AN EXISTENCE THEOREM FOR AN IMPLICIT NONLINEAR EVOLUTION EQUATION

by

A. BERMUDEZ*, J. DURANY* and C. SAGUEZ**

ABSTRACT.

In this paper we prove the existence of a solution for a non linear evolution equation of the form:

$$\frac{d}{dt}B(u(t))+A(t,u(t))\ni f(t)$$

Where A and B are nonlinear operators, possibly multivalued.

The proof is based on implicit discretization in time and passing to the limit as the time step goes to zero.

An application to a Stefan problem, arising from the solidification of a metal in a mould, is given.

1. Introduction.

Let V be a reflexive separable Banach space and H a Hilbert space such that V is densely included in H.

Let us denote by | | | | | | (respectively | | |) the norm in V (resp. in H) and by V' the topological dual of V. As usually, let $| | | | |_*$ be the dual norm in V'. By identifying H to its topological dual space H', we have VCHCV'.

^{*} Departamento de Ecuaciones Funcionales, Univ. de Santiago. Spain.

^{**} INRIA, B.P. 105. 78153 Le Chesnay, France.

Let us consider P_B a proper convex lower semicontinuous function from H to $(-\infty, \infty]$ which is supposed to be continuous at some point of V. Its subdifferential $\partial \Phi_B$ is the maximal monotone operator given by for example Brezis [4]):

$$v \in \partial \Phi_{B}(u)$$
 if and only if $(v, w-u) \leq \Phi_{B}(w) - \Phi_{B}(u)$ for all $w \in H$. (1.1)

Let B be the multivalued operator from V to V'defined by:

$$B = i^* \circ \partial \Phi_B \circ i \tag{1.2}$$

Where $i:V\to H$ denotes the injection from V into H and i^* its dual map. Finally, let A (t, •) be a family of operators from V to V'.

This paper deals with the following nonlinear evolution equation:

$$\frac{d}{dt} (B(u(t)) + A(t, u(t)) \ni f(t)$$
(1.3)

Where f is a given function from [O, T] to V'

The purpose is to prove the existence of a solution for the initial value problem:

Find two functions u and v such that:

$$\frac{d}{dt} v(t) + A(t, u(t)) \ni f(t) \qquad \text{a. e. on } [0, T]$$
 (1.4)

$$v(t) \in B(u(t))$$
 a. e. on $[0,T]$ (1.5)

$$\mathbf{v}(0) = \mathbf{v}_0 \tag{1.6}$$

Where v_0 is arbitrarily given in the range of B.

For this, it is assumed that i is a compact map, ∂ Φ_B is a strongly monotone bounded operator on V and A (t, •) are uniformly bounded weakly coercive operators which define a map from L^p (0, T; V) to L^{p'} (0, T; V'), $\frac{I}{I} + \frac{I}{I}$, pseudomonotone on the space W (0, T) (*) (Lions [10]).

Implicit evolution equations like (1.3) have been considered in many articles (Grange and Mignot [9], Showalter [14], Calvert [5], Barbu [5], Di Benedetto and Showalter [6], Bermudez and Saguez [3]).

(*) W (0,T) =
$$\left\{ u \in L^{p}(0,T;V); \frac{du}{dt} \in L^{p'}(0,T;V') \right\}$$

The existence of a solution is proved in Grange and Mignot [9] and Barbu [1], essentially assuming that A is the subdifferential of a coercive continuous convex function on V and then, in particular, independent of t.

More recently, Di Benedetto and Showalter [6] have obtained the existence for a more general case in which A is also independent of t and A and B are maximal monotone operators, but only one of them has to be a subdifferential.

On the other hand, in Bermudez and Saguez [3], A is taken to be the sum of a subdifferential and another time dependent operator which is dominated by A. Existence of a solution for (1.4) - (1.6) is proved by relaxing the coerciveness of A but assuming $\partial \Phi_B$ is strongly monotone.

The method used in this paper is similar to that used in Grange and Mignot [9] or in Bermudez and Saguez [3]. It consists on introducing an implicit time-discretized problem and then passing to the limit as the time step goes to zero.

