DUALITY OF TENSOR PRODUCTS OF CONVERGE-FREE SPACES

by

GOTTFRIED KÖTHE

ABSTRACT:

Let λ, μ be two perfect convergence-free spaces. We prove the duality theorem

$$(\lambda\ \widetilde{\otimes}_n\ \mu)_n'\ \cong\ \lambda^x\ \widetilde{\otimes}_{\varepsilon}\ \mu^x\ \ \text{and}\ \ (\lambda\ \widetilde{\otimes}_{\varepsilon}\ \mu)_n'\ \cong\ \lambda^x\ \widetilde{\otimes}_n\ \mu^x$$

where n denotes the normal topology T_n which coincides which Grothendieck's inductive topology on $\lambda \otimes \mu$.

1. Introduction

For two (F)-spaces E and F one has the duality

$$(1)\,(E \overset{\sim}{\otimes}_{\pi} F)'_{c} \,\cong\, E'_{c} \,\varepsilon\,\, F'_{c} \quad \text{and} \quad (E'_{c} \varepsilon\, F'_{c})'_{c} \,\,\cong\,\, E \overset{\sim}{\otimes}_{\pi} F.$$

The sign \cong means a topological isomorphism. In this form it is recorded in [5] § 45, 3. (1). This is a slight generalitzation of a theorem of Buchwalter. Defant and Floret investigated in [1] for which classes of quasi-complete locally convex spaces one or both of these relations are true.

I was lately interested in the class of convergence-free spaces and studied also completed tensor products of these spaces in [8] but I did not look for a duality theorem for these tensor products. This I will do now and I will prove in section 4 that a very satisfactory duality exists but it is different from the duality (1).

2. PRELIMINARIES

Since my theory of convergence-free spaces is widely unknown I will repeat the necessary definitions and state the theorems which I will need later.

Let $\mathfrak W$ be a class of subsets of the set $\mathbb N$ of natural numbers with the properties: a) All finite subsets of $\mathbb N$ are in $\mathfrak W$, b) with $\mathbb W$ every subset of $\mathbb W$ is in $\mathbb W$, c) $\mathbb W_1 \cup \mathbb W_2 \in \mathbb W$ if $\mathbb W_1$ and $\mathbb W_2$ are in $\mathbb W$. Then $\lambda_{\mathbb W}$ is the space of all sequences $\mathbf x=(\mathbf x_i), i=1,2,\ldots$, of real or complex numbers, whose non vanishing coordinates have indices which form a set $\mathbb W \in \mathbb W$. $\mathbb W$ is called the support of $\mathbb X$. These spaces $\lambda_{\mathbb W}$ are the convergence-free spaces and $\mathbb W$ is the class of $\mathbb W$ -sets of λ .

An $x \neq 0$ is called positive if all non vanishing coordinates are positive.

The α -dual $(\lambda_{\mathfrak{W}})^x$ consists of all $u=(u_i)$ with a support F for which $F\cap W$ is finite for every $W\in \mathcal{W}$. These sets F satisfy a), b) and c) so they constitute a class \mathcal{W} and we have $(\lambda_{\mathcal{W}})^x=\lambda_{\mathcal{W}^x}$. The elements of \mathcal{W}^x are also called the F-sets of $\lambda_{\mathcal{W}}$. If $x\in\lambda_{\mathcal{W}}$, $u\in\lambda_{\mathcal{W}^x}$, then we have the scalar product $< u,x>=ux=\sum\limits_{i=1}^\infty u_i x_i$ which is always a finite sum.

We recall that the α -dual of $\lambda_{\mathbb{W}^X}$ is $\lambda_{\mathbb{W}^{XX}}$ and $\lambda_{\mathbb{W}}$ is called perfect if $\mathbb{W}=\mathbb{W}^{XX}$. That $\lambda_{\mathbb{W}}$ is perfect means also that $\lambda_{\mathbb{W}}$ is complete for the Mackey topology $T_k(\lambda_{\mathbb{W}^X})$ (cf. [4] § 30, 5. (9)). Other topologies on $\lambda_{\mathbb{W}}$: The weak topology $T_s(\lambda_{\mathbb{W}^X})$, the normal topology $T_n(\lambda_{\mathbb{W}^X})$ with the seminorms $p_u(x) = \sum\limits_{i=1}^\infty |u_i| |x_i|$, $u \in \lambda_{\mathbb{W}^X}$, the strong topology $T_b(\lambda_{\mathbb{W}^X})$ and the topology $T_c(\lambda_{\mathbb{W}^X})$, the topology of uniform convergence on all absolutely convex compact sets of $\lambda_{\mathbb{W}^X}$.

