# INFINITE-FACTORABLE HOLOMORPHIC MAPPINGS ON LOCALLY CONVEX SPACES

bу

## RALF HOLLSTEIN

#### ABSTRACT:

We introduce the notion of holomorphic mappings of uniformly bounded A-type between locally convex spaces where A denotes any normed operator ideal in the sense of A. Pietsch. In this note we consider such holomorphic mappings for the operator ideals  $L_{\infty}$ ,  $S_{\infty}$  and  $K_{\infty}$ , respectively, of all  $\infty$ -factorable, strongly  $\infty$ -factorable and  $\infty$ -compact operators.

#### INTRODUCTION

The main purpose of this note is to characterize those holomorphic mappings of uniformly bounded type  $f:E\to F$  (in the sense of J.F. Colombeau, J. Mujica [3]) between locally convex spaces E,F which possess an extension  $\widetilde{f}: G\to F$  of the same kind for all locally convex spaces G containing E as a topological subspace. We shall introduce the notion of holomorphic mappings of uniformly bounded A-type where A stands for any operator ideal in the sense of A. Pietsch [16], and we shall prove that the above holomorphic extension problem can be solved for such holomorphic mappings with respect to the operator ideal  $S_{\infty}$  of all strongly  $\infty$ -factorable operators. In this note we shall consider also holomorphic mappings of uniformly bounded  $L_{\infty}$ - and  $K_{\infty}$ -type where  $L_{\infty}$  (resp.  $K_{\infty}$ ) denotes the operator ideal of all  $\infty$ -factorable (resp.  $\infty$ -compact) operators.

In the first section we introduce the notion of an ideal of polynomial operators which is a natural generalization of the concept of an operator ideal in the sense of A. Pietsch.

In section 2 we define the polynomial ideal of  $\infty$ -factorable, strongly  $\infty$ -factorable and  $\infty$ -compact polynomials, respectively. We shall show that the  $\infty$ -compact m-homogeneous polynomials can be represented as a certain infinite series of one-dimensional m-homogeneous polynomials. From this it follows that each continuous polynomial defined on an  $\epsilon$ -(S)-space has an infinite series representation analogous to continuous polynomials on nuclear spaces.

In the third section it will be shown that the polynomial ideal of  $\infty$ -factorable (resp. strongly  $\infty$ -factorable,  $\infty$ -compact) polynomials form a holomorphy type  $\Theta$  in the sense of L. Nachbin [15] which is a consequence of a general result.

In section 4 we introduce the holomorphic mappings of uniformly bounded A-type and give conditions on the domain space under which a holomorphic mapping of uniformly bounded type is of  $L_{\infty}$ -(resp.  $S_{\infty}$ -,  $K_{\infty}$ -) type.

In section 5 we shall prove that each holomorphic mapping of uniformly bounded  $L_{\infty}$ -type  $f: E \to F$  has an extensión  $\widetilde{f}: G \to F''_n$  of the same kind for all locally convex spaces  $G \supset E$  where  $F''_n$  denotes the bidual space of F equipped with the natural topology, and that a holomorphic mapping of uniformly bounded type  $f: E \to F$  is holomorphic of uniformly bounded  $S_{\infty}$ -type if and only if f can be extended to a holomorphic mapping of uniformly bounded type  $\widetilde{f}: G \to F$  for very  $G \supset E$ .

#### NOTATIONS AND TERMINOLOGY

In this note all locally convex spaces are assumed to be complex vector spaces. If E is a locally convex space (shortly l.c.s.), then U(E) denotes a O-neighbourhood basis of closed, absolutely convex O-neighbourhoods in E and B(E) a fundamental system of closed, absolutely convex, bounded subsets of E. For  $U \in U(E)$  and  $B \in B(E)$  we denote by  $E_U$  and  $E_B$  the associated normed spaces and we shall write  $K_U: E \to E_U$  and  $J_B: E_B \to E$  for the canonical mappings. We shall consider  $K_U$  also as a mapping from E into the completion  $\widetilde{E}_U$  of  $E_U$ . If U,  $V \in U(E)$  with  $V \subset U$  then  $K_{UV}: E_V \to E_U$  denotes the canonical mapping and  $\widetilde{K}_{UV}: \widetilde{E}_V \to \widetilde{E}_U$  the continuous extension of  $K_{UV}$ . For l.c.s. E and F, L(E;F) denotes the vector space of all continuous linear mappings from E into F.

Let E,F be Banach spaces. We shall write  $I_E: E \to E''$  for the evaluation mapping. An operator  $A \in L(E;F)$  is called  $\infty$ -factorable if there exist a measure space  $(\Omega,\mu)$  and mappings  $R \in L(E;L_{\infty}(\Omega,\mu))$  and  $S \in L(L_{\infty}(\Omega,\mu);F'')$  such that  $I_F \circ A = S \circ R$ .  $A \in L(E;F)$  is said to be strongly  $\infty$ -factorable if A factors through  $L_{\infty}(\Omega,\mu)$  for a suitable measure space  $(\Omega,\mu)$ . An operator  $A \in L(E;F)$  is called  $\infty$ -compact if A has a factorization  $A = S \circ R$  where  $R:E \to c_0$  and  $S:c_0 \to F$  are compact operators (cf. A. Pietsch [17], 19.3 and 18.3). The operator ideal of all  $\infty$ -factorable, strongly  $\infty$ -factorable and  $\infty$ -compact operators, respectively, is denoted by  $L_{\infty}$ ,  $S_{\infty}$  and  $K_{\infty}$ .

A l.c.s E is called  $\epsilon$ -space if for every  $U \epsilon U(E)$  there exists a  $V \epsilon U(E)$  contained in U such that  $\widetilde{K}_{UV}: \widetilde{E}_V \to \widetilde{E}_U$  is  $\infty$ -factorable. Let us remark that a Banach space E is an  $\epsilon$ -space if and only if E is an  $L_\infty$ -space in the sense of J. Lindenstrauss, A. Pelczynski [13]. For the general theory and examples of  $\epsilon$ -spaces we refer to R. Hollstein [7], [8], and [9]. A l.c.s. E is said to be an  $S_\infty$ -space if for

every  $U \in U(E)$  the canonical mapping  $\widetilde{K}_{UV} : \widetilde{E}_V \to \widetilde{E}_U$  is strongly  $\infty$ -factorable for a suitable O-neighbourhood  $V \in U(E)$  with  $V \subset U$ .

For l.c.s E,F and meN we shall denote by  $L(^mE;F)$  the space of all continuous m-linear mappings from  $E^m = Ex...xE$  (m times) into F and by  $L_s(^mE;F)$  the subspace of all symmetric continuous m-linear mappings. If  $A \in L(^mE;F)$ , meN and  $x \in E$ , we shall write  $Ax^m = A(x,...,x)$  (m times) and denote by  $\hat{A}: E \to F$  the m-homogeneous polynomial given by  $\hat{A}(x) = Ax^m$ .

