A NOTE ON SPACES OF HOLOMORPHIC VECTOR VALUED FUNCTIONS WITH THE STRICT TOPOLOGY

by

JOAQUIN MOTOS AND JOSE L. HUESO

ABSTRACT:

In this note we prove that if Ω is a simply connected open set in the complex plane and E is a Krein space with separable strong dual then the space of all bounded holomorphic functions of Ω into E, endowed with the strict topology, is a Rosenthal space.

The vector spaces used here are defined over the complex field $\mathbb C$. Hereinafter, E will denote a locally convex space, $\hat{\mathbb E}$ its completion and E' its topological dual. E_b' will stand for the strong dual of E. We say E to be a *Krein* space if the closed absolutely convex cover of each compact subset of E is also compact. Having in mind the characterization of Rosenthal ([5]) for the Banach spaces which do not contain closed subspaces topologically isomorphic to 1^1 , we say E to be a *Rosenthal space* if every bounded sequence in E has a weakly Cauchy subsequence. If Ω is an open subset of $\mathbb C$, $H^\infty(\Omega; E)$ will be the space of all bounded holomorphic functions of Ω into E. If $E = \mathbb C$, we simply write $H^\infty(\Omega)$. Let h be a function of Ω into $\mathbb C$ bounded and vanishing at infinity, p a continuous seminorm on E and ϕ a function in $H^\infty(\Omega; E)$. The formula

$$p_{h}(\phi) = \sup_{z \in \Omega} |h(z)| p(\phi(z))$$

defines a seminorm p_h on $H^{\infty}(\Omega; E)$. The topology β generated by the family of all p_h -type seminorms is called the *strict topology*. We denote by $H^{\infty}(\Omega; E)_{\beta}$ the space $H^{\infty}(\Omega; E)$ endowed with this topology.

Within the class \mathcal{K} of Krein spaces we set the following question: Is $H^{\infty}(\Omega; E)_{\beta}$ a Rosenthal space when $E \in \mathcal{K}$ is a Rosenthal space and Ω is a simply connected domain? The answer is affirmative if E is a semirreflexive gDF-space with separable strong dual ($E \in \mathcal{K}$ since by [4], p. 263, it is complete; E is a Rosenthal space since E'_{b} is separable): In fact, in this case the space

 $(\operatorname{H}^{\infty}(\Omega; E)_{\beta})'_{b}$ is topologically isomorphic to $(\operatorname{H}^{\infty}(\Omega)_{\beta})'_{b} \, \hat{\otimes}_{\pi} \, E'_{b}$ (see [1], Th. 2.11) and since $(\operatorname{H}^{\infty}(\Omega)_{\beta})'_{b}$ is separable (see [3], p. 227), $(\operatorname{H}^{\infty}(\Omega; E)_{\beta})'_{b}$ is separable. Then $\operatorname{H}^{\infty}(\Omega; E)_{\beta}$ is a Rosenthal space. In particular, $\operatorname{H}^{\infty}(\Omega; \operatorname{H}^{\infty}(\Omega)_{\beta})_{\beta}$ is a Rosenthal space, since $\operatorname{H}^{\infty}(\Omega)_{\beta}$ is a semi-Montel gDF-space ([6]).

In this note we answer the former question in the case in which the space $E \in \mathcal{K}$ has separable strong dual.

THEOREM: If Ω is a simply connected open subset of the complex plane and E is a Krein space with separable strong dual then $H^{\infty}(\Omega; E)_{\beta}$ is a Rosenthal space.

