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ABSTRACT:

We introduce the notion of holomorphic mappings of uniformly bounded
A-type between locally convex spaces where 4 denotes any normed operator
ideal in the sense of A. Pietsch. In this note we consider such holomorphic
mappings for the operator ideals Loo, Seo and Koo, respectively, of all e-factora-
ble, strongly eo-factorable and e-compact operators.

INTRODUCTION

The main purpose of this note is to characterize those holomorphic mappings
of uniformly bounded type f:E~F (in the sense of J.F. Colombeau, J. Mujica [3])
between locally convex spaces E,F which possess an extension . GF of the
same kind for all locally convex spaces G containing E as a topological subspace.
We shall introduce the notion of holomorphic mappings of uniformly bounded
A-type where A stands for any operator ideal in the sense of A. Pietsch [16], and
we shall prove that the above holomorphic extension problem can be solved for
such holomorphic mappings with respect to the operator ideal S, of all strongly
oco-factorable operators. In this note we shall consider also holomorphic mappings
of uniformly bounded L.- and K-type where L, (resp. K.,) denotes the
operator ideal of all co-factorable (resp. oo-compact) operators.

In the first section we introduce the notion of an ideal of polynomial opera-
tors which is a natural generalization of the concept of an operator ideal in the
sense of A. Pietsch.

In section 2 we define the polynomial ideal of co-factorable, strongly co-fac-
torable and eo-compact polynomials, respectively. We shall show that the co-com-
pact m-homogeneous polynomials can be represented as a certain infinite series
of one-dimensional m-homogeneous polynomials. From this it follows that each
continuous polynomial defined on an e«(S)-space has an infinite series represen-
tation analogous to continuous polynomials on nuclear spaces.
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In the third section it will be shown that the polynomial ideal of co-factora-
ple (resp. strongly oo-factorable, co-compact) polynomials form a holomorphy
type ® in the sense of L. Nachbin [15] which is a consequence of a general
result.

In section 4 we introduce the holomorphic mappings of uniformly bounded
A-type and give conditions on the domain space under which a holomorphic
mapping of uniformly bounded type is of L_-(resp. S..-, Ko-) type.

In section 5 we shall prove that each holomorphic mapping of uniformly
bounded L, -type f:E—F hasan extensién ’fV:G—>F;l' of the same kind for all locally
convex spaces G DE where F;’ denotes the bidual space of F equipped with the
natural topology, and that a holomorphic mapping of uniformly bounded type
f:E-F is holomorphic of uniformly bounded S_,-type if and only if f can be
extended to a holomorphic mapping of uniformly bounded type TG -F for very
GDE.

NOTATIONS AND TERMINOLOGY

In this note all locally convex spaces are assumed to be complex vector spa-
ces. If E is a locally convex space (shortly l.c.s.), then U(E) denotes a O-neigh-
bourhood basis of closed, absolutely convex O-neighbourhoods in E and B(E) a
fundamental system of closed, absolutely convex, bounded subsets of E. For
UeU(E) and BeB(E) we denote by E; and E the associated normed spaces and
we shall write K{;:E~Ey; and Jg:Eg—E for the canonical mappings. We shall
consider Ky; also as a mapping from E into the completion EU of Ey. If U,
L/eU(Q wéih VC U then Kyy:Ey—Ey denotes the canonical mapping and
Kyv:Ey=Ey the continuous extension of Ky;y. For Lc.s. E and F, L(E;F) de-
notes the vector space of all continuous linear mappings from E into F.

Let E,F be Banach spaces. We shall write I :E~E" for the evaluation map-
ping. An operator AeL(E;F) is called co-factorable if there exist a measure space
(Q2,1) and mappings ReL(E;L,,(2,1)) and SeL(L,(2.u);F") such that ;o
A=SoR. AeL(E;F) issaid to be strongly oo-factorable if A factors through L_(£2,1)
for a suitable measure space (£2,u). An operator AeL(E;F) is called oo-compact if
A has a factorization A=ScR where R:E—c_ and S:c,—F are compact operators
(cf. A. Pietsch [17], 19.3 and 18.3). The operator ideal of all «o-factorable, stron-
gly oo-factorable and oo-compact operators, respectively, is denoted by L, S,
and K.

