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ABSTRACT

The averaging method is justified for a class of multipoint boundary value
problems with non-linear boundary condition for functional-differential equa-
tions with “maximums”.

A number of processes in biology and economics [1] are governed by a
special class of strongly non-linear functional-differential equations, the so called
differential equations with “maximums” [2]. The study of the fundamental and
qualitative properties of these equations is subject to specific difficulties. At the
same time the preliminary application of the methods for theoretical approxi-
mation of the solutions may considerably simplify the problem.

In this paper the averaging method is justified for a class of multipoint
boundary value problems for functional-differential equations with maximums.

Consider the system of functional-differential equations

x(t)=€eX (t, x(t), max { x(s): s€ [t=h, t] },
max { X(s): se [t—h, t]}),t>0 , (1
x(t) = o(t), x(t) =¥(t), -h <t <0
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with a boundary condition

i go Ay x(t) = T (%t )Xty )k (g Xy, & ), 2)
where x e R" ,hisa positive constant,

max { x(s): s e [t—h, t] } =

= (max { x) (s): s e [t=h, ] } ,.-..max {x(“) (s): se [t—h, t]}),

max {x(s): se [t—h,t] } =

= (max {X(l)(s): s€[t—h, t]},..,max { x(M(s): s e [t—h, t] 9}

¢(t) is the initial function, A, =(aj(1i) ’;,ti= T, i= O,N,0=qp <a; <.< ay=1,

T=L8&~!,L=const>0and &> 0 is a small parameter.
Suppose that there exists the limit

T _
lim L / X (t, x, x, 0) dt =X (x).
T—=+oT Jo

Then the average boundary problem, corresponding to (1), (2), is
£ =8 X (5) @
N . .

Forx = (x(l),...,x(“)) and A = (ajk)m,n we set by definition

m 1

n 1 n 1
Ixli=[ 2 D22, 1al=[ £ = a}],
i=1 k=1j=1
while O,_N denotes the set of integers { 0,1,... N }

The following theorem for proximity between the solutions x(t) and £(t) of
the boundary value problems (1), (2) and (4), (5) is valid

THEOREM. Let the following conditions be fulfilled:
1. The function X(t,x,y,z) is continuous in the domain

Q(t.x,y,2) = 82t) x £2(x) x Q(y) x Q(z),
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where (t) = [0, * ) and Q(x) = Q(y), {2(z) are open domains in IR". The func-
tion ¢(t) is continuous in [—h, 0] and ¥(t) e (x), At) € Q(z). The function
I'(w, & ), where w = (wg ,...,w2N+1) is defined in the domain

Qw, &) = QUwo)x ... x QW 5, 1) X QE),
Q(w;) =Q(x),i=0, 2N+1, ( §) =(0,8], & const > 0.

2. The functions X(tx,y,z) and T'(w, & ) satisfy the following conditions in
the domains £(t,x,y,z) and U(w, &)

I X(tx,y,z) <M,

I X(t,x,y,z) — X(t,x,y",z") |

N

AN x—=x"I+Hy—y" I+ 1z—2"I)

!
p hwy —wi Do Dwg 10 — Wnaga b

™Mz

IT(w,8)-T(w,8) I< .
1

where M, X, o, ¥; (i = ﬁ) are positive constants, u; = (&) (i = 1, N), the
function b( &) = max { w(8):i=1,N } is continuous in the domain (&)
and lim {b(&): €0} =0,

3. The matrix A, is constant and det A # 0.

4. The matrices A, i = 1, N, depend on & ; the function da( &)
max {IA;(&) I:i=1,N } iscontinuousin Q(&)andlim {d(8): §-0}=

5. The inequality

0.

N ;. N
(e A) Il 2 p<1
i=0 i=0

is fulfilled in £2( &).

6. The limit (3) exists for each x € Q(x): the function X(x) is continuous in
Q(x).

7. For each &e¢ (0, &] the boundary value problem (1), (2) has an unique
continuous solution with values in §(x) for te[0, L & _1] and satisfying the
conditions x(0 + 0) = ¢ (0), X(0 + 0) = ¢ (0).

