \in K = \{0\}$.

From lemma 2 we deduce that, if H = XxI, then for an adequate function $t: I \to (0, H\infty)$ verifying the same properties as s, we have $C_0(X,K) \to C_0(H,t,\pi)$ as Banach spaces over π . Consequently, we have $I^\infty(X,K) \to I^\infty(H,t^{-1},\pi)$ over π (even for π trivially valued). Now we take a set $A \subset H$ such that #A = #H and $t^{-1}(A)$ is reduced to be a point. It follows from proposition 1 that dim $I^\infty(A,\pi) = 2^{\#H}$. Thus,

$$\dim(1^{\infty}(X,K),\pi) \ge 2^{\#11} - 2^{(\#X)\cdot d}$$
.

But, on the other hand,

$$=1^{\infty}(X.K) = =1^{\infty}(H.t^{-1},\pi) \leq (-\pi)^{-H} = 2^{(-\pi)}$$
.

and we have $\dim(1^{\infty}(X,K),\pi) = 2^{(\pm X),d}$.

Now, if we consider a set J such that $1^{\infty}(X.K) \sim C_0(J.K)$ (i.e. dim $1^{\infty}(X.K) = -1$), lemma 2 allows us to conclude that

$$\dim(\mathbb{T}^*(X,K).\pi) = (\#J).d.$$

From the formula $2^{(\#X),d} = \dim 1^{\infty}(X,K),d$, we finally deduce that

$$\dim 1^{-}(X,K) = 2^{(=X).d}$$
.

COROLLARY 4.-

- (a) K is local if and only if d is finite.
- (b) K is separable if and only if $d \le X_0$.

Proof: (a) If d = n, then K is a finite product of π n times. Therefore, π cannot have the trivial valuation and K is local.

Conversely, since K is a Banach space over π , it cannot be locally compact unless d is finite (this argument also works for trivially valueds fields [3]).

(b) Assume K to be separable. Since $\#K \le c$ (in fact they are qual), then $\#I^*(X,K) \le (\#K)^{\#X} = 2^{\#X}$. We deduce from theorem 3 that dim $I^*(X,K) = -2^{(\#X)\cdot d} = 2^{\#X}$ for every infinite set X, and consequently, $d \le X_0$.

Conversely, assume $d \le X_0$. Thern, K is a Banach space of countable type over π . Since π is always separable, we deduce the same property for K.

In the latter proof we have extended proposition 1 to the case of separable fields. In fact, we have:

COROLLARY 5.— If K is separable, then dim $1^{\infty}(X.K) = 2^{\pm X}$.

For non-separable fields, we are going to compute dim $1^{\infty}(X,K)$ in a different way. For this, we need the concept of cofinal (notation cf) of a cardinal number (see [2] p. 26). It is relevant to notice that for cardinal numbers x with predecessor, we have cf x = x.

COROLLARY 6.— If K is not separable and cf $d > X_0$, then dim $I^{\infty}(X,K) = 2^{(\pm X) \cdot (\pm K)}$.

Proof: Let $(y_i)_{i \in I}$, with #I = d, be an orthogonal basis of K as a Banach space over π . By $P_c(Ix\pi)$ we denote the set of countable subsets of $Ix\pi$. If $x - \sum\limits_i < x$, $y_i > y_i$ for every $x \in K$, the function $T: K \to P_c(Ix\pi)$ defined by $T(x) = \{(i, < x, y_i >) : < x, y_i > \neq 0\}$ is injective. Thus, we have $\#K \le \#P_c(Ix\pi) = \#(Ix\pi)^N = \#I^N$ (because $\#I \ge c$). Since cf $d > X_0$, we have $\#I^N = \#I$ and finally we conclude that #K - #I = d. The rest follows from theorem 3.

A Banach space E over K is said to have a predual if there exists a Banach space E over K such that E and E are linearly homeomorphic.

THEOREM 7.— Let E be an infinite dimensional Banach space over K. (a) If dim $E \le d$, then E has no predual.

- (b) If dim E > d, then E has a predual if and only if dim E has a cardinal predecessor. Moreover, if the latter property holds, all preduals of E are linearly homeomorphic.
- **Proof:** (a) Let F be a Banach space over K. From theorem 3 we have dim $F' = 2^{(\dim F),d} > \dim E$. So, F' and E cannot be linearly homeomorphic.
- (b) If F is a predual of E, then $2^{(\dim \Gamma).d} = \dim E$, and dim E has a predecessor.

Conversely, if X is a set such that $2^{\#X} = \dim E$, it is obvious that $C_0(X,K)$ is a predual of E.

COROLLARY 7. - The following conditions for K are equivalent:

- (a) K is separable.
- (b) There exists a predual for every Banach space E over K such that dim E has a predecessor.

REFERENCES

- JOSE M. BAYOD and J. MARTINEZ MAURICA: A characterization of the spherically complete normed spaces with a distinguished basis. Compositio Mathematica, 49 (1983) 143-145.
- [2] JECH, T: Set Theory, Academic Press, New York, 1978.
- [3] ROBERT. P: On some non-archimedean normed linear spaces, I. II. . . . , VI. Compositio Mathematica. 19 (1968) 1-77.
- [4] VAN DER PUT. M: Algèbres de fonctions continues p-adiques I-II. Indag. Math. 30 (1968) 401-411; 412, 420.
- [5] VAN ROOIJ.A.C.M: Non-archimedean functional analysis. Marcel Decker, Inc. New York, 1978.

Javier Martínez Maurica and Cristina Pérez García Facultad de Ciencias Av. de los Castros Santander, Spain