In the following λ , μ will denote convergence-free spaces which will be defined by families W which we will omit in the notation.

If M is a subset of IN, then λ_M will consist of all $x_M = (x_j)$, $j \in M$, $x \in \lambda$. λ_M is called a sectional subspace of λ and we have $(\lambda_M)^X = (\lambda^X)_M$. If M is a W-set of λ , then λ_M can be identified with ω , if M is an F-set of λ , then $\lambda_M = \varphi$.

The normal cover P^n of a subset P of a sequence space E consists of all sequences y such that $|y_i| \le |x_i|$, $i = 1, 2, \ldots$, for some $x \in P$. So the normal topology $T_n(E^x)$ on a sequence space E is the topology of the uniform convergence on the normal covers $\{u\}^n$ of the elements $u \in E^x$.

(1) A bounded subset B of a perfect convergence-free space λ is contained in the normal cover of an element x of λ and is therefore contained in an absolutely convex compact subset of λ

Proof: The first statement follows from [9], p. 221, Satz 3. Hence $B \subset \{x\}^n \subset \lambda_W$, W the support of x. Now λ_W is ω and a bounded subset of ω is contained in an absolutely compact subset. Since λ^X is perfect (1) implies

(2) On a convergence-free space λ the topologies $T_c(\lambda^x)$, $T_n(\lambda^x)$, $T_k(\lambda^x)$ and $T_b(\lambda^x)$ coincide.

In the following we will tacitly assume that λ is equipped with this topology. (2) implies that every convergence-free space is barrelled. It is also ultrabornolo-

gical (therefore bornological) (cf. [7], p. 158 (2)) and nuclear by [6], p. 128, (11). If λ is perfect it is also reflexive ([6], p. 128 (9)).

No doubt, the convergence-free spaces are a very well behaved class of sequence spaces (cf. [3], [6] and [7], where a more detailed exposition of their properties is given).

I add some remarks to enrich the picture. We will use in the following the composition $\lambda\mu$ of two convergence-free spaces. If $x=(x_i)\epsilon\lambda$ we replace $x_i\neq 0$ by an element $y^{(i)}\epsilon\mu$, and $x_i=0$ by $y^{(i)}=(0,0,\ldots)$. The space of all these double sequences $z=(y^{(1)},y^{(2)},\ldots)$ is $\lambda\mu$. It is again a sequence space if we rearrange all the double sequences in the same way in sequences. In the following we will write the elements z of $\lambda\mu$ as infinite matrices with the $y^{(i)}$ as columns.

 $\lambda \mu$ is again convergence-free and is perfect if and only if λ and μ are perfect. One has $(\lambda \mu)v = \lambda(\mu v)$ and $(\lambda \mu)^x = \lambda^x \mu^x$. This is easy to see (cf. [6], p. 129).

It follows from (1) that every convergence-free space is "locally complete" in the sense that every bounded subset lies in a complete sectional subspace. It seems at the first moment difficult to find a convergence-free space which is not complete.

I gave only one example on p. 126 of [6] which is rather pathological. A natural way to construct noncomplete convergence-free spaces is the following:

On [5], p. 411 it is shown that the sum $\varphi\omega + \omega\varphi$, both spaces considered as subspaces of $\omega\omega$ is convergence-free. $(\varphi\omega + \omega\varphi)^{X} = \varphi\varphi$, but $\varphi\omega + \omega\varphi$ is a proper subspace of $(\varphi\varphi)^{X} = \omega\omega$, hence $\varphi\omega + \omega\varphi$ is not complete.

We generalize: For a convergence-free $\lambda \subset \omega$ one has $(\lambda + \lambda^x)^x = \lambda^x \cap \lambda = \varphi$, hence $(\lambda + \lambda^x)^{xx} = \omega$. Hence if $\lambda + \lambda^x \neq \omega$ then $\lambda + \lambda^x$ is not complete.

Further for any convergence-free space $\mu \subset \omega$ which has a sectional subspace $\mu_{M} = \lambda$ for which $\lambda + \lambda^{X}$ is incomplete, the sum $\mu + \mu^{X}$ is not complete.