A lcs E is called e-space if for every UeU(E) there exists a VeU(E) contai-
ned in U such that KUV :’I:fv—>]:fU is oo-factorable. Let us remark that a Banach
space E is an e-space if and only if E is an L_-space in the sense of J. Linden-
strauss, A. Pelczynski [13]. For the general theory and examples of e-spaces we
refer to R. Hollstein [7], [8], and [9]. A l.c.s. E is said to be an S_-space if for



Infinite-factorable holomorphic mappings on locally convex spaces 263

every UeU(E) the canonical mapping I’ZUV :ﬁv»EU is strongly oo-factorable for a
suitable O-neighbourhood VeU(E) with VCU.

For lc.s E,F and meN we shall denote by L(™E;F) the space of all conti-
nuous m-linear mappings from E™ = Ex...xE (m times) into F and by L(™E;F)
the subspace of all symmetric continuous m-linear mappings. If AeL(™E;F),
meN and xeE, we shall write AX™ = A(x,...,x) (m times) and denote by A:E~F
the m-homogeneous polynomial given by A(x) = Ax™.

1. POLYNOMIAL IDEALS

A. Pietsch [17] has recently introduced the concept of ideals of multilinear func-
tionals. In this note we shall consider ideals of polynomial operators.

Let PX™) be the class of all continuous m-homogeneous polynomials between
arbitrary Banach spaces. For Banach spaces E,F we shall then write P(m)(E;F)
for the vector space of all continuous m-homogeneous polynomials from E into
F in place of the usual notation P(™E;F). P("‘)(E;F) will be equipped with the
norm [Pl=sup { IP(x)Il : IxII< 1} which is called the current norm.

1.1 Definition. Let meIN. Anideal Q(m) of m-homogeneous polynomials (shortly

m-polynomial ideal) is a subclass of A™) such that the components Q(m)(E,F)

satisfy the following conditions

(1) ¥™ ® y e QU™)(EF) for all YeE' and yeF.

(2) IfP,,P, e 0'™)ESF), then P, +P, e Q'™)(E:F).

(3) If R € L(EqE), P Q™)(E;F) and S e L(F;F,), then SoPoR € Q™) (E Fy).
We remark that for m=1in 1.1 we obtain the definition of an operator ideal.

It is obvious that the components Q(m)(E;F) of a given m-polynomial ideal

Q™) are linear subspaces of P(EF).

1.2 Definition. Let Q™) be an m-polynomial ideal. A mapping v from Q(™)
into R* is called m-polynomial ideal norm if, for arbitrary Banach spaces E,Eq,F
and Fq, the following conditions are satisfied

(1) Y(¥™ ® y)=lly I™ llyll for all Y€eE' and yeF.

(@) ¥(Py +Py) <y (Py) + 77 (Py) for all Py P,eQ™ (EF).

(3) For ReL(Eq ,F),PeQ'™)(EF) and SeL(F,F,) one has

¥(SePoR) < IS y(P) IRI™.

The couple [Q(m) »¥] is then called a normed m-polynomial ideal.

It is easy to verify that for PeQ™)(E;F) one has IPIl < v(P) if [0'™ y]isa
normed polynomial ideal. Next we give some examples.
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1.3 Examples. The class A™) of all continuous m-homogeneous polynomials is a
normed m-polynomial ideal with respect to the current norm. This holds also
true for the class F{™) of all m-homogeneous polynomials of finite type.

The Banach space K(m )(E;F) of m-homogeneous compact polynomials from
E into F is the closure of F(m)(E;F) in P(m)(E;F) with the topology induced
from P(m)(E ;F). The class KM of all m-homogeneous compact polynomials is a
normed m-polynomial ideal with respect to current norm.