By not requiring A to be a maximal monotone operator, new applications to nonlinear partial differential equations can be obtained. As an example, a Stefan problem in a nonhomegeneous medium, with thermal parameters depending on the temperature and convective heat transfer in the liquid phase, is considered.

2. THE MAIN RESULT

We do the following assumptions:

$$\partial \Phi_{\mathbf{B}} \cdot \mathbf{i} \text{ is bounded}.$$
 (A2)

1. $\partial \Phi_{\mathbf{B}}$ is strongly monotone on i (V) in the following sense: there exists a positive constant β and a real number p, 1 , such that:

$$(v_1 - v_2, u_1 - u_2) \ge \beta \mid u_1 - u_2 \mid p, v_i \in (\partial \phi_B \cdot i)(u_i), u_i \in V, j = 1, 2.$$
 (A3)

2. There exists a positive constant M and a real number r, $1 \le r < \infty$, such that.

$$| \mid (\partial \Phi_B)^{-1}(v_1) - (\partial \Phi_B)^{-1}(v_2) \mid | * \leq M \mid |v_1 - v_2| \mid_*^f, \text{ with } v_1, v_2 \text{ eH}$$

There exist two positive constants M₁ and M₂ such that

$$||A(t,v)||_{*} \leq M_{1}||v||^{p-1} + M_{2}$$
 (A4)

The operator A defined by (Au) (t) = A(t,u (t)) a. e. on [0, T], maps the space L^p (0, T; V) into the space $L^{p'}$ (0, T; V') and has the following continuity property:

$$\begin{aligned} &\text{if } u_j \to u \text{ in } L^p\left(0,T;V\right) \text{ weak} \\ &u_j' \to u' \text{ in } L^{p\prime/r}\left(0,T;V'\right) \text{ weak} \end{aligned}$$
 and
$$\lim_{j \to \infty} \sup \int_0^T \left(A(t,u_j(t)),u_j(t)-u(t)\right) dt \leqslant 0$$

then
$$\lim_{j\to\infty}\inf\int_{0}^{T}\left(A(t,u_{j}\left(t\right)),u_{j}\left(t\right)-v\left(t\right)\right)dt\geqslant$$

$$\geqslant \int_{0}^{T} (A(t, u(t)), u(t) - v(t)) dt \qquad \text{for all } v \in L^{p}(0, T; V)$$

A is weakly coercive in the following sense:

(A6)

There exists a constant ω such that :

$$\lim_{\begin{subarray}{c} ||u||| \to \infty \\ L^p(0,T;V) \end{subarray}} \frac{\displaystyle\int_0^T \left[\omega |u(t)|^p + (A(t,u(t)),u(t))\right] dt}{||u|||^p} > 0$$

Remark 2.1.

Since \mathcal{P}_B is assumed to be continuous at some point of i(V), it follows from Ekeland and Teman [8] taht $B = \partial \left(\mathcal{P}_B \cdot i\right)$. Hence A2 implies dom (B) = V and \mathcal{P}_B is finite and continuous on i(V). In particular, it can be supposed that \mathcal{P}_B (0) = 0.

Remark 2.2

Assumptions A1 and A2 show that B is compact, i.e., maps bounded sets of V into relatively compact sets of V'.

Remark 2.3.

Assumption A4 implies that A is bounded.

The main result of this paper is the following:

Theorem 1. Under the assumptions (A1) - (A6), for every f given in $L^{p'}(0, T;$ V') and v_0 given in the range of B, there exist $u \in L^p(0, T; V)$ and $v \in L \infty$ (0, T:H'), with $\frac{du}{dt} \in L^{p'/r}(0, T; V')$, $\frac{dv}{dt} \in L^{p'}(0, T; V')$, such that:

$$\begin{cases} \frac{d}{dt} v(t) + A(t, u(t)) = f(t) & \text{a. e. } t \in [0, T] \\ v(t) \in B(u(t)) & \text{a. e. } t \in [0, T] \end{cases}$$
 (2.1)

$$v(t) \in B(u(t))$$
 a. e. $t \in [0, T]$ (2.2)

$$v(0) = v_0$$
 (2.3)

Remark 2.4

The equality (2.3) makes sense in V' because $v \in C([0, T]; V')$.