# 1. POLYNOMIAL IDEALS

A. Pietsch [17] has recently introduced the concept of ideals of multilinear functionals. In this note we shall consider ideals of polynomial operators.

Let  $P^{(m)}$  be the class of all continuous m-homogeneous polynomials between arbitrary Banach spaces. For Banach spaces E,F we shall then write  $P^{(m)}(E;F)$  for the vector space of all continuous m-homogeneous polynomials from E into F in place of the usual notation  $P^{(m)}(E;F)$ .  $P^{(m)}(E;F)$  will be equipped with the norm  $\|P\| = \sup \{ \|P(x)\| : \|x\| \le 1 \}$  which is called the current norm.

- 1.1 **Definition**. Let meN. An ideal  $Q^{(m)}$  of m-homogeneous polynomials (shortly m-polynomial ideal) is a subclass of  $P^{(m)}$  such that the components  $Q^{(m)}(E,F)$  satisfy the following conditions
- (1)  $\psi^{\mathrm{m}} \otimes \mathrm{y} \in Q^{(\mathrm{m})}(\mathrm{E};\mathrm{F})$  for all  $\psi \in \mathrm{E}'$  and  $\mathrm{y} \in \mathrm{F}$ .
- (2) If  $P_1, P_2 \in Q^{(m)}(E;F)$ , then  $P_1 + P_2 \in Q^{(m)}(E;F)$ .
- (3) If  $R \in L(E_0; E)$ ,  $P \in Q^{(m)}(E; F)$  and  $S \in L(F; F_0)$ , then  $S \circ P \circ R \in Q^{(m)}(E_0, F_0)$ . We remark that for m=1 in 1.1 we obtain the definition of an operator ideal. It is obvious that the components  $Q^{(m)}(E; F)$  of a given m-polynomial ideal  $Q^{(m)}$  are linear subspaces of  $P^{(m)}(E; F)$ .
- 1.2 **Definition.** Let  $Q^{(m)}$  be an m-polynomial ideal. A mapping  $\gamma$  from  $Q^{(m)}$  into  $\mathbb{R}^+$  is called m-polynomial ideal norm if, for arbitrary Banach spaces  $E, E_0, F$  and  $F_0$ , the following conditions are satisfied
- (1)  $\gamma(\psi^m \otimes y) = \|\psi\|^m \|y\|$  for all  $\psi \in E'$  and  $y \in F$ .
- (2)  $\gamma(P_1 + P_2) \le \gamma(P_1) + \gamma(P_2)$  for all  $P_1, P_2 \in O^{(m)}(E.F)$ .
- (3) For  $R \in L(E_0, F), P \in Q^{(m)}(E, F)$  and  $S \in L(F, F_0)$  one has

$$\gamma(S \circ P \circ R) \leq ||S|| \gamma(P) ||R||^m$$
.

The couple  $[Q^{(m)},\gamma]$  is then called a normed m-polynomial ideal.

It is easy to verify that for  $P \in Q^{(m)}(E;F)$  one has  $\|P\| \leq \gamma(P)$  if  $[Q^{(m)},\gamma]$  is a normed polynomial ideal. Next we give some examples.

1.3 Examples. The class  $P^{(m)}$  of all continuous m-homogeneous polynomials is a normed m-polynomial ideal with respect to the current norm. This holds also true for the class  $F^{(m)}$  of all m-homogeneous polynomials of finite type.

The Banach space  $K^{(m)}(E;F)$  of m-homogeneous compact polynomials from E into F is the closure of  $F^{(m)}(E;F)$  in  $P^{(m)}(E;F)$  with the topology induced from  $P^{(m)}(E;F)$ . The class  $K^{(m)}$  of all m-homogeneous compact polynomials is a normed m-polynomial ideal with respect to current norm.

A polynomial  $P \in P^{(m)}(E;F)$  is called nuclear (see e.g. [5]) if P can be represented by a series  $P(x) = \sum_{j=1}^{\infty} \psi_j^m(x) y_j$  where  $\psi_j \in E'$ ,  $y_j \in F$  and  $\sum_{j=1}^{\infty} \|\psi_j\|^m \|y_j\| < \infty$ .

 $P_{N}^{(m)}(E;F)$  will denote the vector space of all nuclear m-homogeneous polynomials from E into F equipped with the nuclear norm

$$\|\mathbf{P}\|_{\mathbf{N}} = \inf \sum_{j=1}^{\infty} \|\psi_j\|^m \|y_j\|$$

where the infimum is taken over all possible representations of P. The class  $P_{N}^{(m)}$  of all nuclear m-homogeneous polynomials is a normed m-polynomial ideal with respect to the nuclear norm.

For each normed operator ideal  $[A,\alpha]$  one can construct an m-polynomial ideal  $P^{(m)} \circ A$  in the following way (for the compose of an m-functional ideal and operator ideals  $A_1,...,A_m$  we refer to A. Pietsch [17]): Let E,F be Banach spaces. A polynomial P belongs to  $P^{(m)} \circ A(E;F)$  if there exist a Banach space G and mappings  $A \in A(E;G)$ ,  $Q \in P^{(m)}(G;F)$  such that  $P = Q \circ A$ . The vector space  $P^{(m)} \circ A(E;F)$  will be equipped with the norm

$$\alpha^{(m)}(P) = \inf \|Q\| (\alpha(A))^m$$

where the infimum is taken over all possible decompositions. It is not difficult to show that  $[P^{(m)} \circ A, \alpha^{(m)}]$  is a normed m-polynomial ideal.

2. Infinite-factorabe, strongly infinite-factorable and infinite-compact polynimials

We start with the following definition

- 2.1 Definition. Let E,F be Banach spaces. An m-homogeneous polynomial  $P \in P^{(m)}(E;F)$  is called
- (1)  $\infty$ -factorable if there exists a measure space  $(\Omega,\mu)$  such that  $I_F \circ P$  has a factorization  $I_F \circ P = Q_1 \circ S_1$  where  $S_1 \in L(E; L_{\infty}(\Omega,\mu))$  and  $Q_1 \in P^{(m)}(L_{\infty}(\Omega,\mu); F'')$

- (2) strongly  $\infty$ -factorable if  $P = Q_2 \circ S_2$  for  $S_2 \in L(E; L_{\infty}(\Omega, \mu))$  and  $Q_2 \in P^{(m)}(L_{\infty}(\Omega, \mu); F)$ .
- (3)  $\infty$ -compact if there exist a compact operator  $S_3 \in L(E; c_0)$  and a polynomial  $Q_3 \in P^{(m)}(c_0; F)$  such that  $P = Q_3 \circ S_3$ .