A polynomial PeP(m)(E ;F) is called nuclear (see e.g. [5]) if P can be repre-

sented by a seriesP(x)= d/;“(x) y; where wjeE', yjeF and S 2 fim ly;ll <ee.
i=1 j=1
P(I:J")(E;F) will denote the vector space of all nuclear m-homogeneous poly-

nomials from E into F equipped with the nuclear norm
— 'oo m
IIPIIN —mfj El "l[/j 1 Iij I

where the infimum is taken over all possible representations of P. The class PI&m)
of all nuclear m-homogeneous polynomials is a normed m-polynomial ideal with
respect to the nuclear norm.

For each normed operator ideal [A,a] one can construct an m-polynomial
ideal \™)o4 in the following way (for the compose of an m-functional ideal and
operator ideals A1 ,...,4 , we refer to A. Pietsch [17]): Let E,F be Banach spaces.
A polynomial P belongs to P(m)oA(E;F) if there exist a Banach space G and
mappings AeA(E;G), QeP(m)(G;F ) such that P = QoA. The vector space
PM)sA(E;F) will be equipped with the norm

o™(P) =inf QI (a(A))™

where the infimum is taken over all possible decompositions. It is not difficult to
show that [P(m)oA ,a(m)] is a normed m-polynomial ideal.

2. INFINITE-FACTORABE, STRONGLY INFINITE-FACTORABLE AND INFINITE-
COMPACT POLYNIMIALS

We start with the following definition

2.1 Definition. Let E,F be Banach spaces. An m-homogeneous polynomial

PeP ™) (E;F) is called

(1) oo-factorable if there exists a measure space (£2,u) such that I ,oP has a facto-
rization I oP = Q; 8; where S; eL(E;L,{(,u)) and Q; eP(™ y(Loo(Q,u);F")
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(2) strongly co-factorable if P=Q, o S, for S;eL(E;L.(£2,1)) and
QP ™ (Lo 2u0)5F).

(3) oo-compact if there exist a compact operator S3eL(E;c,) and a polynomial
Q3€eP\™)(c, ;F) such that P = Q30S;.

We denote by L._™)(E;F) (resp. Sg‘ )(EF), K(OL“)(E;F)) the vector space of
all eo-factorable (resp. strongly co-factorable, co-compact) m-homogeneous poly-
nomials equipped with the norm.

A(P) =inf 1Q, I IS, IM
(resp. o{™)(P) = inf 1Q, I IS, I™, k(™)(P) = inf 1Q; Il 1S5 I™)

the infimum taken over all possible factorizations. Taking m=1 we obtain the
normed operator ideal L (resp. S.,, K ) of all co-factorable (resp. strongly
oo-factorable, co-compact) operators.

By definition, one has for all Banach spaces E,F

PMM(EF) C KM(EF) € SS(EF) € L™(EF) c PMEF)

where the canonical embedding are continuous.
The following proposition can easily be verified.

2.2 Proposition. The classes Lg") , S&") , and K{;”) , respectively, of oo-factorable,
strongly oo-factorable and oo-compact m-homogeneous polynomials are normed
m-polynomial ideals with respect to the norms 7\&"} , o™ and k™ . Further-

more, one has L!om) = pim) oL, S!om} =pim oS, and Ig?g ) =pl m°7’°K°° as nor-
med polynomial ideals.

Next we show that each co-compact polynomial has an infinite series represen-
tation. First we need some notations.

2.3 Definition. Let F be a Banach space and let meN. A family
(ay, ,...,km);ol ek = 110 F is said to be w, -summable if

=) N
(1).cp(m) _ .. (1)...(m)
> £ = lim z Ekm

a £ a £
Kiyeokp =1 Keokm “ke ko ysoge T o g TRk Bk

exists for all sequences E(i) = (Egi))jt L €ECo and all i=1,...,m.

