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ABSTRACT.

It is proved that every measure with values in a topological semigroup,
whose topology is defined by a family of semi-invariant in zero pseudometrics,
is bounded (in some sence) if it is s-bounded or it is 0 —additive and the pseudo-
metrics are invariant in zero, in the second casi it is also proved that the range
of the measure is conditionally compact. Moreover it is stated that the range of
a o —additive measure with values in a topological semigroup (of the last type)
is compact if the measure is purely atomic and of bounded variation. Some re-
sults about the uniform boundness of a sequence of semigroup valued measures
and group valued measures, are proved.
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INTRODUCTION.

It is well known that every o —additive measure with values in a locally con-
vex vector space, is bounded, being this result false in general as it is proved in
Ph. Turpin [12], where it is built a non bounded g —additive measure, defined
on a ¢ —algebra and with values in a topological vector space. In the same paper
it is also proved that every ¢—additive measure, defined on a ¢ —algebra with
values in a topological vector space, is additively bounded. K. Musia] proves in
[10] that every group valued o —additive measure satisfying the Countable Chain
Condition, is bounded in some sence, which is equivalent with classical ones if
the group is locally compact or a locally convex vector space. M. P. Kats has
proved in [7] last result without assume that the measure satisfies the Countable
Chain Condition.
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If S is a commutative topological semigroup with identity, whose topology
is defined by a family & of semi-invariant in zero pseudometrics, then theorem
6 of this paper states that every measure (non necessarily ¢ —additive) with va-
lues in S, is bounded in some sence if it is s—bounded or if it is o—additive and
the pseudometrics of & are invariant in zero. This theorem extends for ¢ —addi-
tive measures (non necessarily defined on a o —algebra) with values in a topolo-
gical semigroup (of last type), the result about the additionally boundness of
vector measures given in [12], mentionned before. As a consequence of theorem
6 it is obtained that the range of a o —additive measure with values in a topolo-
gical semigroup whose topology can be defined by a family of invariant in zero
pseudometrics, is conditonally compact, and some results about the uniform
boundness of a sequence of semigroup valued measures. If S is a group, then the
concept of boundness used in this paper is weaker than the concept used in [10],
being equivalents if the pseudometrics of the family & are invariant in zero.

From the usual notion of set of null measure (given for instance in M. Sion
[11]) are studied the atomic semigroup valued measures obtaining some results
which extend the results already known for vector measures and group valued
measures, which can be fond for instance in J. Hoffmann-Jorgensen [6] and in
K. Musia] {10], respectively. Between these results we can mention that the sum
of two purely atomic (respectively non atomic and verifying the Countable
Chain Condition) ¢ —additive measures is purely atomic (respectively, non ato-
mic and satisfies the Countable Chain Condition), and that every non atomic
o —additive semigroup valued measure, can be put like a sum of two unique mea-
sures, one of them non atomic and the other purely atomic and such that every
atom for this second measure contains an atom for the original measure. At the
end, it is proved the compactness of the range of every purely atomic o —additi-
ve measure of bounded variation (defined on a o —algebra) with values in a topo-
logical semigroup whose topology is defined by a family of semi-invariant in zero
pseudometrics. The definition given here of p-variation of measures with values
in semigroups of this type, is an extension of the usual definition for metrizable
topological group valued measures (given for instance in H. Heinich [51). It is
easily proved that if a semigroup valued measure (being the topology of the
semigroup defined by a family of semi-invariant in zero pseudometrics) is of
bounded variation, then it is s-bounded and so bounded (as it results from theo-
rem 6), which implies that the measure is of bounded semi-variation (definition
given from the concept of p-semivariation used in P. Morales [9] ):

The interest of studying measures with values in topological semigroups
whose topology is defined by a family of semi-invariant in zero pseudometrics,
has in part its motivation in the fact proved by H. Weber in [14] which states
that the uniformity of an uniform semigroup can be generated by a family of
continuous semi-invariant pseudometrics valued in the interval [0,1].
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Definition 1. Let S be a commutative semigroup with zero element and p a
pseudometric defined on S. We say that p is semi-invariant (respectively, inva-
rignt) in zero when p (x + y, y) < p (%, 0) (respectively, p (x + y, y) =p (x, 0))
for all x, y €S, and we will say that p is semi-invariant if p (x + y,z + y) <
p(x,z) forallx,y,zeS. '

As it is proved in H. Weber [14], the uniformity of an uniform semigroup
can be generated by a family of continuous semi-invariant pseudometrics valued
in [0,1]. Since now we will denote by S a commutative topological semigroup,
whose topology is defined by a family ' of semi-invariant in zero pseudome-
trics, and by X an arbitrary commutative topological semigroup with zero ele-
ment. For every pseudometric pe § we will write | x | p =D (x,0) for xeS.