3. PROOF OF THEOREM 1.

Let N be a positive integer and $k=\frac{T}{N}$. For $(a^0,\ldots,a^N)\in E^{N+1}$, E being a Banach space, we denote by π_k (a) the step function on [0, T] defined by:

$$\pi_k(a)(t) = a^{n+1} \text{ if } nk < t \le (n+1)k, \ n=0,..., N-1$$
 (3.1)

$$\pi_{\mathbf{k}}(\mathbf{a})(0) = \mathbf{a}^0$$
 (3.2)

and by Λ_k (a) the continuous function from [0, T] to E, linear on each interval [nk, (n+1) k] and such that:

$$\Lambda_{k}(a)(nk) = a^{n}$$
 $n = 0, ..., N$ (3.3)

Finally, we denote by $\nabla_k \pi_k$ (a) the step function $\frac{d}{dt} \nabla_k$ (a).

Consider the following descretized problem:

To find (u_k^0, \dots, u_k^N) ϵV^{N+1} such that:

$$\begin{cases}
\frac{v^{n} + 1 \cdot v_{k}^{n}}{k} + A_{k}^{n} u_{k}^{n+1} = f_{k}^{n}, v_{k}^{n+1} \in Bu_{k}^{n+1}, n=0, \dots, N-1 \\
v_{k}^{0} = v_{0}
\end{cases} (3.4)$$

Where

$$\int_{k}^{n} \frac{1}{k} \int_{nk}^{(n+1)k} f(t) dt, , \qquad f_{k}^{n} eV'$$
(3.6)

and A the operator from V to V' defined by:

$$A_k^n u = \frac{1}{k} \int_{nk}^{(n+1)k} A(t, u) dt.$$
 (3.7)

In order to prove the existence of a solution for this discretized problem, we state the following lemmas:

Lemma 1. The operator A_k^n defined by (3.7) verifies:

$$\left| \left| \left| A_k^n \right| u \right| \right|_* \leqslant M_1 \left| \left| u \right| \right|^{p-1} + M_2$$

(ii) A_k^n is pseudomonotone from V to V', i. e. (Lions [10]):

If
$$u_j \longrightarrow u$$
 in V weak,

and

$$\lim \sup_{j \to \infty} (A_k^n \ u_j, u_j - u) \leq 0$$

then
$$\lim_{j\to\infty}\inf(A^n_k\ u_j,u_j-v)\!\geqslant\!(A^n_k\ u,u-v),$$
 for all $v\in V.$

(iii)
$$\lim_{\|\cdot\|_{1} \to \infty} \inf \frac{\omega |u|^{p} + (A_{k}^{n} u, u)}{\|\cdot\|_{1} \|p\|} \ge \alpha > 0.$$

Proof: Firstly i) and iii) follows immediately from A4 and A6.

To prove ii) observe that, from the compactness assumption A1, we have $\mid u_i \text{-} u \mid < k \text{ for } j \text{ large enough.}$

Moreover, we may suppose that u, is different from u for all j. These facts allow to define the following functions:

$$\widetilde{u}_{j} - \frac{t^{*} - nk}{|u_{j} - u|} \quad (u - u_{j}) \quad \text{if } nk - |u_{j} - u| \leq t \leq nk$$

$$u_{j} \quad \text{if } nk \leq t \leq (n+1) k$$

$$u_{j} - \frac{t - (n+1) k}{|u_{j} - u|} \quad (u_{j} - u) \quad \text{if } (n+1) k \leq t \leq (n+1) k + |u_{j} - u|$$

$$u \quad \text{otherwise.}$$

Let \widetilde{u} be defined by \widetilde{u} (t) = u for all te [0, t].

