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by
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ABSTRACT:
Let A,u be two perfect convergence-free spaces. We prove the duality theorem
(8, =N 8 1* and A ), = N\ §_u*

where n denotes the normal topology T, which coincides which Grothendieck’s
inductive topology on A ® u.

1. INTRODUCTION
For two (F)-spaces E and F one has the duality
(1)(E®,F), = E e F, and (E.eF), = E®_F.

The sign = means a topological isomorphism. In this form it is recorded in [5]
§ 45, 3. (1). This is a slight generalitzation of a theorem of Buchwalter. Defant
and Floret investigated in [1] for which classes of quasi-complete locally convex
spaces one or both of these relations are true.

I was lately interested in the class of convergence-free spaces and studied
also completed tensor products of these spaces in [8] but I did not look for a
duality theorem for these tensor products. This I will do now and I will prove in
section 4 that a very satisfactory duality exists but it is different from the
duality (1). : :

2. PRELIMINARIES

Since my theory of convergence-free spaces is widely unknown I will repeat
the necessary definitions and state the theorems which I will need later.
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Let ‘W be a class of subsets of the set IN of natural numbers with the proper-
ties: a) All finite subsets of IN are in‘W, b) with W every subset of W is inW), ¢)
W, UW, eWif W, and W, are inW). Then Aoy is the space of all sequences
X =(xy),i=1,2,...,of real or complex numbers, whose non vanishing coordina-
tes have indices which form a set W eW). W is called the support of x. These spa-
ces A, are the convergence-free spaces and ‘W is the class of W-sets of A.

An x # 0 is called positive if all non vanishing coordinates are positive.

The a-dual (A)* consists of all u = (u;) with a support F for which F "W
is finite for every We'll). These sets F satisfy a), b) and c¢) so they constitute a
class'Wand we have (Aqp)* =Aqx. The elements of WX are also called the F-sets
of )\,u).’If XEAqy, uekwx, then we have the scalar product <u,x>=ux = i%;ol u; X;
which is always a finite sum.

We recall that the a-dual of Ayx is Ayxx and Aqyis called perfect if W=W*X
That Aqy is perfect means also that Ay is complete for the Mackey topology
Tye(Aqyx) (cf. [4] § 30, 5. (9)). Other topologies on Aqy: The weak topology

T(Aqx), the normal topology T, (Aqx) with the seminorms ()= b3 . lu; b I,
\ (S

u € Aqx, the strong topology Tp(Aqx) and the topology T (Aqx), the topology
of uniform convergence on all absolutely convex compact sets of Aqpx -

In the following A, u will denote convergence-free spaces which will be de-
fined by families Wwhich we will omit in the notation.

If M is a subset of IN, then Ay will consist of all x, =(xj),jeM, XeN . Ay is
called a sectional subspace of A and we have (A\y)* = (\)y- If Mis a W-set of
A, then Ay can be identified with cw, if M is an F-set of A, then A =

The normal cover P" of a subset P of a sequence space E consists of all se-
quences y such that ly;|<Ix;l,i=1,2, ..., for some x € P. So the normal topo-
logy T,(E*) on a sequence space E is the topology of the uniform convergence
on the normal covers { u }® of the elements u € E¥*.

(1) A bounded subset B of a perfect convergence-free space \ is contained in the
normal cover of an element x of \ and is therefore contained in an absolutely
convex compact subset of \.

Proof: The first statement follows from [9], p. 221, Satz 3. Hence BC { x } ™ Chy
W the support of x. Now Ay is w and a bounded subset of w is contained in an
absolutely compact subset. Since A* is perfect (1) implies

(2) On a convergencefree space \ the topologies T,(\*), T,(\*), T, (\*) and
Ty (A\Y) coincide.

In the following we will tacitly assume that A is equipped with this topology.
(2) implies that every convergence-free space is barrelled. It is also ultrabornolo-
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gical (therefore bornological) (cf. [7], p. 158 (2)) and nuclear by [6], p. 128,
(11). If A is perfect it is also reflexive ([6], p. 128 (9)).

No doubt, the convergence-free spaces are a very well behaved class of se-
quence spaces (cf. [3], [6] and [7], where a more detailed exposition of their
properties is given). ‘

I'add some remarks to enrich the picture. We will use in the following the
composition Au of two convergence-free spaces. If x = (x;)eX we replace x; # 0
by an element y(i)eu, and x; = 0 by y(i) =(0,0,...). The space of all these
double sequences z = (y(l), y(z), ... ) is Au. It is again a sequence space if we
rearrange all the double sequences in the same way in sequences. In the follo-
wing we will write the elements z of Au as infinite matrices with the y(i) as
columns.

A is again convergence-free and is perfect if and only if A and u are perfect.
One has (A\u)v = M(uv) and (Aw)* = A*u*. This is easy to see (cf. [6], p. 129).