An X-valued map on an algebra X of subsets of a set £ is called a finite
additive measure or a measure, if m (A U B) = m (A) + m (B) whenever
A, B are disjoint sets in . The map m is called a 0 — additive measure if
mUU "=, A)=Z =, m(A,) whenever (A ) . =, are mutually disjoint
sets from T such that U n = A e X . Since now we will denote by m a
measure defined on an algebra £ of parts of a set Q and by £ N A the family
{BNA:BeX}, foreachAe T .

Definition 2. Let m be an S-valued measure, then for every pseudometric p e
F the p-variation of m is the map |m | p defined on Z by

Im |, (A) = sup > lm(H) |,
T HeT
for A € ¥ , where the supremum is taken over all finite partitions = of A into
pairwise disjoint sets from X .
Given a pseudometric p € J the p—semivariation of m (cf. [97) is the map
Im I, defined on X by

Iml,(A) =sup { Im(E)|, - EeZ NA}.
It is easily proved that I m | | is a non decreassing finite additive map on X

and that the function I m Il is subadditive and non decreassing. Clearly Im i ,
<Im . If m is 0 —additive then I m Il , is o —subadditive and

oo n
I'm llp(anJ1 E) = sup Il m Ilp(LlJ E,)

holds for every sequence (E,) , = ; € Z suchthat U E,eX .
1
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Definition 3. A subset S, C S is said to be bounded when for each element U of
the uniformity defined by T , there exists n ¢ N and a finite number of points
{x;};er C Ssuchthat

S5, Clu Uxll" 3.1
i€F

(being as usual A" = A + (" + AandU[x] ={yeS : (x,y)eU }forACS
and x € S). :

An S-valued measure m is said to be bounded when its range m (Z) is a
bounded subset of S. If I m |, () <+ oo foreverype T it is said that m is of
bounded variation and in the same way it is said m is of bounded semivariation
when [m Il , (§) <+ o for every pseudometricpe J.

We say that a measure m is s-bounded (c.f. [6]) if lim m (E,) = 0 for every
sequence of mutually disjoint sets from = .

Remark 4. If m is an S-valued measure of bounded variation then for every se-
quence (E); = ; of mutually disjoint sets from = we have that

n

n
2 Im(E),, < 2 Im(E) |+ Im(Q- U E) |y
k=1 k=1 ) =1
<Iml,(Q)<+ o
n
and so, the series X I m(E) | p converges forallp e &, from where it fo-

k=1
llows immediately that m is s-bounded.
Furthermore, if m is a 0 —additive S—valued measure and the family & is in-
variant in zero (i.e. all the pseudometrics belonging to the family & are invariant
in zero) then for every sequence (E ) =, C Z of mutually dls]omt sets such

that U E_ eEwehavethatlnnm(E) Obecausem(u E)= T m
n=1 n= n=1

(E,) and given p; € Fand ¢ >0(i=1, ..., r) there exists n, € N such that

- . n
Im( U Bl =p(m( U By U EY)
n+1 1 1

<¢€if2
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forallnz n_, and therefore,
Im (E,) lpi<pi(m(En),m( UE))+ Im( UE)) |pi
n n
<Ilm( ¥ )
< (nglEk)|pi+ lm(lLlJ E) Iy,
< €

holds for all n 2 n,,. So, if £ isa o —algebra, m is a 0 —additive S—valued mea-
sure and & is invariant in zero, then m is s—bounded.