Then it is not difficult to see that $\widetilde{u}_j \longrightarrow \widetilde{u}$ in L^∞ (0, T; V) weak star and $\widetilde{u}_j' \longrightarrow \widetilde{u}'$ in L^q (0, T; V') for arbitrary $q \in (1, \infty)$. In particular,

$$\widetilde{u_i} \longrightarrow \widetilde{u}$$
 in L^p (0, T; V) weak. (3.9)

and

$$\widetilde{u}'_{j} \longrightarrow \widetilde{u}'$$
 in $L^{p'/r}(0,T;V')$ weak. (3.10)

Moreover, by using the assumption A4, we obtain:

$$\lim \sup_{i \to \infty} \int_{0}^{T} A(\widetilde{u}_{j}, \widetilde{u}_{j} - \widetilde{u}) dt \leq$$
(3.11)

$$\leq \limsup_{\substack{j \to \infty}} \int_{nk-|u_j-u|}^{nk} (A(t, \widetilde{u}_j(t)), \widetilde{u}_j(t) - u_j) dt +$$

$$+ \limsup_{\substack{j \to \infty}} \int_{nk}^{(n+1)k} (A(t, u_j), u_j-u) dt +$$

$$+ \limsup_{\substack{j \to \infty}} \int_{(n+1)k+|u_j-u|}^{(n+1)k+|u_j-u|} (A(t, \widetilde{u}_j(t), \widetilde{u}_j(t) - u) dt \leq 0$$

Now, the assumption A5 implies:

$$\lim_{j \to \infty} \inf \int_{0}^{T} (A(t, \widetilde{u}_{j}(t)), \widetilde{u}_{j}(t) - \widetilde{v}(t)) dt$$

$$\geq \int_{0}^{T} (A(t, \widetilde{u}(t)), \widetilde{u}(t) - \widetilde{v}(t) dt \text{ for all } \widetilde{v} \in L^{p}(0, T; V).$$

$$(3.12)$$

For every v in V, let \widetilde{v} be defined by:

$$\widetilde{v}(t) = \begin{cases} v & \text{if } nk \le t \le (n+1)k \\ u & \text{otherwise} \end{cases}$$
 (3.13)

By putting this \tilde{v} in (3.12) we obtain:

$$\lim_{j \to \infty} \inf \left(A \bigcup_{k=j}^{n} u_{j} - v \right) \ge \left(A_{k}^{n} u, u - v \right)$$
(3.14)

Which completes the proof.

Remark 3.1.

From i) and iii) in the lemma 1 we can deduce the existence of a constant γ , independent of k and n, such that:

$$\omega \mid u \mid^{p} + (A_{R}^{n} u, u) \geqslant \alpha \mid \mid u \mid \mid^{p} - \gamma$$

Lemma 2. The discretized problem (3.4) (3.5) has a solution, for k sufficiently small,

Proof. We shall prove that the problem (3.4) has a solution, for v_k^n and f_k^n given in V' and k sufficiently small.

For this observe that $u_k^n \stackrel{+ 1}{\overset{}{}_{}}$ is solution of (3.4) if and only if it is solution of the following variational inequality:

To find u_k^{n+1} in V such that:

$$(A_k^n \, u_k^{n+1} \ , v - u_k^{n+1}) + \frac{1}{k} \, \Phi_B \ (i(v)) - \frac{1}{k} \, D_B \ (i \, (u_k^{n+1} \,))$$

$$\geq (f_k^n + \frac{1}{k} v_k^n, v - u_k^{n+1})$$
 for all veV. (3.15)

The assumption A3 implies that if zeVand w ϵ ∂ Φ_{B} (z) then (see Rockafellar [13])

$$(\bar{\varphi}_{B} \circ i)(z') \ge (\bar{\varphi}_{B} \circ i)(z) + (w, z' - z) + \frac{1}{2} \beta |z' - z|^{p}$$
 (3.16)

and the lemma 1 gives:

$$\lim_{\|u\| \to \infty} \frac{\left(A_{k}^{n} u, u\right) + \frac{1}{k} \left(\mathcal{D}_{B} \circ i\right)(u)}{\|u\|} = \infty$$
(3.17)

The existence of a solution of (3.15) is now deduced from Lions [10, th. 8.5 II].