3. TENSOR PRODUCTS OF CONVERGENCE-FREE SPACES

Let λ , μ be convergence-free then $\lambda \otimes \mu$ consists of all elements $a = \sum_{p=1}^{m} \sum_{q=1}^{m} x^{(p)} \otimes y^{(q)}, x^{(p)} \epsilon \lambda, y^{(q)} \epsilon \mu$. Then $Aa = \sum_{p=1}^{m} \sum_{q=1}^{m} ((x^{(p)}u)y^{(q)}, u\epsilon \lambda^{x}$, is a continuous mapping of λ^{x} into μ .

The correspondence $a \to A$ is an algebraic isomorphism of $\lambda \otimes \mu$ onto the subspace $F(\lambda^x, \mu)$ of all linear maps of finite rank of $L(\lambda^x, \mu)$ the space of all linear continuous mappings of λ^x in μ (cf. [5], § 41, 3. (7)).

If $x = (x_k) \in \lambda$, $y = (y_i) \in \mu$, then $x \otimes y$ is represented by the matrix $(y_i x_k)$ and $\lambda \otimes \mu$ can be identified with the linear span of all these matrices. Hence $\lambda \otimes \mu$ is again a sequence space with double indices (i,k), i,k = 1,2,...

 $\lambda \otimes \mu$ is in general not convergence-free: $\omega \otimes \omega = F(\varphi,\omega)$ and $\mathbb{N} \times \mathbb{N}$ is the W-set of the matrix $e \otimes e$, $e = (1,1,\ldots)$, but $F(\varphi,\omega)$ does not contain all matrices with this W-set. The smallest convergence-free space containing $\omega \otimes \omega$ is $L(\varphi,\omega) = \omega \omega$.

We have in general

(1) The normal cover $(\lambda \otimes \mu)^n$ of $\lambda \otimes \mu$ is the smallest convergence-free space containing $\lambda \otimes \mu$

Proof: If $x \in \lambda$ has the support M, $y \in \mu$ the support N then $x \otimes y$ has the support M \times N. Using property c) of the W-sets one sees that the support of any element of $\lambda \otimes \mu$ is contained in a set $W_1 \times W_2$, W_1 a W-set of λ , W_2 a W-set of μ . This implies (1) if we recall [6], p. 132 (7), which says that to a positive matrix (p_{ik}) , $i \in M$, $k \in N$, there exists always a positive matrix $(y_i \times_k)$, $i \in M$, $k \in N$, such that $p_{ik} \leq y_i \times_k$.

(2) If λ,μ are perfect covergence-free, then $(\lambda \otimes \mu)^n$ is also perfect.

The α -dual $[(\lambda \otimes \mu)^n]^x$ consists if all matrices $U = (u_{ik})$ such that $\sum\limits_{i=1}^\infty \sum\limits_{k=1}^\infty |a_{ik}| \cdot |u_{ik}| < \infty$ for all $(a_{ik}) \in (\lambda \otimes \mu)^n$. Since $(\lambda \otimes \mu)^n$ is convergence-free these double sums are always finite.

If W_1 , W_2 are W-sets of λ , μ and F_1 , F_2 are F-sets of λ , μ , then $W_1 \times W_2 \cap (F_1 \times F_2)$ is finite, so $F_1 \times F_2$ is a W-set of $[(\lambda \otimes \mu)^n]^x$. A W-set M of $[(\lambda \otimes \mu)^n]^{xx}$ must therefore have a finite intersection with every $F_1 \times F_2$. Let $M = \{(j,l)\}$ be an infinite set of pairs of indices. The set M_1 of all j must have a finite intersection with every F_1 and is therefore a W-set of λ , since λ is perfect. Similarly $M_2 = \{1\}$ is a W-set of μ and M therefore a W-set of $(\lambda \otimes \mu)^n$. Hence $[(\lambda \otimes \mu)^n]^{xx} = (\lambda \otimes \mu)^n$.

We write this result in a different way, we look at $\lambda \otimes \mu$ as a sequence space and as such he has the natural topology T_n , the normal topology. Hence we write $\lambda \otimes_n \mu$ for $\lambda \otimes \mu$ equipped with T_n . Then (2) can be written as.

(2') Let λ, μ be perfect convergence-free. The completion $\lambda \otimes_n \mu$ of $\lambda \otimes_n \mu$ is the normal cover of $\lambda \otimes \mu$.

