BASES IN THE SPACE OF ENTIRE DIRICHLET FUNCTIONS OF TWO COMPLEX VARIABLES

by

S. DAOUD, POITIERS

ABSTRACT

In this paper, we consider the space X of all Entire functions defined by Dirichlet series of two complex variables, we endow X with two equivalente topologies. The main result is concerned with finding the necessary and sufficient conditions for a base in X to become a proper base.

1. INTRODUCTION.

Let X denote the space of all entire functions defined by Dirichlet series of two complex variables s_1 , $s_2 \in \mathbb{C}$ (where \mathbb{C} is the complex plane equipped with the usual topology). When $f \in X$, it means that $f: \mathbb{C}^2 \to \mathbb{C}$ such that

$$f(s_1, s_2) = \sum_{m, n=0}^{\infty} a_{m,n} \exp(\lambda_m s_1 + \mu_n s_2)$$
 (1.1)

where

$$\begin{array}{lll} 0 &= \lambda_0 < \lambda_1 < \lambda_2 < \dots & < \lambda_m \rightarrow \infty \, \text{with m} \\ \\ 0 &= \mu_0 < \mu_1 < \mu_2 < \dots & < \mu_n \rightarrow \infty \, \text{with n} \end{array}$$

and further (see [1])

$$\limsup_{m + n \to \infty} \frac{\log |a_{m,n}|}{\lambda_m + \mu_n} = -\infty$$
 (1.2)

$$\limsup_{m + n \to \infty} \frac{\log (m + n)}{\lambda_m + \mu_n} < \infty.$$
 (1.3)

For each $f \in X$, and σ_1, σ_2 real, we define the family $\{M(f, \sigma_1, \sigma_2) : \sigma_1, \sigma_2 > 0\}$ of semi-norms on X, where

$$M(f; \sigma_1, \sigma_2) = \sup_{-\infty < t_1, t_2 < \infty} |f(\sigma_1 + it_1, \sigma_2 + it_2)|$$

Let for each $f \in X$, and σ_1, σ_2 real, define

$$\|\mathbf{f}; \sigma_1, \sigma_2\| = \sum_{m, n=0}^{\infty} |\mathbf{a}_{m, n}| \exp(\lambda_m \sigma_1 + \mu_n \sigma_2)$$

Then $\{ \| f; \sigma_1, \sigma_2 \| ; \sigma_1, \sigma_2 > o \}$ again defines a family of semi-norms on X One has proved earlier (see [1]) that for some $\alpha > o$.

$$M(f; \sigma_1, \sigma_2) \leq \|f; \sigma_1, \sigma_2\| \leq C(\alpha) M(f; \sigma_1 + \alpha, \sigma_2 + \alpha)$$
 (1.4)

C (α) being a constant depending on α only. Hence one finds that the topology generated by the family of semi-norms $\{M(f; \sigma_1, \sigma_2): \sigma_1, \sigma_2 > o\}$ and the topology generated by the family of semi-norms $\{\|f; \sigma_1, \sigma_2\|: \sigma_1, \sigma_2 > o\}$ are equivalent.

We note that the single variable case already dealth with P.K.Kamthan and S.K.Singh Gautam [2].

2. BASES IN X.

Définition 2.1: A sequence $\{f_{m,n}: m, n \ge 0\} \subset X$ is said to be a base for X, if for each $f \in X$, there exists a unique sequence $\{a_{m,n}: m, n \ge 0\} \subset \mathbb{C}$, such that

$$f = \sum_{m, n=0}^{\infty} a_{m,n} f_{m,n}$$

where the convergence of this double series is with respect to the topology on X. The members $a_{m,n}$ are called the base functions.