4. A PRIORI ESTIMATES.

In this paragraph the following a priori estimates will be obtained:

$$|u_k^n| \leqslant C_1 \tag{4.1}$$

$$k \sum_{n=0}^{s} || u_k^{n+1} || p \leq C_2 , 0 \leq s \leq N-1$$
(4.2)

$$k \sum_{n=0}^{s} \left| \left| \frac{u_k^{n+1} - u_k^n}{k} \right| \right| \stackrel{p/r}{*} \leq C_3 \quad 0 \leq s \leq N - 1$$
 (4.3)

were, C_1 , C_2 and C_3 denote some positive constants independent of k, n and s.

Multiplying (3.4) by u_k^{n+1} we obtain:

$$\frac{1}{k} \left(v_k^{n+1} \cdot v_k^n, u_k^{n+1} \right) + \left(A_k^n u_k^{n+1}, u_k^{n+1} \right) = (f_k^n, u_k^{n+1}). \tag{4.4}$$

Moreover, we have:

$$\sum_{n=0}^{s} (v_k^{n+1} - v_k^n, u^{n+1}) \ge \Phi_B^* (v_k^{s+1}) - \Phi_B^* (v^0)$$
(4.5)

because $v_k^n \in Bu_k^n$, $n=0,\,1,\,\ldots,\,N.$

This inequality implies:

$$\sum_{n=0}^{s} (v_k^{n+1} - v_k^n, u_k^{n+1}) \ge \frac{\beta}{2} |u_k^{s+1}|^p - \Phi_B^*(v^0)$$
(4.6)

because (Ekeland and Teman [8])

$$\hat{\mathbf{u}}_{\mathbf{B}}^{*}(\mathbf{v}_{\mathbf{k}}^{s+1}) + \hat{\mathbf{u}}_{\mathbf{B}}(\mathbf{u}_{\mathbf{k}}^{s+1}) = (\mathbf{v}_{\mathbf{k}}^{s+1}, \mathbf{u}_{\mathbf{k}}^{s+1})$$
(4.7)

and, on the other hand, from (3.16),

$$(\mathbf{v}_{k}^{s+1}, \mathbf{u}_{k}^{s+1}) \geqslant \frac{\beta}{2} |\mathbf{u}_{k}^{s+1}|^{p} + \Phi_{\mathbf{B}}(\mathbf{u}_{k}^{s+1})$$
(4.8)

Thus, by adding (4.4) from n = 0 to n = s, we obtain:

$$\frac{\beta}{2} |u_{k}^{s+1}|^{p} + k \sum_{n=0}^{s} (A_{k}^{n} u_{k}^{n+1}, u_{k}^{n+1}) \leq k \sum_{n=0}^{s} (f_{k}^{n}, u_{k}^{n+1}) + \Phi_{B}^{*} (v^{0}) \quad (4.9)$$

from which it follows that:

$$|\mathbf{u}_{\mathbf{k}}^{\mathbf{n}}| \leqslant \mathbf{C}_{\mathbf{1}} \tag{4.10}$$

$$k \sum_{0}^{s} ||u_{k}^{n+1}||^{p} \leq C_{2}$$
 (4.11)

for k ϵ (0, k], $\frac{1}{k} < \frac{\beta}{2 \omega}$, by using the discrete Gronwall's lemma 1 and the remark 3.1.

Moreover, from (4.11) and the remark 2.3 we obtain:

$$\begin{vmatrix}
s \\ k \sum_{n=0}^{\infty} & \left| \left| \frac{v_k^{n+1} - v_k^n}{k} \right| \right| p' \leq C_5
\end{vmatrix} (4.12)$$

By using (A3) we finally deduce the estimate (4.3).