We remark that for m=1 we obtain the definition of a weakly summable se-
quence in F.
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We denote by I;(™F) the vector space of all w,,-summable families in F
equipped with the norm

8

= > (1)....(m) I
((ay,, kN =sup | Kipoky = 1 B,k Eky Bk
the supremum taken over all sequences gD = (Egi))j € By and all i=1,...,m where
By denotes the unit ball in co. The supremum exists since the m-linear mapping
oo
D: (co)™-F defined by DD, .. gmy= % a
k1 3o .,k =
is separately continuous and hence continuous.
Now we show that a w,-summable double sequence (ay ) in € need not be
(absolutely) summable.
Let A:co—/; be a continuous linear mapping which is not nuclear. Define
the double sequence (a; ) by Ae; = (aik):;l , i=1,...,m, where e; denotes the i th

m

oo
unit vector in co. Then for each (§;)eco the sequence ( Z  &ay ), lies in Iy,
i=1

hence (aik)‘;;:1 is w;-summable. On the other hand, (a; ) cannot be absolutely
summable since by assumption A is not nuclear.

For a multi-index k=(k1 ...,k )eN™ and a sequence (l[/i): ) in the dual E'
of a locally convex space E we set y; (x): = l[/kl(x)"'tllkm(x).

Now we prove

2.4 Proposition. Let EF be Banach spaces. A polynominal PeP(m)(E;F) is
oo-compact if and only if P can be represented by a series

Px)= Z a X), xeE
(x) om k V()

for a suitable 0-sequence ( 11/]-) in E'and a w,, -summable family (ak Jke Nm inF.
Furthermore, one has

ke < Me)< %n— k)
where the norm ™) in KC(Z'}(E;F) is defined by

r(M)(P) : =inf e((ay)) sup { hy; m: je]N}
the infimum taken over all possible representations.

Proof. Let Png‘)(E';F) and €>0. By definition, there exist a compact operator
SeL(E;co) and a polynomial QeP(m)(co ;F) such that P=QoS and kiT)(P)+e>



Infinite-factorable holomorphic mappings on locally convex spaces 267

QI ISI™. The operator S can be represented by a series

S(x) = ; x,l/j(x)e-, xeE
j=1

where ¢; is the j-th unit vector in co and (V) is a sequence in E' with ;10
(cf. G. Kéthe [11], p. 226). For AeL (™ ¢, ,F) with A = Q one has

km wkl(x)."wkm(x)

P(x):QOS(X)=A%{[2 j=21 ll/_]()()ej)rn - K %( =1 akl sy

) SETXEE)

where akl:---,km T = A(ekl,...,ekm). The family (ak)kele is obviously w,-
summable, and we have

Ial=sup I % (Dglmyy, gD gtmep |
P k1,...,km=lak1""’kmgk1 Sk € £ "eBo

=e((ak1;...,km))

Because of Al < m™ (m!)™? QI (cf. [5], p.5) and IISH = sup{ ;1 :jeN}
we get

kg,n)(P) +€>=(m!)m™ E((akl ,...,km)) sup { hy; m . jelN}
and hence k™ (P) = (m!)™® r(m)(p),
Conversely, suppose that PeP(m)(E ;F) admits a representation P(x) =

= Z m ai Y where (a,) belongs to I'(™F), (wj) is a O-sequence in E’ and
N .

T(']‘(‘ (P) + € > e((ay)) sup { ||¢/ I™ : jeN } for a given positive number €>0.
Define the operator SeL(E;co) by Sx = (11/ (x)) which is compact since ¥;~0 (cf.
G. Kothe [11]. p. 226). Let QeP(m)(co F) be defmed by Q((§; )°°1) E ap &
and let AeL (™ co;F) with A=Q. Then we get P=QoS and keN'™

k(@) < IQUISI™ < IATISI™ = €((a), o pym) SUP { ;1™ - jeN }<
< 7M@) +¢

This completes the proof.

Next we show that each continuous polynomial defined on an e{S)-space
has an infinite series representation analogous to continuous polynomials on nu-
clear spaces. We remark that an e<S)-space need not be nuclear. Consider e.g.
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any non nuclear echelon space Ao of order O which is an (S)-space (cf. R. Holls-
tein [10])

2.5 Proposition. Let E be an e<{S)-space and let F be a Banach space. Then each
m-homogeneous polynomial PeP(m)(E ;F) has a series representation

x)= X a X
P(x) Cesm k V()
where (ay )y . ym € 1i(™ F) and (w]-};.’:l is a 0-sequence in the strong dual B, of E.