We denote by  $L_{\infty}^{(m)}(E;F)$  (resp.  $S_{\infty}^{(m)}(E;F)$ ,  $K_{\infty}^{(m)}(E;F)$ ) the vector space of all  $\infty$ -factorable (resp. strongly  $\infty$ -factorable,  $\infty$ -compact) m-homogeneous polynomials equipped with the norm.

$$\lambda_{\infty}^{(m)}(P) = \inf \| Q_1 \| \| S_1 \|^m$$

$$(\text{resp. } \sigma_{\infty}^{(m)}(P) = \inf \| Q_2 \| \| S_2 \|^m, k_{\infty}^{(m)}(P) = \inf \| Q_3 \| \| S_3 \|^m)$$

the infimum taken over all possible factorizations. Taking m=1 we obtain the normed operator ideal  $L_{\infty}(\text{resp. }S_{\infty},\ K_{\infty})$  of all  $\infty$ -factorable (resp. strongly  $\infty$ -factorable,  $\infty$ -compact) operators.

By definition, one has for all Banach spaces E,F

$$P_{N}^{(m)}(E;F) \subset K_{\infty}^{(m)}(E;F) \subset S_{\infty}^{(m)}(E;F) \subset L_{\infty}^{(m)}(E;F) \subset P^{(m)}(E;F)$$

where the canonical embedding are continuous.

The following proposition can easily be verified.

2.2 Proposition. The classes  $L_{\infty}^{(m)}$ ,  $S_{\infty}^{(m)}$ , and  $K_{\infty}^{(m)}$ , respectively, of  $\infty$ -factorable, strongly  $\infty$ -factorable and  $\infty$ -compact m-homogeneous polynomials are normed m-polynomial ideals with respect to the norms  $\lambda_{\infty}^{(m)}$ ,  $\sigma_{\infty}^{(m)}$  and  $k_{\infty}^{(m)}$ . Furthermore, one has  $L_{\infty}^{(m)} = P^{(m)} \circ L_{\infty}$ ,  $S_{\infty}^{(m)} = P^{(m)} \circ S_{\infty}$  and  $K_{\infty}^{(m)} = P^{(m)} \circ K_{\infty}$  as normed polynomial ideals.

Next we show that each ∞-compact polynomial has an infinite series representation. First we need some notations.

2.3 **Definition**. Let F be a Banach space and let  $m \in \mathbb{N}$ . A family  $(a_{k_1,...,k_m})_{k_1,...,k_m=1}^{\infty}$  in F is said to be  $w_m$ -summable if

$$\sum_{\substack{k_1, \dots, k_m = 1}}^{\infty} a_{k_1, \dots, k_m} \, \xi_{k_1}^{(1) \dots } \xi_{k_m}^{(m)} = \lim_{N \to \infty} \sum_{\substack{k_1, \dots, k_m = 1}}^{N} a_{k_1, \dots, k_m} \, \xi_{k_1}^{(1) \dots } \xi_{k_m}^{(m)}$$

exists for all sequences  $\xi^{(i)}=(\xi_j^{(i)})_{j=1}^\infty \in c_0$  and all i=1,...,m.

We remark that for m=1 we obtain the definition of a weakly summable sequence in F.

We denote by  $l_1(^mF)$  the vector space of all  $w_m$ -summable families in F equipped with the norm

$$\epsilon((\mathbf{a_{k_1,\dots,k_m}})) = \sup \ \| \ \sum_{k_1,\dots,k_m=1}^{\infty} \ \mathbf{a_{k_1,\dots,k_m}} \ \xi_{k_1}^{(1)\dots} \xi_{k_m}^{(m)} \ \|$$

the supremum taken over all sequences  $\xi^{(i)} = (\xi_j^{(i)})_j \in B_0$  and all i=1,...,m where  $B_0$  denotes the unit ball in  $c_0$ . The supremum exists since the m-linear mapping D:  $(c_0)^m \to F$  defined by  $D(\xi^{(1)}, \ldots, \xi^{(m)}) = \sum_{\substack{k_1, \ldots, k_m = 1}}^{\infty} a_{k_1, \ldots, k_m} \xi_{k_1}^{(1)} \xi_{k_m}^{(m)}$  is separately continuous and hence continuous.

Now we show that a  $w_2$ -summable double sequence  $(a_{ik})$  in  $\mathbb{C}$  need not be (absolutely) summable.

Let  $A: c_0 \rightarrow l_1$  be a continuous linear mapping which is not nuclear. Define the double sequence  $(a_{ik})$  by  $Ae_i = (a_{ik})_{k=1}^{\infty}$ , i=1,...,m, where  $e_i$  denotes the ith unit vector in  $c_0$ . Then for each  $(\xi_i) \in c_0$  the sequence  $(\sum\limits_{i=1}^{\infty} \xi_i a_{ik})_k$  lies in  $l_1$ , hence  $(a_{ik})_{i,k=1}^{\infty}$  is  $w_2$ -summable. On the other hand,  $(a_{ik})$  cannot be absolutely summable since by assumption A is not nuclear.

For a multi-index  $k=(k_1,...,k_m)\in\mathbb{N}^m$  and a sequence  $(\psi_i)_{i=1}^{\infty}$  in the dual E' of a locally convex space E we set  $\psi_k(x):=\psi_{k,1}(x)\cdots\psi_{k,...}(x)$ .

Now we prove

2.4 Proposition. Let E,F be Banach spaces. A polynominal  $P \in P^{(m)}(E;F)$  is  $\infty$ -compact if and only if P can be represented by a series

$$P(x) = \sum_{k \in \mathbb{N}^m} a_k \psi_k(x), \quad x \in \mathbb{E}$$

for a suitable 0-sequence  $(\psi_j)$  in E' and a  $w_m$ -summable family  $(a_k)_{k\in \mathbb{N}^m}$  in F. Furthermore, one has

$$k_{\infty}^{(m)}(P) \leq \tau^{(m)}(P) \leq \frac{m^m}{m!} k_{\infty}^{(m)}(P)$$

where the norm  $\tau^{(m)}$  in  $K_{\infty}^{(m)}(E;F)$  is defined by

$$\tau^{(m)}(P) := \inf \epsilon((a_k)) \sup \{ \|\psi_j\|^m : j \epsilon \mathbb{N} \}$$

the infimum taken over all possible representations.