Proof: If Ω is the whole \mathbb{C} , the space $H^{\infty}(\Omega; E)_{\beta}$ is topologically isomorphic to E, and so it is a Rosenthal space. Let us now suppose $\Omega \neq \mathbb{C}$. We first consider the case when Ω is connected. By Riemann's conformal mapping theorem, Ω is conformally equivalent to the unit disc U of \mathbb{C} and so $H^{\infty}(\Omega; E)_{\beta}$ is topologically isomorphic to $H^{\infty}(U; E)_{\beta}$. It suffices then to prove that $H^{\infty}(U; E)_{\beta}$ is a Rosenthal space. We argue as in the proposition 2.9. of [5], p. 237, using that the Mac Laurin's series of a function ϕ in $H^{\infty}(U; E)$ converges to ϕ uniformly on on compact sets of U (see [4], p. 362), to prove that $H^{\infty}(U) \otimes E$ is a dense subspa-

ce of $H^{\infty}(U; E)_{\beta}$. Thus the space $H^{\infty}(U; E)_{\beta}$ is topologically isomorphic to $H^{\infty}(U)_{\beta} \stackrel{\diamond}{\otimes}_{\epsilon} E$. Consider now a bounded sequence (ϕ_n) in $H^{\infty}(U; E)_{\beta}$. Let (e'_n) be a dense sequence in E'. The sequence $(e'_1 \circ \phi_n)$ is bounded in $H^{\infty}(U)_{\beta}$ and by the proposition 5 of [2] we can find a convergent subsequence $(e'_1 \circ \phi_{1n})$ in $H^{\infty}(U)_{\beta}$. By the same argument a convergent subsequence $(e'_2 \circ \phi_{2n})$ can be obtained from $(e'_2 \circ \phi_{1n})$ and so on. We shall prove that the diagonal subsequence (ϕ_{nn}) is weakly Cauchy in $H^{\infty}(U; E)_{\beta}$. It is easy to see that for every $e' \in E'$ the sequence $(e'_3 \phi_{nn})$ is convergent in $H^{\infty}(U)_{\beta}$, since this space is complete and E'_b is separable. Fix now $\omega \in (H^{\infty}(U; E)_{\beta})$. We shall show that the sequence $(<\phi_{nn}, \omega>)$ is convergent. Associated to ω , by the topological isomorphism before stated, there are closed absolutely convex neighbourhoods of the origin V and W in $H^{\infty}(U)_{\beta}$ and E, respectively, and a Borel regular measure μ on the compact set V° x W° (V° and W° endowed with their corresponding weak topologies) such that

$$<\phi$$
, $\omega>$ = $\int_{V^{\circ} \times W^{\circ}} , $\nu> d\mu(\nu, e')$$

for every $\phi \in H^{\infty}(U; E)$. For each $(\nu, e') \in V^{\circ} \times W^{\circ}$ the sequence $(< e'_{\circ} \phi_{nn}, \nu >)$ is convergent because $(e'_{\circ} \phi_{nn})$ is convergent in $H^{\infty}(U)_{\beta}$. Also

$$\sup_{(\nu, e', n) \in V^{\circ} \times W^{\circ} \times \mathbb{N}} |\langle e'_{\circ} \phi_{nn}, \nu \rangle| < \infty$$

since the set $\{e'_{\circ}\phi_{nn}, (e', n) \in W^{\circ} \times \mathbb{N}\}$ is bounded in $H^{\infty}(U)_{\beta}$ (because the set $\cup \{\phi_{nn}(U), n \in \mathbb{N}\}$ is bounded in E and W° is bounded in E'_{b}) and V° is bounded in $(H^{\infty}(U)_{\beta})'_{b}$. By Lebesgue's dominated convergence theorem the sequence