Moreover let us remark that if m is an S—valued bounded measure then it
is of bounded semi-variarion because for every p e J there existsand n e N and a
finite number of points { x;} ; ¢ § belonging to S such that

m(Z)C (v UlxDhn
i€F

beingU= { (x,y) eSxS:p(x,y) <1 } and, therefore, given A e X there
exists iy, ..., i, € F and uij eU [xij ]forj=1, ..., n, such that

n
m(A)= ¥ uy,
j=1 ]

and

<n(l+ sup Ix;1,)
i€F

<+ oo,
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Proposition 5. An S—valued measure m of bounded variation is o —additive if
and only if Im |  is 0—additive for all p € H

Proof. Let us suppose that |m |, is 6—additive forallpe T, then if(An): isa

sequence of mutually disjoint sets from £ andU A, € £ ,then
1

3 n 3
pIm(UA), m(UA)] < Im( UlAk)Ip
1 1 nt+
<Iml, (U Ap
nt1

< 23 Im 1 (Ay)
ntil

holds, from where it follows that m is c—additive because the series kzl Im iy (Ay)
<imlp (2) <Hee .

Conversely, let us suppose that m is o—additive and let (A[) ; be a sequen-
ce of mutually disjoint sets from Z such that 0 A, € Z and 7 a finite partition
of G A, into pairwise disjoint sets from 2 , thén

1

T Im@E)Il,= T Im(JSHNAYI,
Hem Hew 1

= T | T m@ENAYI,
Hemnw k=1

<z 3 Im@ENAYI,
Henw k=1

= Z T ImHNAYI,
k=1Hem

< Z Iml,(Ap
k=1

holds, and consequently we have that

lmlp(tJAn)< tm | (Ap)

=
I s
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Since |m | p is additive it follows that

.n
z

n
) lm 1, (Ay) = Imlp(LlJAk)

1

< |mlp( U Ak)
1
forallneN, and so

z Im 1, (Ap) < lmlp(LlJAk)

k=1

holds.

Theorem 6. Every S—valued measure m is bounded if it satisfies one of the follo-
wing conditions:

6.1. m is s—bounded.
6.2.m is o—additive and F is invariant in zero (1).

Proof. Let us suppose that there exists an element U= {(x,y) € Sx8:p;
X,y) < €j, i=1,..,n,} belonging to the uniformity defined by the family
§ such that for all n e N and every finite family { X; }; e g of points belonging
to S, (3.1) doesn’t hold. Then we are going to build a non increassing sequence
(T := y € Zsuchthatm (T, —Ty ,,) ¢ U[0](k e N)and each T, has the
following property: For all n € N and every finite family { x;} ; ¢ § of points
belonging to S

m(ENTY £ (U Ulx])"
i€F
holds.

(1) As we have proved earlier 6.2 implies 6.1, if 2 is a 0 —algebra.
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Let it be T, = £ and y, =m (T,), then there exists A € Z such that m (A)
d U[0JUU[y,]. Therefore,m (T, —A) ¢ U[0] because if not

p; (m(T,), m(A)) < | m(T,—A) |pi

<€i

@i=1, .., ny) and m(A)EU [y,] which is contrary to the choice of A. Let it be
T, = A if for all n e N and every finite family {x;} ;¢ ¢ C S,m(ZNA)L
[ U U[x;]]" holds, if not let us take T, = T, —A (remark that in this case,
i€F
for all r € N and every finite family { y;} ; ¢ p» CSwe have that m (2 NT,) £
[V Ulyll).
jEF
If To, Ty, ..., T are built, them m (Z N Ty) ¢ U [0] U U [yx] with y =
m (Ty) and, therefore there exists B € Z N Ty such that m (B) ¢ U [0] and
m (Tx — B) ¢ U [0]. If foralln e N and every finite family {xi}i ¢ g C S, m (Z N
B) ¢ [i v U [x;]]" holds, then let it be Ty » | =B, if not let us take Ty + | =

Ty — B. So, if it is assumed that m is not bounded it is possible to build a non
increassing sequence (T ) T C Z suchthat m (T — Ty , ;)¢ U[O]forallk e N
which is in contradiction with 6.1 and 6.2.

Corollary 7. With the conditions and notations of theorem 6.2 and if S is locally
compact, then m (Z) is conditionally compact,

Proof. An immediate consequence of theorem 6.

