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ABSTRACT.

In this paper we prove the existence of a solution for a non linear evolution
equation of the form:

_d B () +A(t,u(t) 21t
dt
Where A and B are nonlinear operators, possibly multivalued.

The proof is based on implicit discretization in time and passing to the
limit as the time step goes to zero.

An application to a Stefan problem, arising from the solidification of a
metal in a mould, is given.

1. INTRODUCTION.

Let V be a reflexive separable Banach space and H a Hilbert space such that
V is densely included in H. )

Let us denote by | | | | (respectively | 1) the norm in V (resp. in H) and by
V' the topological dual of V. As usually, let | | | ¢ be the dual norm in V'. By
identifying H to its topological dual space H', we have VCHCV'.
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Let us consider 2 a proper convex lower semicontinuous function from H
to (-e0, 0] which is supposed to be continuous at some point of V. Its subdifferen-
tial 9 @ g is the maximal monotone operator given by for example Brezis [4]):

ved @ (u)ifand only if (v, w—u) < & (W) — & (v) for allw e H. (1.1
Let B be the multivalued operator from V to V'defined by:
B=i*0d0®g0i 1.2)

Where i : V - H denotes the injection from V into H and i* its dual map.
Finally, let A ('t, * ) be a family of operators from V to V'.

This paper deals with the following nonlinear evolution equation:
4 B@®)+AC )2 £() 13
dt

Where f is a given function from [0, T] to V'

The purpose is to prove the existence of a solution for the initial value
problem:

Find two functions u and v such that:

4 vi{t) tA(t,u(t))af(t) a.e.on[0, T] ('1.4)
dt

v(t) eB(u(t)) a.e.on[0,T] - (1.5
V(0)=V0 (16)

Where v, is arbitrarily given in the range of B.

For this, it is assumed that iis a compact map, 8 &, is a strongly monotone
bounded operator on V and A (t, - ) are uniformly bounded weakly coercive
operators which define a map from LP (0, T; V) to LP' (0, T; V'),L 1 L
pseudomonotone on the space W (0, T) (*) (Lions [10]). p P ,

Implicit evolution equations like (1.3) have been considered in many arti-
cles (Grange and Mignot [9], Showalter [14], Calvert [5], Barbu [5], Di Benede-
tto and Showalter [6], Bermudez and Saguez [3]).

d
WO ={uel? 0,T:V);— e LP' (0, T; V)



An existence theorem for an implicit nonlinear evolution equation 21

The existence of a solution is proved in Grange and Mignot [9] and Barbu
[1], essentially assuming that A is the subdifferential of a coercive continuous
convex function on V and then, in particular, independent of t.

More recently, Di Benedetto and Showalter [6] have obtained the existence
for a more general case in which A is also independent of t and A and B are ma-
ximal monotone operators, but only one of them has to be a subdifferential.

On the other hand, in Bermudez and Saguez [3], A is taken to be the sum
of a subdifferential and another time dependent operator which is dominated
by A. Existence of a solution for (1.4) - (1.6) is proved by relaxing the coerci-
veness of A but assuming 3 3, is strongly monotone.

The method used in this paper is similar to that used in Grange and Mignot
[9] or in Bermudez and Saguez [3]. It consists on introducing an implicit time-
discretized problem and then passing to the limit as the time step goes to
zZero.

By not requiring A to be a maximal monotone operator, new applications
to nonlinear partial differential equations can be obtained. As an example, a
Stefan problem in a nonhomegeneous medium, with thermal parameters depen-

ding on the temperature and convective heat transfer in the liquid phase, is con-
sidered.

2. THE MAIN RESULT

We do the following assumptions:

The injection of V into H is compact. (AD)
0 dp - iisbounded. (A2)

1. @ @y is strongly monotone on i (V) in the following sense: there exists a
positive constant §and a real number p, 1 <p <o, such that:

(vq-vy,u; -uy) =B vy -y, | p,v;e(@dg-)(y),uyeV,j=1,2. (A3)
2. There exists a positive constant M and a real number r, 1< r <o, such that.

I|(a (bla)-1 (Vl)'(a ®B)-l (vz) ||*<M llvl 'v2l|l; ,WithVI,V2 eH
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There exist two positive constants M; and M, such that

AV e <My v [P +M, (A4)

The operator A defined by (Au) (t) = A(t,u (1)) a. e. on [0, T], maps the space
LP (0, T; V) into the space LP' (0, T; V') and has the following continuity
property:
ifuj>uinLP (0, T; V) weak (A5)
u > u'in LP'/T (0, T; V') weak

T
and lim sup ] (Alt,u; (1), v (1) —u (1)) dt <O

0

j—)oo

T
then lim inf [ . (A(t, u; (1), u; (t) —v (1)) dt =

J> o0
T
>] (A(t,u (t),u ) —v(t))dt for all ve LP (0, T; V)
0

A is weakly coercive in the following sense: (A6)

There exists a constant w such that :

T
s [wlu @) I? + (At u(t),u(t)]dt

lim inf 0 >0
Hull oo lfu 1P
LP (0,T;V) LP0,1;Vv)
Remark 2.1.