Proof. Let PeP(m)(E;F). Since P is continuous, there is an UeU(E) such that
IP(x) I < (qy(x))™ for any xeE where qy; denotes the Minkowski functional of
U. The mapping Pyj:Ey;—F defined by PU(KU(x)) P(x) is well defined and lies
in P(m)(EU,F) Py has a continuous extension PUeP(m)(EU ;F). Smce E is an
e-(S)-space one can find a VeU(E) with VCU such that KUV EV"’EU is oo-com-
pact, i.e. KUV is the compose KUV—RoS of two compact operators SeL(Ev,co)
and ReL(co ,EU) By definition, the mapping Py: —PUoKUV PUoRoS €
Pm)E :F) is co-compact and admits, by 2.4, a representation
v

Py(Ky(x)) = kellgl:m a ¢ Ky(x)), xeE

where (a;) € I,(™F) and hm lgl =0 in Ey . Setting ¥; : = ¢;oKy the sequence

(xpj)j= | converges to 0 in Eb and one has
Px)=Py Ky(x)= Z a X
(x) =Py Ky(x) cepm K Y(x)

for any xeE. This completes the proof.

3. HOLOMORPHY TYPES

L. Nachbin [15] introduced the concept of holomorphy type ©. In this sec-
tion we shall show that the polynomial ideals of oo-factorable, strongly eo-facto-
rable and oo-compact polynomials, respectively, form a holomorphy type ©.

A holomorphy type © from a Banach space E into a Banach space F is a
sequence of Banach spaces Pcf)m )(E ;F), melNy, such that the following conditions
hold true.

(1) Pg“)(E;F) is a vector subspace of P(m)(E ;F) for each meIN.

) P((BO)(E;F) is isometrically isomorphic to P(O)(E;F).
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(3) There exists a real number 0 = 1 such that for each keNp, meNy, k < m,
x€E, and PePém)(E;F) one has

d*P(x) € P (ESF)
1
u; d*P(x) Iy < o™ IPI NxI™-K
where [Pll g denotes the norm in Pém)(E;F).

We now show that each normed operator ideal [A4,a] assigns a holomorphy
type ©.

3.1. Proposition. Let [4,a] be a normed operator ideal. Then for each Banach
space E and F the sequence P A(E;F), melNo, is a holomorphy type ©.

Proof. Given any meIN. Ve prove that for each keN, k<m, xeE and
PeP(™)o A (E;F) one has d*P(x) e P&V A(E;F) and

1 .
oK)( — d¥p(x)) < 2™ ol™)(P) Ix|I™ ¥

Let xeE, x#0, and let PeP(m)oA(E;F). For a given >0 there exist a Banach
space G and mappings SeA(E;G) and QeP(m)(G;F) such that P = QoS and

1QI (a(S)™ < a™)(P) + € 2™ lIxfk-m,

The polynomial d¥P(x) lies in P&V A(E;F) since d“P(x) = d¥Q(Sx)eS where
d*Q(Sx)eP™)(G;F). If Sx#0, then we set y:=(1/ISx/)Sx and we obtain

oK) ’kl‘. dpx) < I % d*Q(Sx) Il (a(S))X < lisx M-k | T;T dkQ(y) l(a(S))¥

<l -ki’ d<Q(y)ll («(S))™ lx ™ -k
By the Cauchy inequalities we get
n—klT < Q(y)l < sup { Q@) : lyzl=1} <2m 1Ql.
It follows
a<k>(Tl! dP(x)) <2™ 1QI (aS))™ IxIm -k < 2m oM (P)IxIm K 4 ¢

wich completes the proof.
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From 2.2 and 3.1 follows that the sequences P(m )(E;F), lfs.(m)(E;F) and
P(m)(E ;F), melNy, are holomorphy types ©. b~ -

4. HOLOMORPHY MAPPINGS OF UNIFORMLY INFINITEFACTORABLE BOUN-
DED TYPE

A continuous mapping f:E-F between locally convex spaces is called holo-
morphic in E if for each y'eF’ the function z-y'of(a + zb) is holomorphic in €
for all a,beE. The vector space of all holomorphic mappings from E into F is
denoted by H(E;F).