Corollary 8. Let M be an uniformly s—bounded (i.e. lim m (E,) = O uniformly
n—>=

for m e M, whenever (E) °1° is a sequence of mutually disjoint sets from Z)
sequence of S—valued measures. If S is a group and F'is invariant, then M is uni-
formly bounded if and only if it is pointwise bounded.

Proof. Let us suppose that M is pointwise bonded and let ¢, (S) be the semi-
group of bounded sequences of elements from S (i.e. (x,) n°°= 1 € Cp (S)when
{ x, :neN} isabounded subset of S) endowed with the topology defined
by the family of pseudometrics { p: p e & } where

f’[(xn)s (Yn)] = Sﬁp P (an Yn)
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for (x,), (¥y) € ¢, (S), and consider the measure m :  — cy, (S) defined by '
m(A) = {m(A) :meM } . It follows from theorem 6 (6.1) that m(Z) isa
bounded subset of ¢, (S) and so, given ¢ € T, pi>0,i=1,.., 1, there exists

1,13 €Nand xi=(x{) 7 =4 €cp (S)fori=1, ..., 1, such that
N AN
m(z)c [ U U]Fs3,
i=1

being U = { (x,y) e ¢, (S) xcp, (S) : py (%, y) <€ /2,i=1,...,r; } . Further-
more, from the boundness of the set B = { x}l :nelN,i=1,..,1, } it follows
the existence of ry, 15 € N and { Yj } i=1,..1y C S such that

14
BC[ U U[yj]]fs,
i=1
being U= {(x,y) €ESxS:p; (x,¥) <¢/2,i=1,..,1y }.Therefore,
_T4
{m(A) : AeZ ,meM}C[ U Ufy]I™’s
i=1
and M is uniformly bounded.

Corollary 9. Let M be a uniformly s —Bounded sequence of S —valued measures.
If T is semi-invariant and { m (A) :meM } isa finite subset of S forall A€ Z ,
then M is uniformly bounded.

Proof. Let ¢, (S) and m be like in the last proof and let ¢ (S) be the subsemi-
group formed by the sequences which have at most a finite number of different
elements, endowed with the induced topology by the topology considered for
¢, (S) in the last proof. Then it results from theorem 6 (6.1) that m(Z)isa
bounded subset of c; (S) and, consequently, given an element of the uniformity
defined by ', there exists 1,1, eNand xecp(S)withj=1,..., 1y such that

m(T)C ["L} U [x]] 72
i=1
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holds (where U is defined like in last proof). Therefore,
I
{m(A) :AeZ ,meM} C[ U Ufy]]"3
k=1

I, .
holds, being U { xr{ :nelN }={ Y1, - ¥; } and so, M is uniformly boun-
ded. i=1

Definition 10. Let m be a semigroup valued measure. A set A e  is said to be
m —null (cf. [11]) if m (B) =0 for all Be £ N A. Since now we will denote
by N (m) the family of m —null sets. We say that A € £ is an m —atom if A ¢
N (m) and for all B e £ N A either B € N (m) or A — B € N (m). m is called
atomless if m has no atoms, and m is called purely atomic when there exists
a sequences (A,) °1° of m —atoms such that

Q- A, eN(m).
1

If m; and m, are two X —valued measures and N (m;) C N (m,) then every
m; —atom is an my —atom and if m; is purely atomic then so is m,.

Let m; be a X; —valued measure defined on an algebra Z; (i=1, 2). m;
is my —continuous when £ 1 C X, and for every zero-neighbourhood V in
X there exists a zero-neighbourhood V, in X, such that m; (A) € V; assoon
as A € 2y and m, (2 N A) CV,. Clearly, if a measure m; : Z;—X is conti-
nuous with respect some positive finite ¢ —additive measure on a ¢ —algebra
Z (O Z,), then m; is s —bounded an it follows immediately from theorem 6
(6.1) the next result:

Proposition 11. If an S —valued measure m is continuous with respect some
positive finite ¢ —additive measure defined on a o —algebra T' (D ), then
m is bounded.

Proposition 12. Let Z be a 0 —algebra and my; (=1, 2) an X —valued o —additi-
ve measure, then the following assertions hold:

12.1. If m,y and m, are purely atomic then m; + m, is purely atomic.

12.2. If m; and m, verify the Countable Chain Condition (being the defi-
nition of this condition here the natural extension of the usual one, see for
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instance [13]), then m; + m, verifies the Countable Chain Condition and
moreover if my and m, are atomless then my + mj is atomless.