**Proof.** Let  $PeK_{\infty}^{(m)}(E;F)$  and  $\epsilon>0$ . By definition, there exist a compact operator  $SeL(E;c_0)$  and a polynomial  $QeP^{(m)}(c_0;F)$  such that  $P=Q\circ S$  and  $k_{\infty}^{(m)}(P)+\epsilon>0$ 

 $\|Q\| \|S\|^m$ . The operator S can be represented by a series

$$S(x) = \sum_{j=1}^{\infty} \psi_j(x)e_j, \quad x \in E$$

where  $e_j$  is the j-th unit vector in  $c_0$  and  $(\psi_j)$  is a sequence in E' with  $\|\psi_j\| \to 0$  (cf. G. Köthe [11], p. 226). For  $A \in L_s({}^m c_0; F)$  with  $\hat{A} = Q$  one has

$$P(x) = Q \circ S(x) = A \left( \lim_{N \to \infty} \sum_{j=1}^{N} \psi_{j}(x) e_{j} \right)^{m} = \sum_{k_{1}, \dots, k_{m}=1}^{\infty} a_{k_{1}, \dots, k_{m}} \psi_{k_{1}}(x) \cdots \psi_{k_{m}}(x)$$

where  $a_{k_1,...,k_m}:=A(e_{k_1},...,e_{k_m})$ . The family  $(a_k)_{k\in {\rm I\! N}^m}$  is obviously  $w_m$ -summable, and we have

$$\|A\| = \sup \left\{ \| \sum_{k_1, \dots, k_m = 1}^{\infty} a_{k_1, \dots, k_m} \xi_{k_1}^{(1)} \xi_{k_m}^{(m)} \| : \xi^{(1)}, \dots, \xi^{(m)} e B_0 \right\} =$$

$$= e((a_{k_1, \dots, k_m}))$$

Because of  $\|A\| \le m^m \ (m!)^{-1} \ \|Q\| \ (cf. [5], p.5) \ and \ \|S\| = \sup \left\{ \|\psi_j\| : j \in \mathbb{N} \right\}$  we get

$$k_{\infty}^{(m)}(P) + \epsilon \geqslant (m!)m^{-m} \; \epsilon((a_{k_1,...,k_m})) \; \sup \left\{ \|\psi_j\|^m : j \epsilon {\rm I\! N} \right\}$$

and hence  $k_{\infty}^{(m)}(P) \ge (m!)^{-m} \tau^{(m)}(P)$ 

Conversely, suppose that  $P \epsilon P^{(m)}(E;F)$  admits a representation  $P(x) = \sum_{\substack{k \in \mathbb{N}^m \\ (m)}} a_k \psi_k$  where  $(a_k)$  belongs to  $I^1(^m F)$ ,  $(\psi_j)$  is a 0-sequence in E' and  $\tau^{(m)}(P) + \epsilon > \epsilon((a_k))$  sup  $\{\|\psi_j\|^m : j \epsilon \mathbb{N}\}$  for a given positive number  $\epsilon > 0$ . Define the operator  $S \epsilon L(E; c_0)$  by  $S x = (\psi_j(x))_j$  which is compact since  $\psi_j \to 0$  (cf. G. Köthe [11]. p. 226). Let  $Q \epsilon P^{(m)}(c_0; F)$  be defined by  $Q((\xi_j)_{j=1}^\infty) = \sum_{k \in \mathbb{N}^m} a_k \xi_k$  and let  $A \epsilon L_s(^m c_0; F)$  with  $\hat{A} = Q$ . Then we get  $P = Q \circ S$  and

$$\begin{split} k_{\infty}^{(m)}(P) & \leq \|Q\| \, \|S\|^m \leq \|A\| \, \|S\|^m = \epsilon((a_k)_{k \in \mathbb{N}^m}) \sup \left\{ \|\psi_j\|^m : j \epsilon \mathbb{N} \right\} < \\ & < \tau^{(m)}(P) + \epsilon \end{split}$$

This completes the proof.

Next we show that each continuous polynomial defined on an  $\epsilon$ -(S)-space has an infinite series representation analogous to continuous polynomials on nuclear spaces. We remark that an  $\epsilon$ -(S)-space need not be nuclear. Consider e.g.

any non nuclear echelon space  $\lambda_0$  of order 0 which is an (S)-space (cf. R. Hollstein [10])

**2.5 Proposition.** Let E be an  $\epsilon$ -(S)-space and let F be a Banach space. Then each m-homogeneous polynomial  $P\epsilon P^{(m)}(E;F)$  has a series representation

$$P(x) = \sum_{k \in \mathbb{N}^{m}} a_k \psi_k(x)$$

where  $(a_k)_{k \in \mathbb{N}^m} \in l_1(^mF)$  and  $(\psi_j)_{j=1}^{\infty}$  is a 0-sequence in the strong dual  $E_b'$  of E.

**Proof.** Let  $PeP^{(m)}(E;F)$ . Since P is continuous, there is an Uellet U(E) such that  $\|P(x)\| \le (q_U(x))^m$  for any xeE where  $q_U$  denotes the Minkowski functional of U. The mapping  $P_U:E_U \to F$  defined by  $P_U(K_U(x)) = P(x)$  is well defined and lies in  $P^{(m)}(E_U;F)$ .  $P_U$  has a continuous extension  $\widetilde{P}_Uellet P^{(m)}(\widetilde{E}_U;F)$ . Since E is an  $e\cdot(S)$ -space one can find a Vellet U(E) with  $V\subset U$  such that  $\widetilde{K}_{UV} \to \widetilde{E}_U$  is  $\infty$ -compact, i.e.  $\widetilde{K}_{UV}$  is the compose  $\widetilde{K}_{UV} = R\circ S$  of two compact operators  $Sellet E_V, c_0$  and  $Rellet C_0; \widetilde{E}_U$ . By definition, the mapping  $P_V: =\widetilde{P}_U\circ \widetilde{K}_{UV} = \widetilde{P}_U\circ R\circ S$   $e\cdot P^{(m)}(\widetilde{E}_V;F)$  is  $\infty$ -compact and admits, by 2.4, a representation

$$P_{V}(K_{V}(x)) = \sum_{k \in \mathbb{N}^{m}} a_{k} \varphi_{k}(K_{V}(x)), \quad x \in E$$

where  $(a_k) \in l_1(^m F)$  and  $\lim_{j \to \infty} \|\varphi_j\| = 0$  in  $E'_V$ . Setting  $\psi_j := \varphi_j \circ K_V$  the sequence  $(\psi_j)_{j=1}^{\infty}$  converges to 0 in  $E'_b$  and one has

$$P(x) = P_V K_V(x) = \sum_{k \in \mathbb{N}^m} a_k \psi_k(x)$$

for any  $x \in E$ . This completes the proof.

### 3. HOLOMORPHY TYPES

L. Nachbin [15] introduced the concept of holomorphy type  $\Theta$ . In this section we shall show that the polynomial ideals of  $\infty$ -factorable, strongly  $\infty$ -factorable and  $\infty$ -compact polynomials, respectively, form a holomorphy type  $\Theta$ .

A holomorphy type  $\Theta$  from a Banach space E into a Banach space F is a sequence of Banach spaces  $P_{\Theta}^{(m)}(E;F)$ ,  $m \in \mathbb{N}_0$ , such that the following conditions hold true.

- (1)  $P_{\Theta}^{(m)}(E,F)$  is a vector subspace of  $P^{(m)}(E,F)$  for each me $\mathbb{N}$ .
- (2)  $P_{\Theta}^{(0)}(E;F)$  is isometrically isomorphic to  $P^{(0)}(E;F)$ .