8. For each & e (0,8] the boundary value problem (4), (5) has an unique
continuous solution whose values belong to the domain £(x) for te[0,L & ~ "]

Then for each n > 0 and L >> 0 there exists a number
€,€(0, & (&, =8, (n, L)) such that for 0 < §< &, the inequality

Ix(t) —&t) 1<n, 0<t<Lg !
holds true.
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Proof. The solutions of the boundary value problems (1), (2) and (4), (5) can be
represented by the relations

x(t)=x,+ & fot(x 9, x (6), max { x(s):se [0 —h,0]},
max {x((s):se[0 —h,0]})d6,t>0, 6)

x(t) = ¢(t), x(t) = &(t), — h <t <0,

K=+ & [ X(£©)d, ©)
N
Eo Ai(xg+ 8B)=T(xg + 8By, .- Xo T E;ﬁNO)'((tO), cox(ty), 8), (8)
N _ _ — . .
150 Ai (Eo + 8 ﬁ]) =T (Eo + & ﬁO ----- Eo + 8 BN: E(to) :::: E(tN), 8)7 (9)

whre X, =x (t,), &, =£(t,)s
B; = foti X (8, x(0), max {x(s):se[6 —h,0] },

max {X(s): se{f —h, 8] }) do, t>0,

x(t) = (1), x(t) = ¢(t), - h <t <0,
B, = ft:,i X (£,8) d8, i=0,N.
Substracting for t > 0 the representation (7) from (6) one obtains
Ix(t) — &) 1<%, — &, I+ & fot [X(8, x(8), max { x(s): s€ [0 —h, 6]},
max {X(s):se [0 —h,0]}) — X (&0)]d9 I<
<hx,—& I+ & [: X (8, x(6), max {x(s):se [0 —h,0]},  (10)
max { X(s): s € [0 —h, 81}) — X (8, &), £(6), 0) 1d6 +

+81 1 [X (0, £0), £0),0) ~ X (ON] 0 1=lx, — &, 1 +1, +15
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Then terms I; and I, in the right-hand side of (10) can be estimated for
o<t<rg§ ! using the assumptions of the theorem:

I,b,=8 '/: lIX(B,x(o),max{x(s):se[@—h,@]},
max {X(s):s€ [0 —h,0]})— X (6, &6), £©), 0)] d0 1< an
<281 fot 1x(8) — £(6) 1146 + & N {[2B +2 & hM + max (C, E M)] h +

+(1+h)vn ML },

I,=81l fot [X (8, &0), £(6), 0) — X (£(6))] db < (12)

S2AMDPm+F(&,m)=a(8,m),

where
B= et I, C= su o) I,
e SYRAY a1
m-1 (G+1DL m-1 iL
F(& , m=L[ Z (—— &+ Z op (— &)+
i=0 . &m i=1 Em

kL
+ max o ,E0), & =8 (—), k, me IN*,
o< X | op 0o (&, 5 & =E( Sm)

t
op (LH=IT [ [X(0,550-X®]d0 I,

op, (&,8= sup
Po 0<o<L

T
Top ¢ & £).

Since for each £ € (x) the function op (t, £) tends to zero as t = o then
by an appropriate choice of m sufficiently large and & sufficiently small, the
quantity 4( & , m) can be made arbitrary small. [3].

Further on it follows from (9) and (8) that for t e [0, L § _1] then ine-
quality

Ixo — & 1< sc(g)gluﬁi—ﬁilw &D (13)
=
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is valid, where
N - N g N1
G(8)=(b(8)+d(8))ll(?OAi) “(1—"(,§OA1) l'_§0#i) ,
N N N N
D=MI( 2 A LI Z »a-0(CZ Ayl Y p L
i=0 i=0 i=0 i=0
The relations (10) — (13) yield
Ix(t) — £(t) II<G(8).I:2JI (2 & ' Ix@®) — &6) 18 +H( & ,m) } +
+2 € [ Ix(6)—£(6) 146 +H( &, m), (14)

H(&,m)= &D+ &A {[2B+2 &hM +max(C, &§ M)|h +
+(1+h)vVnML }+a( &, m).

Set H( &, m) u(t) =x(t) — £(t) and introduce the notation
Tulp= sup lu(t) ll. Then it follows from (14) that
0<t<T

==

lu@ I<1+G(8)(N+2hL lullp) +2 & fot lu@) ldo,  (15)

where

Applying the Gronwall-Bellman inequality to (15) one obtains the estimate
Tu(t) I<[1+G( &) (N+2naL llullp)]exp {2 & At}
for the function l u(t) ll. Hence the inequality
Tullpy <[1+G(8)(N+2xaL lullp)]exp {2} (16)
is valid for 0<t <L & ~7.
Since lim {G( & ): & > 0}= 0, then there exists a number & ; € (0, &]

such that the inequality

2G( & Mol exp {2AL } <1
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holds true for & €(0, &;]. Now it follows from (16) that

Il x(t) — &) 1< wH( &, m)

for & €0, &;], where

_ (1 +G( 8 )N)exp {2AL }
“T I 26(8)NedL exp {2AL }

Let finally m and & ; € (0, &] be choosen so that w H (& , m) < 7 for
& € (0, &1 The latter inequality for &, = min ( &, &) completes the
proof of the theorem.
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