Our next step will be the concrete determination of the α -dual of $\lambda \otimes \mu$. We obtain for perfect λ , μ .

(3)
$$(\lambda \otimes \mu)^{X} = [(\lambda \otimes \mu)^{n}]^{X} = (\lambda \otimes_{n} \mu)^{X} = L(\lambda, \mu^{X})$$

Proof: In [6], p. 131 (4) I proved for perfect convergence-free λ,μ :

(*) $L(\lambda,\mu)$ consists of all matrices A whose sections $A_{M\times N}$ are finite (contain only finitely many coordinates $\neq 0$), M any W-set of μ^{x} , N any W-set of λ .

The covergence-free space of all matrices U for which all these sets M x N are W-sets is obviously $(\lambda \otimes \mu^{x})^{n}$ and (*) is equivalent to $L(\lambda,\mu) = [(\lambda \otimes \mu^{x})^{n}]^{x}$. Replacing μ^{x} by μ and using reflexivity we obtain (3).

Two remarks. 1) (*) was proved in 1934 for $\lambda = \mu$ in [9]. Ruckle proved in [10], p. 151, that $(\lambda \otimes \mu)^X = L(\lambda, \mu^X)$ even for all sequence spaces equipped with the normal topology.

2) Theorem (4) in [6], p. 131 says more than (*). It states also that $L(\lambda, \mu)^x = (\lambda \otimes \mu^x)^n$. There is no proof for this in [6], but taking the α -dual of (3) and using (2) settles the proof.

We will need in the next section the following result 2. (1) from [8]:

(4) Let λ,μ be perfect convergence-free. Then $\lambda \otimes_{\epsilon} \mu$ can be identified with $L_b(\lambda^X,\mu)$.

4. THE DUAITY THEOREM

So far we used on $\lambda \otimes \mu$ only the normal topology T_n . The classical duality 1. (1) uses the π - and the ϵ -topology for spaces which have the approximation property. Since convergence-free spaces are nuclear, they have the approximation property and the π -and the ϵ -topology on $\lambda \otimes \mu$ coincide. If 1. (1) would be true for perfect convergence-free spaces it would take the form

1.(1)
$$(\lambda \otimes_{\epsilon} \mu)'_n \cong \lambda^x \otimes_{\epsilon} \mu^x$$
 and $(\lambda^x \otimes_{\epsilon} \mu^x)'_n \cong \lambda \otimes_{\epsilon} \mu$,

where we used $T_c = T_n$ (cf. 2.(2)).

- (1) is in general not true as we will see later. Instead of (1) we have the following duality theorem:
- (2) If λ,μ are perfect convergence-free, we have the following duality relations

$$(\lambda \, \widetilde{\otimes}_{\varepsilon} \mu)_n' \, \cong \, \lambda^x \, \widetilde{\otimes}_n \mu^x \quad \text{and} \quad (\lambda \, \widetilde{\otimes}_n \mu)_n' \, \cong \, \lambda^x \, \widetilde{\otimes}_{\varepsilon} \mu^x.$$

Proof: a) We prove the second isomorphism. By 3. (3) we have $(\lambda \otimes_n \mu)' = L(\lambda \mu^x)$. This is a topological isomorphism if we equip both sides with the topology $T_n(\lambda \otimes_n \mu) = T_n((\lambda \otimes \mu)^n)$. The o neighbourhoods of this topology on $L(\lambda \mu^x)$ are of the form $\left\{A \in L(\lambda \mu^x), \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} y_i \mid a_{ik} \mid x_k \leq 1 \right\}$, where $x \in \lambda$, $y \in \mu$ are positive.

We show that this topology coincides with the topology of $L_b(\lambda,\mu^x)$ whose o-neighbourhoods are of the form $U(B,V)=\{A\in L(\lambda,\mu^x), A(B)\subset V, B \text{ bounded in }\lambda, V \text{ a o-neighbourhood in }\mu^x\}$. A neighbourhood V is of the form $\left\{z\in\mu^x, \sum_{i=1}^\infty y_i \mid z_i\mid\leqslant 1\right\}, \text{ y a positive element of }\mu. \text{ Since }B \text{ is of the form }\{x\}^n, x \text{ positive, we have }U(B,V)=\left\{A\in L(\lambda,\mu^x), \sum_{i=1}^\infty y_i \sup_{t\in\{x\}^n} \sum_{k=1}^\infty a_{ik} \mid t_k\mid=1, t\in\{x\}^n\}, x\in\{x\}^n\} \right\}$. Hence we have $(\lambda\otimes_n\mu)_n'\cong L_b(\lambda,\mu^x)$. By 3.(4) $L_b(\lambda,\mu^x)$ can be identified with $\lambda^x\otimes_{\varepsilon}\mu^x$, so the second statement of (2) is

proved. b) The first isomorphism of (2) follows now immediately from the second by taking on both sides the α -dual.