If E and F are normed spaces, then a mapping feH(E;F) is said to be of
bounded type if it is bounded on all bounded subsets of E. We denote by
Hb(E;F) the vector space of all holomorphic mappings of bounded type from E
into F equipped with the topology of uniform convergence on bounded sets.

4.1 Definition. Let [4,a] be a normed operator ideal and let E, F be Banach spa-
ces. A mapping feH(E;F) is said to be holomorphic of bounded A4-type if f can
be represented by a series

fx)= Z PL(x), xeE
m =20

where P_ e ™o A(E;F) and lim sup me]N(a(m)(Pm)) < oo,

The vector space HB‘ (E;F) of all holomorphic mappings of bounded 4-type
is a metrizable locally convex space with respect to the topology defined by the
norms

af= = ™ o™(P,), reR.
m=0

We write Hz (E) instead of Hz (E;D).

If Hy (E;F) denotes the vector space of all holomorphic mappings of nu-
clear bounded type in the sense of C.P. Gupta [6], then we have for all Banach
spaces E,F

b b b
Hy(E:F) CHy (EF) C Hg (EF) CH) (BiF) C HP(E;F)
Simple examples show that these inclusions are generally strict. Obviously

HY (BF) = =H (E;F) holds if F is complemented in F"' and HY (EF)= HP (E;F)
if E isan Loo(u)-space Now we show.
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4.2 Proposition. For each infinite-dimensional Hilbert space E one has
Hp (E) # H(E)

Proof. Let I:E-E' be the canonical linear norm-isomorphism. The mappmg
P:E-C defined by P(x) = <x,Ix> belongs to P(z)(E) We assume that PeH (E)

Then P lies in P(z)(E) hence there exist a measure space (£2,u) as well as map-

pings SeL(E,L(Q4)) and QeP(z)(Lw(Q,u)) such that P = Q o S. Let
BeL (* Loo(§2,1)) with Q=B and let BeL(Loo(Q,u),(Loo(Q,u)) ) be the associated
linear mapping of B. The continuous bilinear mapping L:EXE~>C defined by
L(x,y) =<x,ly> is symmetric with L =P. For all x,yeE we have

<x,Iy>=1(x,y) = B(Sx,Sy) = <Sx,BoSy> = <x,S'oBoSy>

hence I =S'oBoS. It follows that I:E-E' can be factored through an L.o(u)-space,
thus I is 2-absolutely summing (cf. A. Pietsch [16], p. 307) which is the desired
contradiction.

Later we need

4.3 Proposition. Let [4, «] be a normed operator ideal, let E.F,G be Banach
spaces and let A€A(E;F). Then for each feHb(F;G) the compose foA lies in
Hz (E;G). Moreover, the mapping.

JH(FiG) > H)(EiG), f > oA
is continuous.

Proof. Let feHb(F ;G) and let f(x) = E P, (x) be the Taylor series of f where
P eP(m)(E F) and hm P, |m =0 (cf S Dineen [5], p. 166). Setting Q,

=P, oA we have QmeP(m)oA(E;F), fo A(x) =2 Q,(x)and lim(a(m)(Qm))m=0
m Mo

since a(m)(Qm) < IP, I (a(A))™. It follows that ferHA? (E;F). It remains to
show that J is continuous. For a given r > 0 we set p:=2ra(A) and M(p):=
= sup { I : Ixl < p} - By the Cauchy inequalities we have IP_, < p™™ M(p)
for all meN and hence

a,(foA) = E Ma™(Q,.) <n21 ™ IP_ I (a(A)™ <

<Z ()T (@A) M(p) =2M(p),
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thus J is continuous.