Since g is assumed to be continuous at some point of i(V), it follows from
" Ekeland and Teman [8] taht B =9 (§; - i). Hence A2 implies dom (B) =V and
@, is finite and continuous on i(V). In particular, it can be supposed that 4 (0)
=0.
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Remark 2.2

Assumptions Al and A2 show that B is compact, i.e., maps bounded sets of
V into relatively compact sets of V'.

Remark 2.3.

Assumption A4 implies:that A is bounded.
The main result of this paper is the following:

Theorem 1. Under the assumptions (A1) — (A6), for every f given in LP' (0, T;
V') and vy given in the range of B, there exist u e LP (0, T; V) and v € L o

du ' dv [
(0, TH), with =~ e LP o, 1:v), oy €L (0.T: V'), such that:
t

div(t) +A(tut) = () a.e.te[0,T] (2.1)

t

1 v({t)eB(u) a.e.te [0, T] (22)
v (0) = v, (2.3)

Remark 2.4

The equality (2.3) makes sense in V' because ve C ([0, T ]; V").

3. PROOF OF THEOREM 1.

T
Let Nbe a positive integer and k =<+ For @°,....,aN)e EN*! Ebeinga
Banach space, we denote by 7 4 (a) the step function on [0, T] defined by:
T (@) () =2"""if nk <t<(n+1)k, n=0,..., N-I (3.1)
m (a) (0)=a0 (3.2)

and by Ay (a) the continuous function from [0, T] to E, linear on each in-
terval {nk, (n +1) k] and such that:

Ay (a) (nk)=an =0,...,N 3.3)
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. 3 d
Finally, we denote by V . 7 (a) the step funcion q Vi (@).
t

Consider the following descretized problem:

Tofind(u(l)(,...,uli)eVN+1suchthat:
vn +1 vn
k n _n+ln +1 n-+H
+Apul =6 LV €B n=0,...., N-1
« k "k % 'k %,
0 _
V=V
Where
fn 1 (n H)k
== |f (1) dt, n
Kk K () f EV'
nk k
n

and A the operator from V to V' défined by:
k

Aly=1

k
K J(HH) A(t, u) dt.

nk

(3.4)

(3.5)

(3.6)

(3.7)

In order to prove the existence of a solution for this discretized problem, we

state the following lemmas:

Lemma 1. The operator AE defined by (3.7) verifies:

@) AR il <M 1lu 1P 4,
(i) A’ is pseudomonotone from V to V', i. e. (Lions [10]):
If uj uin V weak,
and lim ?iio (AE uj, uj —u) <0

then lim inf (An u,, u, —v) = (An u,u—v), forallve V.
j>o0 k7§ k
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(i) lim inf >a>0.
ITu | |00 HullP

Proof: Firstly i) and tii) follows immediately from A4 and A6.

To prove ii) observe that, from the compactness assumption Al, we have
Iuj-u | <k for j large enough.

Moreover, we may suppose that u, is different from u for allj. These facts
allow to define the following functions:

t*— nk
4y—— (u—u) ifnk — [u; —u I<t<nk (3.8)
J 3
fuj— ul
Y ifnk<t<(n+1)k
u; ()=
t—(nt))k
y— ——————— (W if +FDk<t<(nFDk+ y—ul
lu; —u
u otherwise.

Let U be defined by u (t)=ufor allte [0, 1t].

Then it is not difficult to see that u i— UinL” (0, T; V) weak star
and 3}——» u ‘in L2 (0, T; V") for arbitrary q e (1,0 ). In particular,
u,

; — UinLp (0, T; V) weak. (3.9)

and

U} — u'inLP7 (0, T; V') weak. (3.10)

Moreover, by using the assumption A4, we obtain:

T ~ ~ o~
lim sup J A(uju-u ) dt< (3.11)
0

j—»oo
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nk
< lim sup ] (AG T (), 75 () ) dt +

; nk — ly;—u |

j—oo
(n+1)k

+1im sup ] (A(t,uj), u—-u) dt +
j —00
(n+1k +ly;—ul
+1im sup N _
j— oo (n+Dk (A(t, T (1), Uj (t) —u) dt <0

Now, the assumption A5 implies:

T
lim inf I (A, U5 (), 75 () =V @®) dt (3.12)

T
> ] (A(t, 0 (1),0 (t) =V (t) dt for all V € LP (0, T; V).
0

Forevery vin V, let V be defined by:

v ifnk<t<(n+1)k

V(t)={

u  otherwise (3.13)

By putting this ¥ in (3.12) we obtain:

n
lim inf (A uj uj——v)>(A: u, u—v) (3.149)
k

j=>oo
Which completes the proof.