(3) There exists a real number  $\sigma \ge 1$  such that for each  $k \in N_0$ ,  $m \in N_0$ ,  $k \le m$ ,  $x \in E$ , and  $P \in P_{\Theta}^{(m)}(E;F)$  one has

$$\begin{split} &\hat{\mathbf{d}}^{k}\mathbf{P}(\mathbf{x}) \in P_{\Theta}^{(k)}(\mathbf{E};\mathbf{F}) \\ &\parallel \frac{1}{h!} &\hat{\mathbf{d}}^{k}\mathbf{P}(\mathbf{x}) \parallel_{\Theta} \leqslant \sigma^{m} & \parallel \mathbf{P} \parallel_{\Theta} & \parallel \mathbf{x} \parallel^{m-k} \end{split}$$

where  $\|P\|_{\Theta}$  denotes the norm in  $P_{\Theta}^{(m)}(E;F)$ .

We now show that each normed operator ideal  $[A,\alpha]$  assigns a holomorphy type  $\Theta$ .

3.1. Proposition. Let  $[A,\alpha]$  be a normed operator ideal. Then for each Banach space E and F the sequence  $P^{(m)} \circ A(E;F)$ ,  $m \in \mathbb{N}_0$ , is a holomorphy type  $\Theta$ .

**Proof.** Given any  $m \in \mathbb{N}$ . We prove that for each  $k \in \mathbb{N}$ ,  $k \le m$ ,  $k \ge m$ ,

$$\alpha^{(k)}(\frac{1}{k!} \hat{d}^k P(x)) \leq 2^m \alpha^{(m)}(P) \|x\|^{m-k}$$

Let  $x \in E$ ,  $x \neq 0$ , and let  $P \in P^{(m)} \circ A(E;F)$ . For a given  $\epsilon > 0$  there exist a Banach space G and mappings  $S \in A(E;G)$  and  $Q \in P^{(m)}(G;F)$  such that  $P = Q \circ S$  and

$$\|Q\|(\alpha(S))^m \leq \alpha^{(m)}(P) + \epsilon 2^{-m} \|x\|^{k-m}.$$

The polynomial  $\hat{d}^k P(x)$  lies in  $P^{(k)} \circ A(E;F)$  since  $\hat{d}^k P(x) = \hat{d}^k Q(Sx) \circ S$  where  $\hat{d}^k Q(Sx) \in P^{(k)}(G;F)$ . If  $Sx \neq 0$ , then we set  $y := (1/\|Sx\|)Sx$  and we obtain

$$\begin{split} \alpha^{(k)}(\frac{1}{k!} \ \hat{d}^k P(x)) & \leq \| \frac{1}{k!} \ \hat{d}^k Q(Sx) \| (\alpha(S))^k \leq \| Sx \|^{m-k} \ \| \frac{1}{k!} \ \hat{d}^k Q(y) \| (\alpha(S))^k \\ & \leq \| \frac{1}{k!} \ \hat{d}^k Q(y) \| (\alpha(S))^m \ \| x \|^{m-k} \end{split}$$

By the Cauchy inequalities we get

$$\|\frac{1}{k!} \hat{d}^k Q(y)\| \le \sup \left\{ \|Q(z)\| : \|y - z\| = 1 \right\} \le 2^m \|Q\|.$$

It follows

$$\alpha^{(k)}(\frac{1}{k!} \hat{d}^k P(x)) \leq 2^m \|Q\| (\alpha(S))^m \|x\|^{m-k} \leq 2^m \alpha^{(m)}(P) \|x\|^{m-k} + \epsilon$$

wich completes the proof.

From 2.2 and 3.1 follows that the sequences  $P_{L_{\infty}}^{(m)}(E;F)$ ,  $P_{S_{\infty}}^{(m)}(E;F)$  and  $P_{K_{\infty}}^{(m)}(E;F)$ ,  $m \in \mathbb{N}_0$ , are holomorphy types  $\Theta$ .

4. HOLOMORPHY MAPPINGS OF UNIFORMLY INFINITE-FACTORABLE BOUNDED TYPE

A continuous mapping  $f:E\to F$  between locally convex spaces is called holomorphic in E if for each  $y'\in F'$  the function  $z\to y'\circ f(a+zb)$  is holomorphic in C for all  $a,b\in E$ . The vector space of all holomorphic mappings from E into F is denoted by H(E:F).

If E and F are normed spaces, then a mapping feH(E;F) is said to be of bounded type if it is bounded on all bounded subsets of E. We denote by  $H^b(E;F)$  the vector space of all holomorphic mappings of bounded type from E into F equipped with the topology of uniform convergence on bounded sets.

4.1 Definition. Let  $[A,\alpha]$  be a normed operator ideal and let E, F be Banach spaces. A mapping  $f \in H(E;F)$  is said to be holomorphic of bounded A-type if f can be represented by a series

$$f(x) = \sum_{m=0}^{\infty} P_m(x), x \in E$$

where  $P_m \epsilon P^{(m)} \circ A(E;F)$  and  $\limsup_{m \in \mathbb{N}} (\alpha^{(m)}(P_m)) < \infty$ .

The vector space  $H_A^b(E;F)$  of all holomorphic mappings of bounded A-type is a metrizable locally convex space with respect to the topology defined by the norms

$$\alpha_{\rm r}({\rm f}) = \sum_{{\rm m}=0}^{\infty} {\rm r}^{\rm m} \; \alpha^{({\rm m})}({\rm P}_{\rm m}), \quad {\rm r} \epsilon {\rm I\!R}.$$

We write  $H_A^b(E)$  instead of  $H_A^b(E; \mathbb{C})$ .

If  $H_{Nb}(E;F)$  denotes the vector space of all holomorphic mappings of nuclear bounded type in the sense of C.P. Gupta [6], then we have for all Banach spaces E,F

$$\mathrm{H}_{Nb}(\mathrm{E};\!\mathrm{F})\subset\mathrm{H}^{\mathrm{b}}_{K_{\infty}}(\mathrm{E};\!\mathrm{F})\subset\mathrm{H}^{\mathrm{b}}_{S_{\infty}}(\mathrm{E};\!\mathrm{F})\subset\mathrm{H}^{\mathrm{b}}_{L_{\infty}}(\mathrm{E};\!\mathrm{F})\subset\mathrm{H}^{\mathrm{b}}(\mathrm{E};\!\mathrm{F})$$

Simple examples show that these inclusions are generally strict. Obviously  $H^b_{S_\infty}(E;F) = H^b_{L_\infty}(E;F)$  holds if F is complemented in F'' and  $H^b_{S_\infty}(E;F) = H^b(E;F)$  if E is an  $L_\infty(\mu)$ -space. Now we show.