Following J.F. Colombeau, M.C. Matos [2], a mapping feH(E;F) from a lL.c.s.
E into a locally-complete space F is called holomorphic of uniformly bounded
type if there exist UeU(E), BeB(E) and foeHP (E ,F ) such that f =JjofgoKy;.
H"P(E;F) denotes the vector space of all holomorphlc mappings of umformly
bounded type from E into F.

If [A, & is any normed operator ideal, then a mapping feH(E;F) is said to be
holomorphic of uniformly bounded A-type if there exist UeU(E), BeB(F) and
fo eH}"1 (EU ,Fp) with f=JgofgoKy;. We denote by H_'flb(E;F) the vector space of all
holomorphic mappings of uniformly bounded A-type.

Now we prove

4.4 Proposition. Let F be any locally-complete space. The following assertions
hold true

(1) IfEisan espace, then Hy°(E;F) = H'P(E:F).

(2) IfEis an SesSpace, then H"‘“b(E :F) = H'P(E;F).

(3) IfEis an e{S)-space, then H“b(E F) = H*P(E;F).

(4) IfEis an e{ DFM)-space and F is an (F)-space, then H“b(E ;F) =H(E:F).

Proof. (1) Let feH"P(E;F). There exist UeU(E), BeB(F) and foeHP(Ey;;Fp) with
f=JgofooKy. Since E is an e- space one can find a VeU(E) contained in U such
that the canonical mappmg KUV EV“’EU is oofactorable. In view of 4.3,
fo °KUV belongs to H (EV JFp), hence f—JBofooKuvoKUeH“ J(E; F).

Assertion (2) can be proved in the same way. Statement (3) is a conse-
quence of the fact that for each O-neighbourhood UeU(E) of an e«(S)-space E
there exists a VeU(E) with VCU such that KUV is co-compact.

(4) If E is an e{DFM)-space, then E is an (S)-space and by (3) we have
H‘}&(E;F) = H"P(E;F). By a result of J.F. Colombeau, J. Mujica [3], 4.1, one has
Hub(E;F) =H(E;F) if F moreover is an (F)-space. This completes the proof.

5. EXTENSION OF HOLOMORPHIC MAPPINGS

In this section we shall characterize those holomorphic mappings of uni-
formly bounded type f:E—F between l.c.s. which can be extended holomorphi-
cally to each l.c.s. G containing E as a topological subspace. First we prove.

5.1 Proposition. Let EF be l.c.s. and F locally complete.
(a) For each feHub(E iF) and each lc.s. GDE there exists an feH“b(G F1) with
f g =F
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(b) The restriction mapping
R : He°(GSF) > H (ESF), f > flg
is surjective for all I.c.s. GDE.

Proof. (a) Let feH“b(E ;F) and let G be a l.c.s. containing E as a topological
subspace. By deﬁmtlon there exist UeU(G), BeB(F) and foeH“b(Ew ;Fg) with
—UﬁE such that f=J o f; o Ky. fo can be represented by a series fo(x) =

= ;0 P (%), ReEy, with P, P (Ey Fy)andlimsup | QU@ ))m—o
For a given meIN there exist a measure space (£2.,,u;,) and mappings
A LBy L oo Uy ) and Qu€P™ (L oo bty ) F) such that Iy oPp =
QoA and A 1™ 1Q,, Il<)\(m)(P ) + m™™. Since Loo(§2y, , 4y, ) has the me-
tric extensmn property and smce Ew can be considered as a normed subspace of
GU there exists an extensmnA € L(GU Lo 1)) of A with ||A I=1Ap, I

Now the mapping P =Qp oA belongs to P(m)(GU,F p) and we have
AME Y <IA 11Q, 1™ <A™, ) +m™™.
Letfo(X):= = Fm(i) for iea’U. Since
m=20
~ L L
lim sup m()\g‘)(Pm))m < lim sup m(?\g“)(Pm)m +m1)=0

it follows that fo is defined for all xeGU, that foeH (GU,FB) and fo i3 fo.
The mapping f=1 B°fo°KU € H“b(G ;F.) is then the des1red extension of t.
The assertion (b) can be shown in the same way.