Remark 3.1.

From i) and iii) in the lemma 1 we can deduce the existence of a constant v,
independent of k and n, such that:

wlul?+(A% v, W>allull?—y
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Lemma 2. The discretized problem (3.4) (3.5) has a solution, for k sufficiently
small,

Proof. We shall prove that the problem (3.4) has a solution, for v: and f: given

in V' and k sufficiently small.

For this observe that u® T solution of (3.4) if and only if it is solution
of the following variational inequality:

To find ul? *1 in V such that:
AR up* v+ @ (0D~ 3 GEG™)

v—u! *1 forall veV. (3.15)

The assumption A3 implies that if zeVand w € 8 ®5 (z) then (see Rockafe-
llar [131])

(oD (@)2 (2500 () +(w,7 —2) +%— glz —z|P (3.16)

and the lemma 1 gives:

lim

(A7 w,u) +1 (2 0i)(u)

Iy |1 oo ull (G.17)

The existence of a solution of (3.15) is now deduced from Lions [10, th.
8.5 1Ij.

4. APRIORI ESTIMATES.

In this paragraph the following a priori estimates will be obtained:

lu? I<cC, (4.1)
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s

k2 g™ iIP<C, ,0<s<N-1 (4.2)
n=0
s unﬂ-u" p/t
k 2 _kk_k <C; O0<s<N-I (4.3)
*
=0

were, C;, C; and C3 denote some positive constants independent of k, n
and s.

Multiplying (3.4) by u' we obtain:

% (v]?H 'V]l: , ukni-l) + (All'(l ukn-i-l’ uni-l) =(fn , “l](MI)' (44)

Moreover, we have:

8

T (peve,u™ S8 (P -8 ¢0) (4.5)
n=0 »
because vy eBul': ,n=0,1,...,,N.

This inequality implies:

S
I R 60 “6)

because (Ekeland and Teman [8])

N A IR N ) T U AR Al “4.7)
and, on the other hand, from (3.16),
8 ,
(¢+l’u;+l)>;_h§+llp +(DB (u;+ 1) (48)

Thus, by adding (4.4) from n =0 to n = s, we obtain:

. s s
Bl 4k T @Apult upt <k B oLt +ay (0) (49)
2 n=0 n=0
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from which it follows that:

luf I<c, (4.10)

S
kT it <, (4.11)
1]

for k e (0, K 1, I: <£— , by using the discrete Gronwall’s lemma, the lemma
2w
1 and the remark 3.1.

Moreover, from (4.11) and the remark 2.3 we obtain:

5 P <C;s (4.12)

n=0

By using (A3) we finally deduce the estimate (4.3).

5.PASSING TO THE LIMIT

From the a priori estimates obtained in the previous paragraph we deduce

the existence of subsequences, still denoted u, v, ,such that:
W, — U in L? (0, T; V) weak (5.1)
and L? (0, T; H) strong
Te Vg — V in L? (0, T; H) weak star (5.2)
and LP' (O, T; V) strong
v : du
Ty Uy, —= ——
k Tk Tk dt in LP’/t (0, T; V') weak (5.3)
dv
Vie T Ve — dt in LP (0, T; V)weak (5.4)
m Ay — X in LP'(0, T; V') weak (5.5)
A Vg — v inC([0,T]; V) (5.6)

because A and 3 P o i are bounded and i is compact. In particular, (5.6)
follows from the Ascoli’s theorem.
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By passing to the limit in (3.4) we obtain

E + X=f ' (5.7)

The next step is to prove that v(t) e B(u(t)) and X(t) = A(t, u(t)) a.e. on
0. T).

For this, first note that from (5.1) and (5.2} ¢ have

T T
lim ] (1 vy T Uy) At = ] (v(t), u(t)) dt, (5.8)
k-0 J 0 0

which implies v(t) € B(u(t)), by using lemmas 2 and 3 of Grange and Mignot
[9].