To get a better understanding of (2) we look at Grothendieck's theory of tensor products and try to identify the topology T_n on $\lambda \otimes \mu$ with one of the topologies compatible with the tensor product.

We recall some of the basic definitions (cf. [5] p. 154). If B(x,y) is a separately continuous bilinear form on $E \times F$, both locally convex, one has

$$B(x,y) = (\widetilde{B}x)y = (\widetilde{B}y)x$$
, where $\widetilde{B} \in L(E,F'_s)$, $\widetilde{B} \in L(F,E'_s)$.

The correspondences $B \to \widetilde{B} \to \widetilde{\widetilde{B}}$ generate algebraic isomorphisms

$$B(E \times F) \cong L(E,F'_s) \cong L(F,E'_s)$$

where B(ExF) is the espace of all separately continuous bilinear forms.

If the topologies on E and F are the Mackey topologies Tk, then we have

(3)
$$B(E \times F) \cong L(E,F'_k) \cong L(F,E'_k)$$

This is easy: A ϵ L(E,F'_s) is also weakly continuous and therefor T_k-continuous, hence lies in L(E,F'_k). Conversely an A ϵ L(E,F'_k) is weakly continuous and therefore in L(E,F'_c).

(3) is true for barrelled spaces. For barrelled spaces one knows (cf. [5], 159 (5)) that every separately continuous bilinear form is hypocontinuous and that every separately equicontinuous subset H of B(ExF) is equihypocontinuous.

This means that if H(ExF) is the space of hypocontinuous bilinear forms we have.

(4) B(E x F) = H(E x F) = L(E,F'_k) = L(F,E'_k) algebraically for barrelled spaces E,F.

Let us recall that a subset H of H(E x F) is equihypocontinuous if to every bounded subset M of E there exists a o-neighbourhood $V \subset F$ such that

 $|B(M,V)| \le 1$ for all $B \in H$ and similarly that for every bounded $N \in F$ there exists a o-neighbourhood $U \subset E$ such that $|B(U,N)| \le 1$ for all $B \in H$. Using (4) one sees that H is equihypocontinuous for barrelled E,F if \widetilde{H} is equicontinuous in $L(E,F'_k)$ and $\widetilde{\widetilde{H}}$ equicontinuous in $L(F,E'_k)$.

Following Grothendieck the finest locally convex topology on $E \otimes F$ compatible with $E \otimes F$ is the inductive topology T_{in} of uniform convergence on all separately equicontinuous subsets of $B(E \times F)$ (see [5], § 44, 2.).

Recalling the above remarks on barrelled spaces E,F the topology T_{in} is the topology T_{eh} of uniform convergence on all equihypocontinuous subsets of $H(E \times F)$.

We are now able to identify T_n on $\lambda \otimes \mu$:

(5) Let λ,μ be perfect convergence-free. The normal topology T_n on $\lambda\otimes\mu$ is the topology $T_{in}=T_{eh}$.

Proof T_n on $\lambda \otimes \mu$ is defined by the polars of the normal covers \widetilde{M} of positive matrices $A \in L(\lambda,\mu^X)$. We show that \widetilde{M} is equicontinuous in $L(\lambda,\mu^X)$. For a bounded subset B in μ we take the normal cover of a positive y in μ . The polar B° defines a o-neighbourhood V in μ^X . Now $A'y \in \lambda^X$ and the polar of $\{A'y\}^n$ defines a o-neighbourhood $U \subset \lambda$ and we have

$$\sup_{z \in B, \ C \in \widetilde{M}, \ x \in U} |z(Cx)| \leqslant \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} y_i \ a_{ik} |x_k| \leqslant 1$$

or $C(U) \subset V$ for all $C \in \widetilde{M}$, so \widetilde{M} is equicontinuous.

One proves similarly that \widetilde{M} is equicontinuous in $L(\mu, \lambda^{x})$.