12.3. If m is a non atomless X —valued o —additive measure defined on
which verifies the Countable Chain Condition, then there exists unique X
—valued ¢ —additive measures my, m, defined on Z such that m =m; + mjy,
my is purely atomic, m, is atomless and every m; —atom contains an m —atom.
Moreover my and m, verifies the Countable Chain Condition.

Proof. 12.1. 1t is enough to follow the proof of theorem 5 of [6].

12.2. The first part is obvious. For proving the second one we will proceed
like in the proof of proposition 1 of [10] . Let us suppose that m; and m, are
atomless and that A is an m—atom, being m = m; + m,. From Zorn’s axiom
it is obtained a maximal sequence of pairwise disjoint sets D, from (Z N A)
N N (m), such that D, ¢ N (m;). Consider D =0 D,, then (A-D) N N (m)
C N (m,) and since m, is atomless we have that (}&-D) ¢ N (m;). Let us see
that B = A—D is an m; —atom. Clearly if C ¢ £ N B then since A is an m—atom
we have either C € N (m), and then C e N (m,), or (A—C) € N (m), and so (A—C)
N B =B — C e N (m). Therefore, B is an m; —atom and so we have a contradic-
tion because m; is atomless.

12.3. From the Zorn’s axiom it is deduced the existence of a countable
(or finite) family of pairwise disjoint m—atoms A, and such that there exists
no m—atom contained in Q — J A,. Let it be A =°L;J A ,m; (B)=m(B

n=1
N A) and m, (B) = m (B—A) for all B ¢ Z . Evidently, m; is purely atomic,
m, is atomless, they verify the Countable Chain Condition and m =m; + mj,.
Moreover if C is an m; —atom it is immediately proved that C N A is an m—atom
and, consequently, all m; —atom contains an m—atom.

Furthermore if m; and m$ are two g—additive X-valued measures defined
on Z such that m is purely atomic, m% is atomless, every mj —atom contains
an m—atom and m =mj + m3, let us see that A ¢ N (m3) and A e N(mj).
In effect, if A© d N (mq) then there exists an mj —atom C such that A N
C ¢ N (mj) and therefore A° N C isan m{ —atom and there exists an m—atom
contained in A€ which is a contradiction.

IfA=0 A, ¢ N (m3) then there exists n € N such that A ¢ N (m3).
Since m3 islatomless, then there exists B € = N An such that neither B ¢ N
(m3) nor B¢¢ N (m3). Since A, is an m—atom we have that either B ¢ N (m)
or B® € N (m). Let us suppose that B € N (m). (similarly we would proceed
if B¢ € N (m)), since B ¢ N (m3) it results that B ¢ N (m) and B contains
some mj —atom and therefore, B contains some m—atom which is contradic-
tory to the fact of being £ N B C N (m).



82 Pedro Jiménez Guerra

Theorem 13. Let m be a purely atomic o—additive S—valued measure defined
ona o—algebra Z . If m is of bounded variation then m () is compact.

Proof. 1f (A n): is a sequence of m—atoms such that Z N (2 — 0 A;) C N(m),
we can define (like in [10], theorem 3 or in [6], theorem 10) 4 map f from the
Cantor’s set C={0,1} ¥o onto m(Z) by

f(= £  m(Ay)

€D,

for ¢ =(c,) : e C,being D, = {neN:c, =1} .The proof will be completed
proving that f is a continuous map. Since m is of bounded variation the series
¥ Im(ay | » is convergent for all p ¢ §', and so, givenc e C, p; € ', ;>0
1

withi=1, ..., r, there exists n, e N such that

z Im(An)lpi <¢/2

n Ilo

foralli=1,..,r.Ifd =(dn)°1° € Cis such that d; =¢; forj=1, .., n, then

p (@, () < = Im@Al, + z, tm(Ap) |,
D 1 1

neébgy nebD,

<e;

1

holds for i=1, ..., r, beingDg=Dg N {neN : n>ny} and Dg = D¢ N
{neN : n>n,}.Hence,fis continuous and m (Z) is compact.
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