4.2 Proposition. For each infinite-dimensional Hilbert space E one has

$$H_{L_{\infty}}^{b}(E) \neq H^{b}(E)$$

**Proof.** Let I:E $\to$ E' be the canonical linear norm-isomorphism. The mapping P:E $\to$ C defined by P(x) = <x,Ix> belongs to  $P^{(2)}(E)$ . We assume that PeH $_{L_{\infty}}^{b}(E)$ . Then P lies in  $P_{L_{\infty}}^{(2)}(E)$ , hence there exist a measure space  $(\Omega,\mu)$  as well as mappings SeL(E,L $_{\infty}(\Omega,\mu)$ ) and QeP $_{L_{\infty}}^{(2)}(L_{\infty}(\Omega,\mu))$  such that P = Q  $\circ$  S. Let BeL $_{S}(^{2}L_{\infty}(\Omega,\mu))$  with Q=B and let  $\widetilde{B}$ eL(L $_{\infty}(\Omega,\mu)$ ,(L $_{\infty}(\Omega,\mu)$ )') be the associated linear mapping of B. The continuous bilinear mapping L:ExE $\to$ C defined by L(x,y) = <x,Iy> is symmetric with  $\widehat{L}=P$ . For all x,yeE we have

$$\langle x, Iy \rangle = L(x,y) = B(Sx,Sy) = \langle Sx,\widetilde{B} \circ Sy \rangle = \langle x,S' \circ \widetilde{B} \circ Sy \rangle$$

hence  $I = S' \circ \widetilde{B} \circ S$ . It follows that  $I: E \to E'$  can be factored through an  $L_{\infty}(\mu)$ -space, thus I is 2-absolutely summing (cf. A. Pietsch [16], p. 307) which is the desired contradiction.

Later we need

4.3 Proposition. Let  $[A, \alpha]$  be a normed operator ideal, let E,F,G be Banach spaces and let  $A \in A(E;F)$ . Then for each  $f \in H^b(F;G)$  the compose  $f \circ A$  lies in  $H^b_A(E;G)$ . Moreover, the mapping.

$$J:H^b(F;G) \to H^b_A(E;G), f \to f \circ A$$

is continuous.

**Proof.** Let  $f \in H^b(F;G)$  and let  $f(x) = \sum\limits_{m=0}^{\infty} P_m(x)$  be the Taylor series of f where  $P_m \in P^{(m)}(E;F)$  and  $\lim\limits_{m \to \infty} \|P_m\|^{\frac{1}{m}} = 0$  (cf. S. Dineen [5], p. 166). Setting  $Q_m := P_m \circ A$  we have  $Q_m \in P^{(m)} \circ A(E;F)$ ,  $f \circ A(x) = \sum\limits_{m} Q_m(x)$  and  $\lim\limits_{m \to \infty} (\alpha^{(m)}(Q_m))^{\frac{1}{m}} = 0$  since  $\alpha^{(m)}(Q_m) \leq \|P_m\| (\alpha(A))^m$ . It follows that  $f \circ A \in H_A^b(E;F)$ . It remains to show that J is continuous. For a given r > 0 we set  $\rho := 2r\alpha(A)$  and  $M(\rho) := \sup \left\{ \|f(x)\| : \|x\| \leqslant \rho \right\}$ . By the Cauchy inequalities we have  $\|P_m\| \leqslant \rho^{-m} M(\rho)$  for all  $m \in \mathbb{N}$  and hence

$$\begin{split} \alpha_{r}(f \circ A) &= \sum_{m} r^{m} \alpha^{(m)}(Q_{m}) \leqslant \sum_{m} r^{m} \|P_{m}\| (\alpha(A))^{m} \leqslant \\ &\leq \sum_{m} \left(\frac{r}{\rho}\right)^{m} (\alpha(A))^{m} M(\rho) = 2M(\rho), \end{split}$$

thus J is continuous.

Following J.F. Colombeau, M.C. Matos [2], a mapping  $f \in H(E;F)$  from a l.c.s. E into a locally-complete space F is called holomorphic of uniformly bounded type if there exist  $U \in U(E)$ ,  $B \in B(E)$  and  $f_0 \in H^b(\widetilde{E}_{11}, F_R)$  such that  $f = J_R \circ f_0 \circ K_{11}$ . H<sup>ub</sup>(E;F) denotes the vector space of all holomorphic mappings of uniformly bounded type from E into F.

If  $[A, \alpha]$  is any normed operator ideal, then a mapping  $f \in H(E;F)$  is said to be holomorphic of uniformly bounded A-type if there exist  $U \in U(E)$ ,  $B \in B(F)$  and  $f_0\epsilon H^b_{\mathcal{A}}(\widetilde{E}_U,\!F_B) \text{ with } f\!=\!\!J_B\circ f_0\circ K_U. \text{ We denote by } H^{ub}_{\mathcal{A}}(E;\!F) \text{ the vector space of all }$ holomorphic mappings of uniformly bounded A-type.

Now we prove

- 4.4 Proposition. Let F be any locally-complete space. The following assertions

- (1) If E is an  $\epsilon$ -space, then  $H_L^{ub}(E;F) = H^{ub}(E;F)$ . (2) If E is an  $S_{\infty}$ -space, then  $H_{S_{\infty}}^{ub}(E;F) = H^{ub}(E;F)$ . (3) If E is an  $\epsilon$ -(S)-space, then  $H_{K_{\infty}}^{ub}(E;F) = H^{ub}(E;F)$ . (4) If E is an  $\epsilon$ -(DFM)-space and F is an (F)-space, then  $H_{K_{\infty}}^{ub}(E;F) = H(E:F)$ .
- **Proof.** (1) Let  $f \in H^{ub}(E;F)$ . There exist  $U \in U(E)$ ,  $B \in B(F)$  and  $f_0 \in H^b(\widetilde{E}_U;F_B)$  with  $f=J_{R}\circ f_{0}\circ K_{U}$ . Since E is an  $\epsilon$ -space one can find a  $V\in U(E)$  contained in U such that the canonical mapping  $\widetilde{K}_{UV}: \widetilde{E}_V \to \widetilde{E}_U$  is  $\infty$ -factorable. In view of 4.3,  $f_0 \circ \widetilde{K}_{UV}$  belongs to  $H^b_{L_\infty}(\widetilde{E}_V, F_B)$ , hence  $f = J_B \circ f_0 \circ \widetilde{K}_{UV} \circ K_U \in H^{ub}_{L_\infty}(E; F)$ .

Assertion (2) can be proved in the same way. Statement (3) is a consequence of the fact that for each 0-neighbourhood UeU(E) of an e-(S)-space Ethere exists a  $V \in U(E)$  with  $V \subset U$  such that  $\widetilde{K}_{UV}$  is  $\infty$ -compact.

(4) If E is an  $\epsilon$ -(DFM)-space, then E is an (S)-space and by (3) we have  $H_{K_{\infty}}^{ub}(E;F) = H^{ub}(E;F)$ . By a result of J.F. Colombeau, J. Mujica [3], 4.1, one has  $H^{ub}(E;F) = H(E;F)$  if F moreover is an (F)-space. This completes the proof.