In view of this definition, we find that $\{\delta_{m,n}\}$ (where $\delta_{m,n}$ (s_1,s_2) = exp

 $(\lambda_m s_1 + \mu_n s_2)$) is a base for X and moreover, for this base, the base functions satisfy the following condition:

$$\lim_{m \to \infty} \sup_{n \to \infty} \frac{\log |a_{m,n}|}{\lambda_m + \mu_n} = -\infty$$
 (2.1)

However, for all bases in X, the corresponding coefficients do not necessarily satisfy (2.1). For instance, consider $\{f_{m,n}\}$, where

$$f_{m,n}(s_1, s_2) = \exp(m s_1 + n s_2) / (m + n/2)!$$

is in X and forms a base in X. Now

$$\exp (\exp s_1 + \exp s_2) = \sum_{m, n=0}^{\infty} a_{m,n} f_{m,n} (s_1, s_2)$$

and so $a_{m,n} = 1$, for all $m, n \ge 0$; $a_{m,n} = 0$ for $m \ne n$, thus

$$\limsup_{m+n\to\infty} \frac{-\log|a_{m,n}|}{\lambda_m + \mu_n} = 0$$

consequently there are two types of base in X, for which (2.1) is true or not true.

Definition 2.2. A sequence $\{f_{m, n} : m, n \ge 0\} \subset X$ will be called a genuine base for X if the corresponding base functions satisfy (2.1).

Definition 2.3. A sequence $\{f_{m,n}: m, n \ge 0\} \subseteq X$ will be called an absolute base for X, if each $f \in X$ can be uniquely expressed as $\sum a_{m,n} f_{m,n}$ where the double series is absolutely convergent with respect to the topology on X.

Definition 2.4. A sequence $\{f_{m,n}: m, n \ge o\} \subseteq X$ will be called proper base for X if it is a genuine as well as an absolute base for X.

3. CHARACTERISATION OF PROPER BASES

Our discussion on this direction will require a number of intermediary results, first of all, we have

Lemma 3.1. Let $\{\phi_m, n\} \subset X$, and suppose that $\Sigma \phi_{m,n}$ converges absolutely with respect to the topology on X, ie Σ M $(\phi_{m,n}; \sigma_1, \sigma_2)$ converges for every real σ_1, σ_2 . Then given $\alpha > 0$ and $\sigma_1, \sigma_2 > 0$, there corresponds an integer N, such that for all $m+n \geqslant N$, we have

$$\log \mathrm{M}\left(\phi_{\mathrm{m,n}};\sigma_{1},\sigma_{2}\right)<\alpha\left(\lambda_{\mathrm{m}}+\mu_{\mathrm{n}}\right)$$

Proof. The proof is straight forward. Indeed, let the conclusion of the Lemma be false. Then we may find two increasing sequences $\{m_k\}$, $\{n_\ell\}$ such that

$$\log M(\phi_{\mathrm{m_k,n_{\bar{Q}}}};\sigma_1,\sigma_2)\!>\!\alpha\,(\lambda_{\mathrm{m_k}}+\mu_{\mathrm{n_{\bar{Q}}}})$$

Therefore

$$\sum_{m, n=0}^{\infty} M(\phi_{m, n}; \sigma_1, \sigma_2) > \sum_{k, \ell=0}^{\infty} \exp \alpha (\lambda_{m_k} + \mu_{n\ell})$$

and this contradicts the hypothesis of the lemma.

Theorem 3.2. Let $\{\alpha_{m,n}: m,n\geqslant o\}\subset X$. Suppose $\{C_{m,n}\}$ be an arbitrary sequence contained in C, such that

$$\limsup_{m + n \to \infty} \frac{\log |C_{m,n}|}{\lambda_m + \mu_n} = -\infty$$
(3.1)

Then the series Σ M ($\alpha_{m,n}$ $C_{m,n}$; σ_1 , σ_2) converges if and only if

$$\limsup_{m \ + \ n \ \to \ \infty} \ \frac{\log M \left(\alpha_{m, \ n}; \sigma_1, \sigma_2\right)}{\lambda_m + \mu_n} \ < \ ^{\infty}, \ \textit{for each} \ \sigma_1, \sigma_2 \eqno(3.2)$$

Proof (Necessity): Let (3.1) hold good. Suppose (3.2) is not true. Hence for some σ_1 , $\sigma_2 > 0$, there corresponds sequences $\{m_k\}$, $\{n_{\ell}\}$ such that

$$\operatorname{Log} M \left(\alpha_{m_{k}, n_{\ell}} ; \sigma_{1}, \sigma_{2} \right) > \left(k + \ell \right) \left(\lambda_{m_{k}} + \mu_{n_{\ell}} \right) , \quad k, \ell \geqslant 0 \quad (3.3)$$

