SOME RESULTS ABOUT THE SIZE OF THE EXCEPTIONAL
SET IN NEVANLINNA’S SECOND FUNDAMENTAL THEOREM

by
ARTURO FERNANDEZ ARIAS
ABSTRACT
Let F be a meromorphic function in the plane. Some conditions are given
on the size of the set of positive real numbers, outside which the term S(r,F)
which arises in the logarithmic derivative Lemma is small compared with the

characteristic function T(r,F) of F.
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1. INTRODUCTION

Let F(z) be a meromorphic function in the plane. We shall use the usual
notation of Nevanlinna theory. For any complex value a we define
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N(r,a) = f w dt + n(0,2) logr
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m(r,a) =— lo —_— df ,
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where n(t,a) denotes the number of roots according with their multiplicities of
the equation F(z) =ain |z [<t.
Similarly we define
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T o) — O’l:o
N(r, ) = / o) tn( ) + n(0,% ) logr.
0

The function
T(r,F) = m(r,e) + N(r,0),

is called the characteristic function of the meromorphic function F.
Next we state the second fundamental theorem of Nevanlinna.

Theorem A.— Let F(z) be a meromorphic function in the plane. Let r be a posi-
tive real number, 0<r < ,and a,,a,,.... Ag, are q > 2 distinct values of the
extended complex plane such that | a, —a, |26, 1 <u<v <aq,foracertain
8>0. Then

(—2) T (,F) < N(r,a;) + N(r,a,) +....+ N(r,aq) —N;(r) + S(r), (1.1)

where N, (1) is a positive term given by

N; (1) =N(r,%) + 2N(,F) — N(1,F"),

and
' 9 F . 3q
S@F) = mr,—) + m(zr, T ) + qlog ~ —— + log2
F v=1 F-au 1}
+1 ! (1.2)
og —— , .
F'(0)

with modifications if F(0) = e or F'(0)=0.

The quantity S(r,F) will in general be negligible with respect T(r,F) and the
combination of Theorem A and the estimation for S(r,F) constitute Nevanlinna’s
second fundamental theorem.

The following theorem due to R. Nevanlinna gives an estimation for S(r,F),

Theorem B.— Suppose that F is a meromorphic function in the plane, S(r,F) is
defined by (1.2) and X\ is a positive fixed number, then we have

S(1,F) = 0(logT(r,F)) + 0O(logr), (1.3)
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as 1o through all values if F(z) has finite order and otherwise as 1= outside
a set E, satisfying
A
r*dr < oo | (1.9
Ey

In this paper we show that if we consider, instead of (1.3), the weaker con-
dition,

S(r,F) = o(T(r,F)), (1.5)
we obtain an stronger conclusion than (1.4). We also give a new condition of a
different type that (1.4) on the size of the exceptional set, outside which, (1.5)
holds. These conditions turn out to be sharp as is proved in [1].

2. STATEMENT OF THE RESULTS

Theorem 1.— The error term S(1,F) in Nevanlinna’s second fundamental theorem
satisfies (1.5), Le.

S(1,F) = o(T(r,F)),

as r—>o0 outside a set E, independent of \, such that

dr < oo 2.1)
E

Theorem 2.— The error term S(1,F) satisfies (1.5), as 1+ outside a set E, which
can be contained in a sequence of intervals [rn, 1y +6,], such that

for every A > 0.

1
by < ———= where ¥(1)=1, ¥(n) =¥ (n-1) 2.2)

¥ (n)

Both conditions (2.1) and (2.2) imply that the exceptional set has finite
measure but they are differente in character, i.e. neither implies the other for
AZ=0.

The condition (2.2) gives a limitation only on the size of the intervals
[ry, Iy +8,]and (2.1) takes into account the position of the exceptional set.
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3. SOME PRELIMINARY RESULTS OF THEOREM 1

In the proof of Theorem 1 we shall use the following result which implies in
particular Theorem B.

Theorem C.— Suppose that F is « meromorphic function in the plane and ®(r)
an increasing function for which there exists a constant C such that

P+ <C d(r),
then

S(r,F) <20 log * T(r,F) +12log TP (r) + 10 1log *r + constant 3.1)

& (1) dr < oo
E‘P

In the proof of Theorem C we shall use the following lemmas,

outside a set E, satisfying

Lemma 3. 1. (Logarithmic derivative lemma).— Let F(z) be meromorphic in the
plane. For 0 <r <R, we have

r

+ + + 1
m(r, T y<4log™ T(R,F) +4log  log

IF()!

=+

+ 1
+log —+ 14
R-r r

+5log "R + 6log?