# 5. EXTENSION OF HOLOMORPHIC MAPPINGS

In this section we shall characterize those holomorphic mappings of uniformly bounded type f:E-F between l.c.s. which can be extended holomorphically to each l.c.s. G containing E as a topological subspace. First we prove.

5.1 Proposition. Let E,F be l.c.s. and F locally complete.

(a) For each  $f \in H_{L_{\infty}}^{ub}(E;F)$  and each l.c.s.  $G \supset E$  there exists an  $\widetilde{f} \in H_{L_{\infty}}^{ub}(G,F_n'')$  with  $\widetilde{f}|_{E} = f$ .

## (b) The restriction mapping

$$R: H^{ub}_{S_{\infty}}(G;F) \rightarrow H^{ub}_{S_{\infty}}(E;F), f \rightarrow f|_{E}$$

is surjective for all l.c.s. G⊃E.

**Proof.** (a) Let  $f \in H_{L_{\infty}}^{ub}(E;F)$  and let G be a l.c.s. containing E as a topological subspace. By definition, there exist  $U \in U(G)$ ,  $B \in B(F)$  and  $f_0 \in H_{L_{\infty}}^{ub}(\widetilde{E}_W;F_B)$  with  $W := U \cap E$  such that  $f = J_B \circ f_0 \circ K_W$ .  $f_0$  can be represented by a series  $f_0(\hat{x}) = \sum_{m=0}^{\infty} P_m(\hat{x})$ ,  $\hat{x} \in \widetilde{E}_U$ , with  $P_m \in P_{L_{\infty}}^{(m)}(\widetilde{E}_W;F_B)$  and  $\limsup_{m \in \mathbb{N}} (\lambda_{\infty}^{(m)}(P_m))^{\frac{1}{m}} = 0$ .

For a given meN there exist a measure space  $(\Omega_m,\mu_m)$  and mappings  $A_m \in L(\widetilde{E}_W; L_\infty(\Omega_m,\mu_m))$  and  $Q_m \in P^{(m)}(L_\infty(\Omega_m,\mu_m),F_B'')$  such that  $I_{F_B} \circ P_m = Q_m \circ A_m$  and  $\|A_m\|^m \|Q_m\| < \lambda_\infty^{(m)}(P_m) + m^{-m}$ . Since  $L_\infty(\Omega_m,\mu_m)$  has the metric extension property and since  $\widetilde{E}_W$  can be considered as a normed subspace of  $\widetilde{G}_U$  there exists an extension  $\widetilde{A}_m \in L(\widetilde{G}_U, L_\infty(\Omega_m,\mu_m))$  of  $A_m$  with  $\|\widetilde{A}_m\| = \|A_m\|$ . Now the mapping  $\widetilde{P}_m := Q_m \circ \widetilde{A}_m$  belongs to  $P_{L_\infty}^{(m)}(\widetilde{G}_U; F_B'')$  and we have

$$\begin{split} \lambda_{\infty}^{(m)}(\widetilde{P}_m) \leqslant \|\widetilde{A}_m\,\|\,\|Q_m\,\|^m < \lambda_{\infty}^{(m)}(P_m) + m^{-m}\,. \\ \text{Let } \widetilde{f_0}(\hat{x}) := \sum_{m=0}^{\infty} \widetilde{P}_m(\hat{x}) \text{ for } \hat{x} \epsilon \widetilde{G}_U. \text{ Since} \\ \lim \sup_{m} (\lambda_{\infty}^{(m)}(\widetilde{P}_m))^{\frac{1}{m}} \leqslant \lim \sup_{m} (\lambda_{\infty}^{(m)}(P_m)^{\frac{1}{m}} + m^{-1}) = 0 \end{split}$$

it follows that  $\widetilde{f_0}$  is defined for all  $\hat{x} \in \widetilde{G}_U$ , that  $\widetilde{f_0} \in H^b_{L_\infty}(\widetilde{G}_U, F_B'')$  and  $\widetilde{f_0}|_{\widetilde{E}_W} = f_0$ . The mapping  $\widetilde{f} = J_B'' \circ \widetilde{f_0} \circ K_U \in H_{L_\infty}^{ub}(G; F_n'')$  is then the desired extension of f. The assertion (b) can be shown in the same way.

For any l.c.s E and F with F locally complete, let  $H_{uNb}(E;F)$  be denote the vector space of all holomorphic mappings of uniformly nuclear bounded type in the sense of J.F. Colombeau, J. Mujica [3].  $H_{uNb}(E;F)$  is then a linear subspace of  $H_{K_{\infty}}^{ub}(E;F)$ , in particular of  $H_{S_{\infty}}^{ub}(E;F)$ . By [3], 7.3, the restriction mapping  $R:H_{uNb}(G;F) \to H_{uNb}(E;F)$  is surjective for each l.c.s  $G \supset E$ . Now we shall show that  $H_{S_{\infty}}^{ub}(E;F)$  is the largest subspace of  $H^{ub}(E;F)$  such that the restriction mapping R in 5.1(b) is surjective for all l.c.s. G containing E as a topological subspace.

First we need the following notations: Let  $E_{\infty}$  be the topological product  $\prod_{U \in U(E)} l_{\infty}(U^0)$  where  $l_{\infty}(U^0)$  is the vector space of all bounded functions on the polar of U in E equipped with the supremum norm. E can be then identified

with a topological subspace of  $E_{\infty}$ . We denote by  $J_{\infty}$ :  $E{\to}E_{\infty}$  the canonical embedding.

5.2 Proposition. Let E,F be l.c.s. and let F be locally complete. If  $f \in H^{ub}(E;F)$  has an extension  $g \in H^{ub}(E_{\infty};F)$ , then  $f \in H^{ub}_{S_{\infty}}(E;F)$ .

**Proof.** Set  $G:=E_{\infty}$  and assume that  $f \in H^{ub}(E;F)$  admits an extension  $g \in H^{ub}(G;F)$ . g has a factorization  $g=J_{B} \circ g_{0} \circ K_{V}$  where  $B \in B(F)$ ,  $V \in U(G)$  and  $g_{0} \in H^{b}(\widetilde{G}_{V};F_{B})$ . Since G is as a topological product of the spaces  $l_{\infty}(U^{0})$  and  $S_{\infty}$ -space (cf. H. Junek [12], 7.2.2), there exists a  $W \in U(G)$  with  $W \subset V$  such that  $\widetilde{K}_{VW}:\widetilde{G}_{W} \to \widetilde{G}_{V}$  is strongly  $\infty$ -factorable. Thus  $\widetilde{K}_{VW}$  admits a factorization  $\widetilde{K}_{VW}=S \circ R$  through  $L_{\infty}(\Omega,\mu)$  for a suitable measure space  $(\Omega,\mu)$  where  $R \in L(\widetilde{G}_{W};L_{\infty}(\Omega,\mu))$  and  $S \in L(L_{\infty}(\Omega,\mu);\widetilde{G}_{V})$ . For  $W_{0}:=W \cap E \in U(E)$  we denote by  $J_{W}:\widetilde{E}_{W_{0}} \to \widetilde{G}_{W}$  and  $K_{W_{0}}:E \to \widetilde{E}_{W_{0}}$  the canonical mappings. Setting  $g_{1}:=g_{0} \circ S \in H^{b}$   $(L_{\infty}(\Omega,\mu);F_{B})$  and  $f_{0}:=g_{1} \circ R \circ J_{W} \in H^{b}(\widetilde{E}_{W_{0}};F_{B})$  one has