5. Passing to the limit

From the a priori estimates obtained in the previous paragraph we deduce the existence of subsequences, still denoted $\,u_k\,$, $\,v_k\,$, such that:

$$\pi_k u_k \longrightarrow u \qquad \text{in } L^p(0,T;V) \text{ weak}$$
and $L^p(0,T;H) \text{ strong}$

$$(5.1)$$

$$\pi_k v_k \longrightarrow v$$
 in $L^p(0,T;H)$ weak star and $L^{p'}(0,T;V')$ strong

$$\nabla_{\mathbf{k}} \pi_{\mathbf{k}} \mathbf{u}_{\mathbf{k}} - \frac{d\mathbf{u}}{dt} \qquad \text{in } \mathbf{L}^{\mathbf{p}'/\mathbf{r}} (0, \mathbf{T}; \mathbf{V}') \text{ weak}$$
 (5.3)

$$\nabla_{\mathbf{k}} \pi_{\mathbf{k}} \mathbf{v}_{\mathbf{k}} - \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{t}} \qquad \text{in } \mathbf{L}^{\mathbf{p}'}(0, T; \mathbf{V}') \text{weak}$$
 (5.4)

$$\pi_k A_k u_k \rightarrow X$$
 in $L^{p'}(0, T; V')$ weak (5.5)

$$\Lambda_{\mathbf{k}} \ \mathbf{v}_{\mathbf{k}} \ \longrightarrow \ \mathbf{v} \qquad \text{in C ([0, T]; V')} \tag{5.6}$$

because A and ϑ Φ_B o i are bounded and i is compact. In particular, (5.6) follows from the Ascoli's theorem.

By passing to the limit in (3.4) we obtain

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{f}} + \mathbf{X} = \mathbf{f} \tag{5.7}$$

The next step is to prove that $v(t) \in B(u(t))$ and X(t) = A(t, u(t)) a.e. on (0,T).

For this, first note that from (5.1) and (5.2) we have

$$\lim_{k \to 0} \int_{0}^{T} (\pi_{k} v_{k}, \pi_{k} u_{k}) dt = \int_{0}^{T} (v(t), u(t)) dt, \qquad (5.8)$$

which implies $v(t) \in B(u(t))$, by using lemmas 2 and 3 of Grange and Mignot [9].

Multiplying (3.4) by u_k^{n+1} and then adding from n=0 to n=N-1 we obtain:

$$(\Phi_{B} \circ i)^{*} (v_{k}^{N}) + \int_{0}^{T} (A(t, \pi_{k} u_{k}), \pi_{k} u_{k}) dt$$

$$\leq (\Phi_{B} \circ i)^{*} (v_{0}) + \int_{0}^{T} (f, \pi_{k} u_{k}) dt.$$
(5.9)

and letting k - 0, (5.9) gives

$$(\Phi_{\mathbf{B} \circ \mathbf{i}})^* \, \mathbf{v}(\mathbf{T}) + \lim_{k \to 0} \sup \int_{0}^{\mathbf{T}} (\mathbf{A}(\mathbf{t}, \pi_{\mathbf{k}} \, \mathbf{u}_{\mathbf{k}}), \pi_{\mathbf{k}} \, \mathbf{u}_{\mathbf{k}}) \, \mathrm{d}\mathbf{t}$$

$$\leq (\Phi_{\mathbf{B} \circ \mathbf{i}})^* \, (\mathbf{v}_{\mathbf{0}}) + \int_{0}^{\mathbf{T}} (\mathbf{f}, \mathbf{u}) \, \mathrm{d}\mathbf{t}$$

$$(5.10)$$

On the other hand, we are going to show the equality:

$$(\Phi_{B} \circ i)^{*} \vee (T) - (\Phi_{B} \circ i)^{*} (v_{0}) = \int_{0}^{T} (\frac{dv}{dt}, u) dt$$
 (5.11)

We have

$$v \in B u \le u \in \partial (\Phi_B \circ i)^* (v)$$
 (5.12)

and by using the chain rule we deduce

$$\frac{\mathrm{d}}{\mathrm{dt}} \left(\Phi_{\mathbf{B}} \circ i \right)^* (\mathbf{v}) = \left(\frac{\mathrm{dv}}{\mathrm{dt}} , \partial \left(\Phi_{\mathbf{B}} \circ i \right)^* (\mathbf{v}) \right)_{\mathbf{V}'\mathbf{V}} = \left(\frac{\mathrm{dv}}{\mathrm{dt}} , \mathbf{u} \right)_{\mathbf{V}'\mathbf{V}}$$
 (5.13)

Finally, integrating (5.13) between 0 and T we obtain (5.11).