Now the converse. If $\widetilde{M} \in L(\lambda,\mu^x)$ is equicontinuous it follows for every positive $x \in \lambda$ and every positive $y \in \mu$ that for $z \in \{y\}^n$, $t \in \{x\}^n$ one has

$$\sup_{C \in \widetilde{M}} |z(Ct)| = \sup_{i} |\sum_{k} y_i x_k c_{ik}| < \infty.$$

This means that \widetilde{M} is T_s ($\lambda \otimes_n \mu$)-bounded in $L(\lambda, \mu^x)$ and § 2 (1) says that \widetilde{M} is a bounded set and therefore contained in the normal cover a positive $A \in L(\lambda, \mu^x)$.

5. SUPPLEMENTARY RESULTS

We investigate now when our duality theorem 4.(2) differs from the classical theorem 4.(1).

For perfect covergence-free spaces we have always

(1)
$$\lambda \widetilde{\otimes}_n \mu = (\lambda \otimes \mu)^n \subset \lambda \mu \subset \lambda \widetilde{\otimes}_{\epsilon} \mu$$
.

We explain the exact meaning of (1). If $x = (x_i) \in \lambda$, $y = (y_i) \in \mu$, then following the remarks in section 3 we write $x \otimes y$ as the matrix $(y_i \times_k)$ and $\lambda \otimes \mu$

consists of the finite sums of all these matrices. The elements of $\lambda\mu$ are written as matrices with columns $y^{(1)}$, $y^{(2)}$, ..., with $y^{(i)} \in \mu$ and $y^{(i)} \neq 0$ only for the i of some W-set M of λ . Obviously $\lambda \otimes \mu \subset \lambda\mu$ and since $\lambda\mu$ is perfect and convergence-free we have also $(\lambda \otimes \mu)^n \subset \lambda\mu$.

Every matrix of $\lambda\mu$ is obviously an element of $L(\lambda^x,\mu)$ and by 3.(4) an element of $\lambda \approx_{\epsilon} \mu$.

When is $(\lambda \otimes \mu)^n$ a strict subspace of $\lambda \mu$? We have

- (2) $(\lambda \otimes \mu)^n = \lambda \otimes_n \mu$ is a strict subspace of $\lambda \mu$ if and only if $\lambda \neq \varphi$ and $\mu \neq \omega$.
- a) Obviously $\varphi \otimes \mu = \varphi \mu = (\varphi \otimes \mu)^n$. Similarly we have $(\lambda \otimes \omega)^n = \lambda \omega$. To see this remember that $\omega \omega$ is the normal cover of $\omega \otimes \omega$. Hence since for a W-set N of λ we have $\lambda_N = \omega$, we have $(\lambda_N \otimes \omega)^n = \lambda_N \omega$ and $\lambda \omega$ is the union of all $\lambda_N \omega$.
- b) $(\omega \otimes \varphi)^n$ is a strict subspace of $\omega \varphi$: The elements of $\omega \otimes \varphi$ are represented by the adjoints of the matrices representing $\varphi \omega$. Since $(\varphi \omega)^n = \varphi \omega$, $(\omega \otimes \varphi)^n$ consists of all matrices with a finite number of rows different from 0, but $\omega \varphi$ consists of all matrices having finite columns and so $(\omega \otimes \varphi)^n$ is a strict subspace of $\omega \varphi$.
- c) Assume now $\lambda \neq \varphi$, and $\mu \neq \omega$. Then λ has a sectional subspace $\lambda_{M} = \omega$ and μ has a sectional subspace $\mu_{N} = \varphi$. Then by b) $(\lambda \otimes \mu)_{M \times N}^{n}$ is a strict subspace of $\lambda_{M} \mu_{N} = (\lambda \mu)_{M \times N}$. This implies that $(\lambda \otimes \mu)^{n}$ is a strict subspace of $\lambda \mu$.

For the second inequality in (1) we have.

- (3) $\lambda \mu$ is a strict subspace of $\lambda \otimes_{\epsilon} \mu$ if and only if $\lambda \neq \omega$ and $\mu \neq \varphi$.
- **Proof:** a) One checks easily that the matrices representing the elements of $\lambda \varphi$ are exactly the matrices of $L(\lambda^{X}, \varphi) = \lambda \otimes_{\epsilon} \varphi$. Hence $\lambda \varphi = \lambda \otimes_{\epsilon} \varphi$.