$$\begin{split} \mathbf{f} &= \mathbf{g} \circ \mathbf{J}_{\infty} = \mathbf{J}_{\mathbf{B}} \circ \mathbf{g}_{\mathbf{0}} \circ \mathbf{K}_{\mathbf{V}} \circ \mathbf{J}_{\infty} = \mathbf{J}_{\mathbf{B}} \circ \mathbf{g}_{\mathbf{0}} \circ \widetilde{\mathbf{K}}_{\mathbf{V}\mathbf{W}} \circ \mathbf{K}_{\mathbf{W}} \circ \mathbf{J}_{\infty} = \\ &= \mathbf{J}_{\mathbf{B}} \circ \mathbf{g}_{\mathbf{0}} \circ \mathbf{S} \circ \mathbf{R} \circ \mathbf{J}_{\mathbf{W}} \circ \mathbf{K}_{\mathbf{W}_{\mathbf{0}}} = \mathbf{J}_{\mathbf{B}} \circ \mathbf{f}_{\mathbf{0}} \circ \mathbf{K}_{\mathbf{W}_{\mathbf{0}}}. \end{split}$$

By 4.3.  $f_0 = g_1 \circ R \circ J_W$  belongs to  $H^b_{S_\infty}(\widetilde{E}_{W_0}; F_B)$  since  $g_1 \in H^b$   $(L_\infty(\Omega, \mu); F_B)$  and  $R \circ J_W \in S_\infty(\widetilde{E}_{W_0}; L_\infty(\Omega, \mu))$ . Thus f lies in  $H^{u,b}_{S_\infty}(E; F)$  which completes the proof.

Combining 5.1 and 5.2 we obtain.

- **5.3 Proposition.** Let E,F be a pair of l.c.s. and let F be locally complete. The following assertions are equivalent
- (1)  $H^{ub}(E;F) = H^{ub}_{S_{-}}(E;F)$ .
- (2) The restriction mapping  $R: H^{ub}(G;F) \to H^{ub}(E;F)$  is surjective for each l.c.s.  $G \supset E$  (resp. for  $G=E_{\infty}$ ).

From 4.2 and 5.3 it follows (cf. R. Aron, P. Berner [1], p. 21).

5.4 Corollary. For each infinite-dimensional Hilbert space E there exists a Banach space G such that the restriction mapping  $R: H^b(G) \to H^b(E)$  is not surjective.

Let us remark that by a result of R. Meise, D. Vogt [14] the restriction mapping  $R:H^{ub}(G;F)\to H^{ub}(E;F)$  is however surjective if G is a l.c.s. whose topology can be defined by seminorms induced by semiscalar products, E is a linear subspace of G which is a (DFM)-space in the induced topology and F is an (F)-space.

Applying 4.4 and 5.1 we further obtain the following holomorphic Hahn-Banach theorem (cf. R. Aron, P. Berner [1] and R. Hollstein [10]).

- **5.5 Corollary.** Let E,F be l.c.s. and F locally complete. The following assertions hold true
- (a) If E is an  $\epsilon$ -space, then every  $f \epsilon H^{u\,b}(E;F)$  has an extension  $\widetilde{f} \epsilon H^{u\,b}(G,F_n'')$  for every l.c.s.  $G \supset E$ .
- (b) If E is an  $S_{\infty}$ -space, then every  $f \in H^{ub}(E;F)$  has an extension  $\widetilde{f} \in H^{ub}(G;F)$  for every l.c.s.  $G \supset E$ .
- (c) If E is an  $\epsilon$ -(DFM)-space and F is an (F)-space, then every  $f\epsilon H(E;F)$  has an extension  $f\epsilon H(G;F)$  for every l.c.s.  $G\supset E$ .

### REFERENCES

- [1] Aron, R., Berner, P. A Hahn-Banach theorem for analytic mappings, Bull. Soc. Math. France 106, 3-24 (1978).
- [2] Colombeau, J.F., Matos, M. Convolution equations in spaces of infinite dimensional entire functions, Indag. Math. 42, 375-389 (1980).
- [3] Colombeau, J.F., Mujica, J. Holomorphic and differentiable mappings of uniform bounded type, Functional Analysis, Holomorphy and Approximation Theory, Ed. J.A. Barroso, North-Holland Math. Studies 71, 179-200 (1982).
- [4] Dineen, S. Holomorphy types on Banach spaces, Studia Math. 39, 241-288 (1979).
- [5] Dineen, S. Complex analysis in locally convex spaces, North-Holland Math. Studies 57 (1981).
- [6] Gupta, C.P. On the Malgrange theorem for nuclearly entire functions on a Banach space, Indag. Math. 32, 356-358 (1970).
- [7] Hollstein, R., Inductive limits and  $\epsilon$ -tensor products, J. reine angew. Math. 319, 38-62 (1980).
- [8] Hollstein, R. Extension and lifting of continuous linear mappings in locally convex spaces, Math. Nachr. 108, 275-297 (1985).
- [9] Hollstein, R. Locally convex & tensor products and & spaces, Math. Nachr. 120, 73-90 (1985).
- [10] Hollstein, R. A Hahn-Banach theorem for holomorphic mappings on locally convex spaces, Math. Z. 188, 349-357 (1985).
- [11] Köthe, G. Topological vector spaces II, Springer 1979.
- [12] Junek, H. Locally convex spaces and operator ideals, Leipzig, Teubner-Texte 56 (1983).
- [13] Lindenstrauss, J., Pelczynski, A. Absolutely summing operators in  $L_p$ -spaces and their applications, Studia Math. 29, 275-326 (1968).
- [14] Meise, R. Vogt, D. Extension of entire functions on nuclear locally convex spaces, Proc. Amer. Math Soc. 92, 495-500 (1984).
- [15] Nachbin, L., Topology on spaces of holomorphic mappings, Erg. der Math., Springer 47 (1969).
- [16] Pietsch, A. Operator ideals, Berlin, Deutscher Verl. d. Wiss. (1978).
- [17] Pietsch, A. Ideals of multilinear functionals, Proc. of the 2. International Conf. on Operator Algebras, Ideals, and Their Applications in Theoretical Physics, Leipzig 1983, Teubner-Texte 67 (1984).

Ralf Hollstein Universität-GH-Paderborn Fachbereich 17 Warburger Str. 100 D-4790 Paderborn F.R. Germany