$$<\phi_{nn}, \omega> = \int_{V^{\circ} \times W^{\circ}} d\mu(\nu, e')$$

Let us now examine the case of Ω non connected. The connected components Ω_i , $i \in J \subset \mathbb{N}$, of Ω are simply connected domains. If ϕ is a function defined on Ω , we denote by ϕ^i the function such that $\phi^i(z) = \phi$ (z) if $z \in \Omega_i$ and $\phi^i(z) = 0$ otherwise. Let (ϕ_n) be a bounded sequence in $H^{\infty}(\Omega; E)_{\beta}$. We next show that it has a weakly Cauchy subsequence. The sequence $(\phi_n \mid \Omega_1)$ of the restrictions to Ω_1 is bounded in $H^{\infty}(\Omega_1; E)_{\beta}$ and as we have already shown it admits a weakly Cauchy subsequence $(\phi_{1n} \mid \Omega_1)$ in this space. Now the sequence $(\phi_{1n} \mid \Omega_2)$ has a subsequence $(\phi_{2n} \mid \Omega_2)$ which is weakly Cauchy in $H^{\infty}(\Omega_2; E)_{\beta}$. If J is infinite, we repeat this process and we consider the diagonal subsequence (ϕ_{nn}) . If J is finite we call (ϕ_{nn}) the last sequence obtained. Let us see that (ϕ_{nn}) is weakly Cauchy. Let $\omega \in (H^{\infty}(\Omega; E)_{\beta})'$ be given. There exists a continuous seminorm ρ on E, a bounded function $h: \Omega \to \mathbb{C}$ vanishing at infinity and a number C > 0 such that

$$|<\phi$$
, $\omega>|< C \sup_{z \in \Omega} |h(z)| p(\phi(z))$

for every $\phi \in H^{\infty}(\Omega; E)$. Let $M = \sup \{ p(\phi_n(z)), (z, n) \in \Omega \times \mathbb{N} \}$. Given $\epsilon > 0$ we determine a compact set $K \subset \Omega$ such that $|h(z)| < \epsilon/4MC$ for every $z \in \Omega \sim K$. The compact set K is contained in a finite number N of components of Ω . Let $I = \{ i \in J : K \cap \Omega_i \neq \phi \}$. For each $i \in I$ the sequence (ϕ_{nn}^i) is weakly Cauchy in $H^{\infty}(\Omega; E)_{\beta}$ and so there exists an integer n_i such that

$$|<\phi_{mm}^i-\phi_{nn}^i, \omega>|<\epsilon/2N,$$

for every $m,n \ge n_i$. We set $n_0 = \max \{ n_i, i \in I \}$. Then, if $m,n \ge n_0$,

$$|<\phi_{m\,m}^{i}-\phi_{n\,n}^{i},\,\omega>|\leqslant$$

$$\leqslant \underset{i \in I}{\Sigma} | < \phi_{m\,m}^{\,i} - \phi_{nn}^{\,i}, \, \omega > | + | < \underset{i \in J}{\Sigma} (\phi_{m\,m}^{\,i} - \phi_{nn}^{\,i}), \, \omega > | <$$

Joaquín Motos and José L. Hueso

$$< \sum_{i \in I} \frac{\epsilon}{2N} + C \sup_{z \in \Omega} |h(z)| p(\sum_{i \in J \sim I} (\phi_{mm}^{i}(z) - \phi_{nn}^{i}(z))) <$$

$$< \frac{\epsilon}{2} + C \frac{\epsilon}{4MC} 2M = \epsilon.$$

Therefore $\operatorname{H}^{\infty}(\Omega, \operatorname{E})_{\beta}$ is a Rosenthal space, q.e.d.,

REFERENCES

- [1] COLLINS, H.S.; RUESS, W.: Duals os spaces of compact operators. Studia Math. LXXIV (1982), 213-245.
- [2] COOPER, J.B.: The strict topology and spaces with mixed topologies. Proc. Amer. Math. Soc. 30/3 (1971), 583-592.
- [3] COOPER, J.B.: Saks spaces and applications to functional analysis. Notas de Mat. 28. North Holland P.C. (1978).
- [4] JARCHOW, H.: Locally convex spaces. B.G. Teubner, Stuttgart (1981).
- [5] ROSENTHAL, H.P.: A characterization of Banach spaces containing 1¹. Proc. Nat. Sci. Acad. U.S.A. 71 (1974), 2411-2413.
- [6] RUESS, W.: On the locally convex structure of strict topologies. Math. Z. 153 (1977), 179-192.

Departamento de Matemáticas E.T.S. Ingenieros Industriales Universidad Politecnica de Valencia Camino de Vera, s/n 46022 Valencia