Similarly $\omega \mu$ can be identified with $L(\varphi, \mu) = \omega \otimes_{\epsilon} \mu$ (cf. [6] p. 133).

b) If $\lambda \neq \omega$ and $\mu \neq \varphi$ there exist sectional subspaces $\lambda_M = \varphi$ and $\mu_N = \omega$. Then $\lambda \mu$ has the sectional subspace $\lambda \mu_{M \times N} = \lambda_M \mu_N = \varphi \omega$. On the other hand the sectional subspace $L(\lambda^x, \mu)_{M \times N} = L(\lambda_M^x, \mu_N) = L(\omega, \omega)$ and this is the space of all row-finite matrices which is strictly larger tha $\varphi \omega$. It follows that $\lambda \mu$ is a strict subspace of $L(\lambda^x, \mu)$ which can be identified with $\lambda^x \otimes_{\varepsilon} \mu^x$.

From (2) and (3) follows immediatly

(4) Let λ,μ be perfect convergence-free. Then $\lambda \overset{\sim}{\otimes}_n \mu$ is a strict subspace of $\lambda \overset{\sim}{\otimes}_{\epsilon} \mu$ except in the cases $\lambda = \varphi = \mu$ and $\lambda = \omega = \mu$. With these exceptions the topology T_n on $\lambda \otimes \mu$ is strictly finer than $T_{\epsilon} = T_{\pi}$.

This shows that the duality 1.(1) is true only in the cases $\lambda = \varphi = \mu$ and $\lambda = \omega = \mu$.

We give an application of (4). Hollstein proved in [2].

(5) $\varphi \otimes_{\epsilon} \omega$ is not barrelled.

We give a simpler proof using his main idea: $\varphi \otimes \omega = \varphi \omega$ is a Pták space (see [5] p. 31). The identity map I of $\varphi \otimes_n \omega$ onto $\varphi \otimes_{\epsilon} \omega$ is continuous and if $\varphi \otimes_{\epsilon} \omega$ were barrelled, I would be an isomorphism ([5] p. 27 (3)) which contradicts (4).

More general:

(6) Two perfect convergence-free spaces λ_{μ} are barrelled and even ultrabornological. With the exception of $\lambda = \varphi = \mu$ and $\lambda = \omega = \mu$ the tensor product $\lambda \otimes_{\epsilon} \mu$ is not even barrelled.

Look again at he identity map I of $\lambda \otimes_n \mu$ onto $\lambda \otimes_{\epsilon} \mu$. We have a sectional subspace $\lambda_M \otimes \mu_N = \varphi \otimes \omega$ or $\omega \otimes \varphi$, which is isomorphic to $\varphi \otimes \omega$, and I restricted to $\lambda_M \otimes \mu_N$ is the identity map of $\varphi \otimes_n \omega$ onto $\varphi \otimes_{\epsilon} \omega$. Since by (5) $\lambda_M \otimes_{\epsilon} \mu_N$ is not barrelled, $\lambda \otimes_{\epsilon} \mu$ can not be barrelled.

BIBLIOGRAPHY

- [1] Defant, A. and Floret, K.: Localization and duality of topological tensor products. Collectanea Math. 35 (1984), 43-61.
- [2] Hollstein, R.: Über die Tonneliertheit von lokalkonvexen Tensorprodukten. Manuscripta math. 22 (1937), 7-12.
- [3] Köthe, G.: Die konvergenzfreien Räume abzählbarer Stufe. Math. Annalen 111 (1935), 229-258.
- [4] Köthe, G.: Topological vector spaces I, Springer 1969.
- [5] Köthe, G.: Topological vector spaces II, Springer 1979.
- [6] Köthe, G.: On a class of nuclear spaces I. Portug. Math. 41 (1982), 125-138.
- [7] Köthe, G.: On a class of nuclear spaces II. Math. Nachr. 119 (1984), 157-164.
- [8] Köthe, G.: Tensor products of convergence-free spaces. J.A. Barroso, editor, Aspects of Mathematics and its applications, 485-494, Elsevier 1986.
- [9] Köthe, G. and Toeplitz, O.: Lineare Räume und Ringe unendlicher Matrizen. J. reine angew. Math. 171 (1934), 193-226.
- [10] Ruckle, W.H.: Sequence spaces. Research Notes in Mathematics 49, Pitman 1981.

Prof. Dr. Gottfried Köthe Parkstr. 14 6000 Frankfurt Bundesrepublik Deutschland 7 • • .