Define $\{C_{m,n}\}\subset \mathbb{C}$ as follows

$$\log \mid C_{m,n} \mid = \begin{cases} \lambda_m + \mu_n - \text{Log M}(\alpha_{m,n}; \sigma_1, \sigma_2) & \text{for } m = m_k ; n = n_{\ell} \\ -\infty & m \neq m_k , n \neq n \end{cases}$$

Then from (3.3), we have

$$\lim_{m \to \infty} \sup_{n \to \infty} \frac{\log |C_{m,n}|}{\lambda_m + \mu_n} = -\infty$$

and (3.1) holds. But,

$$\begin{split} M\left(C_{m_{k}, n_{\ell}} \alpha_{m_{k}, n_{\ell}}; \sigma_{1}, \sigma_{2}\right) &= C_{m_{k}, n_{\ell}} M\left(\alpha_{m_{k}, n_{\ell}}; \sigma_{1}, \sigma_{2}\right) \\ &= \exp\left(\lambda_{m_{k}} + \mu_{n_{\ell}}\right) \\ M\left(C_{m, n} \alpha_{m, n}; \sigma_{1}, \sigma_{2}\right) &= o, \text{ for } m \neq m_{k}, n \neq n_{\ell}. \end{split}$$

and this contradicts Lemma 3.1.

(Sufficiency). Let (3.2) be satisfied. Then for each σ_1 , $\sigma_2 > 0$, there exists a constant $\epsilon = \epsilon$ (σ_1 , σ_2), such that

$$\log M(\alpha_{m,n}; \sigma_1, \sigma_2) < \epsilon (\lambda_m + \mu_n) \qquad \text{for } m + n \ge N_0(\epsilon)$$
 (3.4)

Let $\epsilon_1 > \epsilon$. Then there exists $N_1 = N_1$ (ϵ_1) , such that

$$|C_{m,n}| \le \exp{-\epsilon_1(\lambda_m + \mu_n)}; m + n \ge N_1$$
 (3.5)

We get from (3.4) and (3.5)

$$\begin{split} \mathbf{M} &\left(\mathbf{C}_{m,n} \; \alpha_{m,n} ; \sigma_{1}, \, \sigma_{2} \right) = \mathbf{I} \; \mathbf{C}_{m,n} \; \mathbf{I} \; \mathbf{M} \left(\alpha_{m,n} ; \sigma_{1}, \, \sigma_{2} \right) \\ &\leqslant \exp \left(\epsilon - \epsilon_{1} \right) \left(\lambda_{m} \; + \mu_{n} \right) \; , \; \mathbf{m} \; + \mathbf{n} \geqslant \mathbf{N} = \max \left(\mathbf{N}_{0} \; , \, \mathbf{N}_{1} \right) \end{split}$$

hence

$$\sum_{m=0}^{\infty} M(C_{m,n} \alpha_{m,n}; \sigma_1, \sigma_2)$$

converges for every $\sigma_1,\,\sigma_2$ (in view of lemma 1 [1]).

Lemma 3.3. Let $\{\alpha_{m,n}; m, n \ge o\} \subseteq X$ and $\{C_{m,n}; m, n \ge o\}$ be an arbitrary sequence in $\mathbb C$, such that

$$\sum_{m,n=0}^{\infty} M(\alpha_{m,n} C_{m,n}; \sigma_1, \sigma_2)$$

converge, then

$$\limsup_{m + n \to \infty} \frac{\log |C_{m,n}|}{\lambda_m + \mu_n} = -\infty$$
 (3.6)

if and only if

$$\lim_{\sigma_{1}, \sigma_{2} \to \infty} \left\{ \lim_{m \to n} \inf_{m \to \infty} \frac{\log M(\alpha_{m, n}; \sigma_{1}, \sigma_{2})}{\lambda_{m} + \mu_{n}} \right\} = + \infty \quad (3.7)$$

Proof (Necessity). Let (3.6) be true and suppose that (3.7) is false. Then for each σ_1 , $\sigma_2 > 0$ and some $\beta > 0$.