By replacing the inequality (5.11) in (5.10) it follows that

$$\lim_{k \to 0} \sup_{0} \int_{0}^{T} (A(t, \pi_{k} u_{k}), \pi_{k} u_{k}) dt \leq \int_{0}^{T} -(\frac{dv}{dt}, u) dt + \int_{0}^{T} (f, u) dt = \int_{0}^{T} (X, u) dt$$

which allows to conclude that X = A(t, u), by using the assumption A5.

6. APPLICATION

Let Ω be an open bounded set in \mathbb{R}^N with a smooth boundary τ . We consider the following parabolic equation:

$$\frac{\partial}{\partial t} v(x,t) \cdot \sum_{j=1}^{N} \frac{\partial}{\partial x_{j}} (A_{j}(x,t,u,\nabla u)) = h(x,t)$$
 (6.1)

a. e. in $Q = \Omega \times]0, T[$

$$v(x, t) \in \beta(x, u(x, t))$$
 (6.2)

a.e. in Q

with the boundary condition:

N

$$\Sigma \quad A_{j}(x, t, u, \nabla u) v_{j} + a(x, t) u(x, t) = g(x, t) \text{ on } \Sigma = L^{p'}]0, T[$$
 (6.3)

and the initial condition:

$$v(x,0) = v_0(x) \qquad in \Omega. \tag{6.4}$$

A particular case of (6.1) - (6.4) arises, for example, when looking for a variational formulation of a Stefan problem, modelling heat transfer during solidification in a nonhomogeneous medium with heat capacity and thermal conductivities dependent on the temperature, and with convection in the liquid phase (see Bermúdez and Durany [2] and Durany [7]).

More precisely, this problem corresponds to the following choices:

 β (x, u): Specific enthalpy per unit of volume at the point x, as a multivalued function of the temperature.

$$A_{j}(x, t, u, \nabla u) = \sum_{i=1}^{N} k_{ji}(x, u) \frac{\partial u}{\partial x_{i}} + w_{i}(x, t) (u - u_{M})^{+} \text{ where } k_{ji} \text{ represents}$$

the thermal conductivity tensor, \vec{w} is the velocity field, supposed to be divergence free and u_M denotes the melting point.

In order to apply the theorem 1 to (6.1) - (6.4), we suppose the following assumptions:

- a) β is the subdifferential of a normal convex integrand on $\Omega \times \mathbb{R}$ (Rockafellar [12]), i. e. $\beta(x, u) = \partial_{11} \Psi(x, u)$ a. e. in Ω .
- b) $|v| \le a_1 |w|^{p-1} + a_2$, for all $w \in \mathbb{R}$, $v \in \beta(x, w)$ for some constants a_1, a_2 and 1 .
 - c) There exists a constant b > 0 such that:

$$(v_1 - v_2)(u_1 - u_2) \ge b |u_1 - u_2|^p$$

for all
$$u_i \in R$$
, $v_i \in \beta(x, u_i)$, $i = 1, 2$.

d) The functions

$$A_{i} \colon (x,t,\eta,\xi) \in \Omega \times] \ 0, T \ [x \mathbb{R} \times \mathbb{R}^{N} \ \longrightarrow \ A_{i} \ (x,t,\eta,\xi) \in \mathbb{R}$$

are measurable in x and t, and continuous in η and ξ a. e. in Q.

e)
$$|A_j(x,t,\eta,\xi)| \le [|\eta^{p-1}| + |\xi|^{p-1} + k(x,t)]c$$
 where c is a positive constant and $k \in L^{p'}(Q)$.

$$f) \ \underset{|\xi| \rightarrow \infty}{\underset{\text{lim inf}}{\underset{\Sigma}{\text{inf inf}}}} \int\limits_{j=1}^{N} \ \frac{A_{j}\left(x,t,\eta,\xi\right)\xi_{j}}{|\xi|^{p}} \!>\! 0.$$

g)
$$\sum\limits_{j}\left(A_{j}\left(x,t,\eta,\xi\right)\cdot A_{j}\left(x,t,\eta,\xi^{*}\right)\left(\xi\cdot\xi^{*}\right)>0$$
 for all $\xi,\xi^{*}\in\mathbb{R}^{N}$, $\xi\neq\xi^{*}$. a.e. in Q .