For any lc.s E and F with F locally complete, let H, y1,(E;F) be denote the
vector space of all holomorphic mappings of uniformly nuclear bounded type in
the sense of J.F. Colombeau, J. Mujica [3]. H,(E;F) is then a linear subspace
of H‘;&(E;F), in particular of HgE(E;F). By [3], 7.3, the restriction mapping
R: HuNb(G,F) - H np(E;F) is surjective for each Lc.s G D E. Now we shall
show that Hu (E F) is the largest subspace of H“b(E ;F) such that the restriction
mapping R in 5.1(b) is surjective for all Lc.s. G containing E as a topological
subspace.

First we need the following notations: Let Ec, be the topological product

- Io(U®) where IU°) is the vector space of all bounded functions on the
UeU(E
polar of U in E equipped with the supremum norm. E can be then identified
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with a topological subspace of Eo.. We denote by Joo: E-Eo, the canonical
embedding.

5.2 Proposition. Let EF be lc.s. and let F be locally complete. If feH“b(E;F)
has an extension geH* (Eoo:F), then feHg.b(E;F).

Proof. Set G:=E, and assume that feH"®(E;F) admits an extension geH"®(G;F).
g has a factorization g=JgogooKy, where BeB(F), VeU(G) and g, eHb(av ;Fg)-
Since G is as a topological product of the spaces Io(U°) an Soo-space (cf H.
Junek [12], 7.2.2), there exists a Wel(G) with WCV such that KVW GW_’GV is
strongly oo-factorable. Thus KVW admits a factorization Kvw—SoR through
Loo(S2,u) for a suitable measure space (2,u) where ReL(GW LW(SZ,/J)) and
SeL(Lm(Q,u) GV) For Wo:=WNEeU(E) we denote by Jy: Ew —>Gw and
Ky, : E—>EW the canonical mappings. Setting g; :=gooSe H? (Loo(Q,u) ;Fg) and
fo: —gloRoJWeH (Ew ;Fp) one has

f= goJm = J5°80°Ky ©Joo = I 080 oKy oKy o Joo =
= JB ogooSoRoJWoKwo = JBofO oKWO .

By 4.3. fo—gloRoJW belongs to H (EW ;Fg) since g1 eHP (Loo(2,1);F ) and
ReJ eSoc(Ew Loo(§2,1)). Thus £ hes in HUb(E ;F) which completes the proof.

Combining 5.1 and 5.2 we obtain.

5.3 Proposition. Let E.F be a pair of Lc.s. and let F be locally complete. The

following assertions are equivalent

(1) H*®(EF) =H (EF).

(2) The restriction mapping R : H'P(G; F) —» H*®(E;F) is surjective for each
l.c.s. GDE (resp. for G=E).

From 4.2 and 5.3 it follows (cf. R. Aron, P. Berner [1], p. 21).

5.4 Corollary. For each infinite-dimensional Hilbert space E there exists a Ba-
nach space G such that the restriction mapping R : Hb(G) -> Hb(E) is not sur-
jective.

Let us remark that by a result of R. Meise, D. Vogt [14] the restriction
mapping R: HUb(G F)—>H“b(E F) is however surjective if G is a l.c.s. whose topo-
logy can be defined by seminorms induced by semiscalar products, E is a linear
subspace of G which is a (DFM)-space in the induced topology and F is an
(F)-space.



Infinite-factorable holomorphic mappings on locally convex spaces 275

Applying 4.4 and 5.1 we further obtain the following holomorphic Hahn-
Banach theorem (cf. R. Aron, P. Berner [1] and R. Hollstein [10]).

5.5 Corollary. Let EF be lLc.s. and F locally complete. The following assertions

hold true

(a) IfE is an e-space, then every feH"°(E;F) has an extension ?éH“b(G,F;I') for
every l.c.s. GDE.

(b) If E is an Se-space, then every feH"°(EF) has an extension feH"®(G:F) for
every l.c.s. GDE.

(c) If E is an e{DFM)-space and F is an (F)-space, then every feH(E;F) has an
extension feH(G ;F) for every L.c.s. GDE.
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