$$\lim_{\sigma_{1},\,\sigma_{2}\,\rightarrow\,\infty}\;\left\{ \liminf_{m\,+\,n\,\rightarrow\,\infty}\;\;\frac{\log M\left(\alpha_{m\,,\,n}\,;\,\sigma_{1},\,\sigma_{2}\right)}{\lambda_{m}\,+\,\mu_{n}}\right\} <\beta\,<+\,\infty$$

Since M $(\alpha_{m,n}; \sigma_1, \sigma_2)$ is monotonocally increasing in $\sigma_1, \sigma_2 > 0$ for each fixed pair (m,n). Then there exist sequences $\{m_k\}$, $\{n_\ell\}$ such that

$${\rm Log}\; {\rm M}\; (\alpha_{\rm m_k,\; n_{\ell}}\; ; \sigma_1, \sigma_2) \!<\! \beta \, (\lambda_{\rm m_k} \!+\! \mu_{\rm n_{\ell}})$$

Define $\{C_{m,n}\} \subset \mathbb{C}$ as follows

$$\log |C_{m,n}| = \begin{cases} -2\beta(\lambda_m + \mu_n), & m = m_k, & n = n\varrho \\ -\infty, & m \neq m_k, & n \neq n\varrho \end{cases}$$

Then for a given σ_1 , σ_2

$$\sum_{m,n=0}^{\infty} |C_{m,n}| M(\alpha_{m,n}; \sigma_1, \sigma_2) \leq \sum_{m,n=0}^{\infty} \exp{-\beta(\lambda_m + \mu_n)} < +\infty$$

and so $\sum_{m,n=0}^{\infty}$ M $(C_{m,n} \alpha_{m,n}; \sigma_1, \sigma_2)$ converge for each real σ_1, σ_2 . Conse-

quently from (3.6), $\limsup_{m \to \infty} \frac{\log |C_{m,n}|}{\lambda_m + \mu_n} = -\infty$. But it is not true.

$$\limsup_{m + n \to \infty} \frac{\log |C_{m,n}|}{\lambda_m + \mu_n} = -2 \beta$$

(Sufficiency). Suppose (3.7) is true and (3.6) is not true. Thus $\sum_{m,n=0}^{\infty} M(C_{m,n}, \alpha_{m,n}; \sigma_1, \sigma_2)$ converges for each σ_1, σ_2 , but

$$\limsup_{m + n \to \infty} \frac{\log |C_{m,n}|}{\lambda_m + \mu_n} \neq \infty$$

There exist sequences $\{m_k\}$, $\{n_{\ell}\}$, such that

$$\log |C_{m_k, n_{\ell}}| > \alpha (\lambda_{m_k} + \mu_{n_{\ell}}) \; ; \; \alpha >_{-} \infty$$

By (3.7), one may find σ_1, σ_2 , such that

$$\lim_{m \to \infty} \inf_{n \to \infty} \frac{\log M(\alpha_{m,n}; \sigma_1, \sigma_2)}{\lambda_m + \mu_n} > 2 - \alpha$$

Therefore

$$\frac{\log M\left(C_{m_k,\,n_{\ell}}\alpha_{m_k,\,n_{\ell}};\sigma_1,\,\sigma_2\right)}{\lambda_{m_k}+\mu_{n_{\ell}}} > 2 \ , \ k,\ell \geq o$$

and this contradicts lemma 3.1. The proof is now complete.

Theorem 3.4. Let $\{\alpha_{m,n}: m, n \geq o\}$ be an absolute base in X. Then $\{\alpha_{m,n}\}$ is propre base if and only if (3.2) and (3.7) hold good. Theorem 3.4. is the main result of this paper, follows by combining theorem 3.2 and lemma 3.3.

REFERENCES

- [1] S. DAOUD: Entire functions represented by Dirichlet series of two complex variables (to appear).
- [2] P.K. KAMTHAN and S.K. SINGH GAUTAM: Bases in the space of analytic Dirichlet transformations. Collec. Math. (1972), 9-16.

U.E.R. Sciences-Mathématiques 40 Avenue du Recteur Pineau 86022 POITIERS FRANCE