h)
$$a \in L^{\infty}(\Sigma)$$
, $a \ge 0$ a.e. on Σ

$$\mathrm{h}\,\epsilon\,\mathrm{L}^{\infty}(0,\mathrm{T};\mathrm{L}^{p'}(\Omega));\frac{\mathrm{d}\mathrm{h}}{\mathrm{d}\mathrm{t}}\,\epsilon\,\mathrm{L}^{p'}(0,\mathrm{T};\mathrm{L}^{p'}(\Omega))$$

Taking $V = W^{1, p}$ (Ω) and $H = L^{p}$ (Ω), it can be shown (Lions [10]) that the operators B defined by:

$$B(u)(x) = \beta(x, u(x)) \qquad a. e. \text{ in } \Omega$$
 (6.5)

and Agiven by:

$$(A u, v) = \sum_{j=1}^{N} \int_{Q} A_{j}(x, t, u, \nabla u) \frac{\partial v}{\partial x_{j}} dxdt + \int_{\tilde{\Phi}} \Sigma a(x, t) u v d\Sigma(6.6)$$

satisfy the assumptions A2 to A6 and hence the theorem 1 gives the existence of the solution of (6.1) - (6.4).

Remark 6. 1. A problem similar to (6.1) - (6.4) has been recently considered by Niezgodka and Pawlow [11] who have proved an existence theorem for it. However their result cannot be applied to our situation because they assume that A_j is C^2 in x and this hypothesis is not generally satisfied by Stefan problems in nonhomogeneous media. On the other hand, in [11] A_j is supposed to be independent on ∇u and consequently convective heat transfer cannot be considered.

REFERENCES

- V. BARBU, Existence for nonlinear Volterra equations in Hilbert space. SIAM J. Math. Anal. 10 (1979) 552-569.
- A. BERMUDEZ and J. DURANY, Mathematical model for the solidification of a metal casting in a mold. Proceedings of IMACS. Nantes, France (1983). North Holland Publishing Company (To appear).
- 3. A. BERMUDEZ and C. SAGUEZ, Une équation nonlinéaire intervenant en solidification. INRIA Report n. 34 (Septembre 1980).
- 4. H. BREZIS. Operateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert. North Holland (1973).
- 5. B. CALVERT, The equation A(t, u (t))' + B (t, u (t)) = 0. Math. Proc. Phil. Soc. 79 (1976), 545-562.
- 6. E. DI BENEDETTO and R. E. SHOWALTER, Implicit degenerate evolution equations and applications. SIAM J. Math. Anal. 12, 431-751 (1981).
- J. DURANY, Contribución al estudio matemático del problema de Stefan en medios no homogéneos. Tesis. publicaciones del Departamento de Ecuaciones Funcionales. Universidad de Santiago (1983).
- 8. I. EKELAND and R. TEMAN, Analyse convex et problèmes variationnelles, Dunod Gauthier Villars, Paris (1974).
- 9. O. GRANGE and F. MIGNOT, Sur la resolution d'une équation et d'une inéquation paraboliques non-linéaires. J. of Funct. Anal. 11 (1972), 77-92.
- 10. J. L. LIONS, Quelques méthodes de résolution de problèmes aux limites non-linéaires. Dunond Gauthier-Villars, Paris (1969).
- 11. M. NIEZGODKA nad PAWLOW, A gereralized Stefan problem in several space variable. Applied Mathematics and Optimization, vol. 9, no 3, 193-225 (1983).
- R. T. ROCKAFELLAR, Convex integrals functionals and duality. In Contributions to nonlinear functional analysis. E. H. Zarantonello Ed., Academic Press, New York (1971).
- 13. R. T. ROCKAFELLAR, Monotone operators and the proximal point algorithm. SIAM J. on Control and Opt. 14 (1976), 877-898.
- 14. R. E. SHOWALTER, Nonlinear degenerate evolution equations and partial differential equations of mixed type. SIAM J. on Math. Anal. 6 (1975), 25-42.