Multiplying (3 4) by u{(‘* Yand then adding from n =0 to n = N-1 we obtain:
T ,

T
<(LI)B o l)* (VO) + ]O (f, 7Tk uk) dt.

and lettingk — 0,(5.9) gives

T
(@0 )* v(T) + lim sup I (A(t,m u),me vy ) At (5.10)
k>0 J0 ;

T
<( bgoi)*(vp) +I (f, u) dt
0

On the other hand, we are going to show the equality:

s , o T dv
(@goi)" V(D -( @wgoi) (vg)= jo Et-’u)dt (5.11)

We have
veBu<=> ued( Ppoi)* (V) (5.12)
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and by using the chain rule we deduce

d * dv " dv

_— i = (— D 1 =(— 5.13
g (B o)) M=(5,0(H o) Myy=(g . Wyy (5.13)

Finally, integrating (5.13) between O and T we obtain (5.11).

By replacing the inequality (5.11) in (5.10) it follows that

T T 4 T
lim sup ] (At,mu ), mu )dt< s —(—,u)dt + ] (f,u)dt =
T
s X,u) dt
0

which allows to conclude that X = A (t, u), by using the assumption A5.

6. APPLICATION

Let £ be an open bounded-set in RN with a smooth boundary 7. We consi-
der the following parabolic equation:

N 9
0 v(xt)- T _ (A;(x,t,u,Vu) =h(x, 1) (6.1)
at i=1 axj
a.e. nQ=Qx]0,T]
vix, t) eB(x,u(x,1)) (6.2)

a.e. inQ

with the boundary condition:
N
T A& tuVu)y +alx,t)u(x,)=g(x,t)onT=LP"]0, T[ (6.3)
=1

and the initial condition:

v (x,0)=v, (x) in Q. (6.49)
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A particular case of (6.1) - (6.4) arises, for example, when looking for a
variational formulation of a Stefan problem, modelling heat transfer during
solidification in a nonhomogeneous medium with heat capacity and thermal
conductivities dependent on the temperature, and with convection in the liquid
phase (see Berm(dez and Durany [2] and Durany [7] ).

More precisely, this problem corresponds to the following choices:
B (x, u): Specific enthalpy per unit of volume at the point x, as a multivalued

function of the temperature.
. N 3
Aj (x,t,u,Vu) =i§1 kji (x, u) a—i +w; (%, 1) (u-uy ) where kji represents

i

the thermal conductivity tensor, W is the velocity field, supposed to be diver-
gence free and uy; denotes the melting point.

In order to apply the theorem 1 to (6.1) - (6.4), we suppose the following
assumptions:

a) B is the subdifferential of a normal convex integrand on £ xR (Rockafe-
llar [12]),i.e.B(x,u) =3 ¥(x,u)a.e. in Q2.

b) lvi<a; Iw P! +a,, forall weR, v ef(x,w) for some constants
ay,a, and 1<p< oo,

¢) There exists a constant b > Osuch that:
(vi -va)(ug -uy) = bluy -u, [P
forally, eR,v;eB(x,u),i=1,2.
d) The functions
Aj (x5 1,1,8e2x]0,T[xR xRN — A;(x,t,m,8) eR
are measurable in x and t, and continuous in  and £ a.e.in Q.

e) IAj(x,t,'n,E) IS[IgP Y1 +1E1P? +k(x,t)]c

where c is a positive constant and k e LP’ (Q).
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I | > oo g |P

>0.

g)?(Aj(X,t,"?,f)'A](x;t,n,z*)(‘f'f*)>0
forallg,§*eRN, £ #£*. ae inQ.

h) aeLl"(¥), a=0 a.e.onX
- , dh , ,
hel”(0,T;LP (Q));E eLP (0,T;LP ()

gel” (0, T;LP (1));g'e LP (0, T; L7 (7))
Vo € LP ().

Taking V=W':P (©) and H=LP (), it can be shown (Lions [10] ) that
the operators B defined by:

B (x) = B(x,u(x)) a.e. in (6.5)

and Agiven by:

N v
(Au,v) = X2 j Aj (x,t,u,Vu) — dxdt +IZa(x,t)uV'dZ(6.6)
=1 Q axj P

satisfy the assumptions A2 to A6 and hence the theorem 1 gives the existen-
ce of the solution of (6.1) - (6.4).

Remark 6. 1. A problem similar to (6.1) - (6.4) has been recently considered by
Niezgodka and Pawlow [11] who have proved an existence theorem for it. Howe-
ver their result cannot be applied to our situation because they assume that Aj is
C? in x and this hypothesis is not generally satisfied by Stefan problems in
nonhomogeneous media. On the other hand, in [11] Aj is supposed to be inde-
pendent on Vu and consequently convective heat transfer cannot be considered.
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