Lemma 3.2.— Suppose T(r) continuous, increasing and T(r) 2 1 forry <1<+ o0
and ®(r) increasing for ro <r <+ oo such that

P+ KCP(n), r=rg

for a certain constant C. Then we have

T (r + —1><2T(r),
D (r) T(x)
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P(r)dr < o
Eq

This is Borel’s lemma amplified. The proof is the same as the one given in
[2] pag. 36.

outside a set E ;, satisfying

4. PROOF OF THEOREM C

S(r,F) was defined in (1.2) and it can be written as

! !

S(r,F) = m(r,F—) + m(r,?) + constant, “4.1)
where
6@ = N (F@-3,),
v=1

By Lemma 3.1 we have for 0 <r <R

!

G + + +
m(r, o )<4log T(R,G)+5log” R +6log + constant

—TI

for r bigger than a certain ro > 0.

1
We take R =r + ———— . Then for r large we obtain
@ (r) T(r,F)

5log *R<S log T+ constant,
1
6log* R—=6log+ ® (1) + 6log " T(1,F)

-1

and by Lemma 3.2 we have
4 log * TR,G)<4log* (qT(R,F) + constant <4 log * T(r,F) + constant.
outside a set E, satisfying I Q'J(f) dr <o,
Ep
Thus

!

G
m(r,? )<10log ¥ T(r,F) + 6 log* @ (r) + 5log " r + constant (4.2)
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and in particular
!

m(r, -E— )<10 log'+ T(,F) +6log @ (r) +5log * I + constant 4.3)
With (4.1), (4.2) and (4.3) we conclude
S(r,F) < 201log * T(r,f) + 121og * ®(r) + 101log r 4+ constant,
which is (3.1).
5. PROOF OF THEOREM 1

We may assume that F is transcendental, since otherwise there is no excep-
tional set. Then.

logr
T(r,F)

-+ (0 as r>oo,

Let a(r) be an increasing function such that

a(r)logr

a(r)>e0 , ——— >0, r>oo
(r) o
a(r)
(a(r+1) —a(r)) logr < C4, < C,,Vr 2 1o,
and set
® (r) =r2®
Then
P (r+
®(r)

so that by Theorem C
S(r,F) < 20 log+ T(,F) + 12log+ (@ + 1010g+ r + constant =
= 20 log * T(r,F) + 12 max(0, a(r) logr) + 10 log *r + constant =

= o(T(r)),
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outside a set E, with

f P(r) dr <o .
Eg

Since (1) > ™, forr> 1y, for every A > 0, we conclude Mdr<eo . and
the proof of Theorem 1 is complete. -/ Eg

6. AN AUXILIARY LEMMA TO THEOREM 2
In the proof of Theorem 2 we shall use the following lemma.

Lemma 6.1.—~ Suppose that T(r) is a continuous, increasing real-valued function
Jorty <1<0, and that T(r) > 1 there. Then we have

1 1/2
T+ — ) <e2TM / (6.1)
T(r)

outside an exceptional set contained in a union of intervals U [th, T, +6,], such
that &  satisfies n

5, < where ¥(1)=1, ¥(n) =e¥ (-1 ;¢ (2.2)

We set t(r) = T(r)1 /2, then (6.1) becomes

1
t(r + e ) < el (6.2)

Let r; be the lower bound of all r > 14 such that (6.2) is false or equivalen-
tly the first value for which

t(r + ) > etf1),

1
t(r;)?

We write r; =r; + t(r;) and let 1, be the lower bound of all r >} such
that (6.2) is false. We can define in this way a sequence r, writing

1

T =r -+ s
n-1 n-1 t(Tn-l—)r
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and defining r,, as the lower bound of all r = rt'l_1 such that

t(r + ) = et

t(r)?

The excepcional set is contained in the union

1

+ _—t(rn)z ].

U 1=Ulr,
U [ty. 3] = Ul 1y

‘We write 8, = t(r,) ™ and since
t(r,) = t(r) = etn-1) and t(rg) > 1,
we obtain by induction
t@,) = ¥(n+1) = ¥(n),
and then we conclude

1 1
5. = <
") W(n)

This completes the proof of Lemma 6.1.

7. PROOF OF THEOREM 2

Again we write S(r,F) in the form

! ’

F G
S(t,F) = m(r,—F-—) + m(r,—(-;—) + constant, (7.1)

where

=

Ge) =

. (F(z) —a,).

By the logarithmic derivative Lemma, we have for 0 <r <R

!

G
mre) < 4log " T(R,G) +51log " R+ 6log =
—-TI

1
+ logT—+ 14.
r
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Now, we take

R=r+

T(r,F) ~

then with the same argument of Theorem C but using Lemma 6.1 instead of
Lemma 3.2 we obtain that

S(r,F) < 16 T(r,F)1/2 + 121og * T(t,F) + 10log " r + constant =
= o (T(1,F)),

outside a set, which can be contained in a sequence of intervals [r,, r, +8,]
with & satisfying (2.2) and the proof of Theorem 2 is finished.
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