It follows from (1) that every convergence-free space is “locally complete”
in the sense that every bounded subset lies in a complete sectional subspace. It
seems at the first moment difficult to find a convergence-free space which is not
complete. . '

I gave only one example on p. 126 of [6] which is rather pathological. A
natural way to construct noncomplete convergence-free spaces is the following:

On [5], p. 411 it is shown that the sum w + wy, both spaces considered as
subspaces of ww is convergence-free. (pw + wy)* = gy, but Yw + wyis a pro-
per subspace of (gp)* = wew, hence pw + wy is not complete.

We generalize: For a convergence-free A C w one has (A + AX)* =A*NA =,
hence (A + A*Y** = co. Hence if A + A* # w then A + AX is not complete.

Further for any convergence-free space uCw which has a sectional subspace
iy = A for which A + A* is incomplete, the sum u + u* is not complete.

3. TENSOR PRODUCTS OF CONVERGENCE-FREE SPACES

Let A, u be convergence-free then A®pu consists of all elements
a= 3 % xPe y @, xPex, yDey. Then Aa = 3 3 (xPu)y(@,

p=1gq=1 p=1lq=1
ueAX, is a continuous mapping of A* into u. »

The correspondence a > A is an algebraic isomorphism of A® u onto the
subspace F(A*, u) of all linear maps of finite rank of L(A\*, y) the space of all
linear continuous mappings of A* in p (cf. [5], § 41, 3. (7)).

If x =(x;) € A\, y =(y;) € u, then x®y is represented by the matrix (v %)
and A®u can be identified with the linear span of all these matrices. Hence
A® u is again a sequence space with double indices (i,k),ik =12, ...
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A® u is in general not convergence-free: w ® w = F(y¢,w0) and N x IN is the

W-set of the matrix e®e, ¢ =(1,1,...), but F(p,w) does not contain all matri-
ces with this W-set. The smallest convergence-free space containing w ® w is
Ly, w) = ww.

We have in general

(1) The normal cover (\® )" of A\® u is the smallest convergence-free space
containing A ® |L

Proof: If x € A has the support M, y e u the support N then x ® y has the sup-
port M x N. Using property c) of the W-sets one sees that the support of any
element of A ® u is contained in a set W; x W,, W; a W-set of A, W, a W-set of
. This implies (1) if we recall [6], p. 132 (7), which says that to a positive ma-
trix (p; ), i € M, k € N, there exists always a positive matrix (y;x),ieM,keN,
such that p; <y, x.

(2) If My are perfect covergence-free, then (A ® W) is also perfect.

The o-dual [(A® w)"[* consists if all matrices U = (u;;) such that
> 3 lag |+ oy | < oo for all (2, ) € (A ® w)™. Since (A ® )" is conver-
i=1 k=1

gence-free these double sums are always finite.

If W;, W, are W-sets of A, u and F,, F, are F-sets of A, u, then W, x W, N
N Fy x F; is finite, so Fy x F, is a W-set of [(A® w)"]*. A W-set M of
[(A® w)"T** must therefore have a finite intersection with every F; x F,. Let
M ={(j,}) } be an infinite set of pairs of indices. The set M of all j must have a
finite intersection with every F; and is therefore a W-set of A, since A is perfect.
Similarly M, ={ 1} is a W-set of u and M therefore a W-set of (A® u)". Hence
[(A® )" T* = w".

We write this result in a different way, we look at A ® u as a sequence
space and as such he has the natural topology T,, the normal topology. Hence
we write A® ,u for A ® u equipped with T, . Then (2) can be written as.

(2") Let \u be perfect convergence-free. The completion \ gnu of A ® uis the
normal cover of A ® .

Our next step will be the concrete determination of the a-dual of A ® p. We
obtain for perfect A, .

(3) A& W =[(® uP* =& w)* = LA\, 4*)
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Proof: In [6], p. 131 (4) I proved for perfect convergence-free A,u:
(*) L(A,u) consists of all matrices A whose sections Apxn 2re finite (contain
only finitely many coordinates # 0), M any W-set of u*, N any W-set of A.

The covergence-free space of all matrices U for which all these sets M x N
are W-sets is obviously (A ® ¢*)" and (*) is equivalent to L(A,u) =[(A ® u*) F*.

Replacing u* by u and using reflexivity we obtain (3).

Two remarks. 1) (*) was proved in 1934 for A = in [9]. Ruckle proved in

[10], p. 151, that (A ® )™ =L(A, u*) even for all sequence spaces equipped with
the normal topology.
2) Theorem (4) in [6], p. 131 says more than (*). It states also that
L\, w)* = (A ® u*)". There is no proof for this in [6], but taking the a-dual of
(3) and using (2) settles the proof.

We will need in the next section the following result 2. (1) from [8]:

(4) Let Ny be perfect convergence-free. Then A\ ® M can be identified with
L, (A%, w).

4. THE DUAITY THEOREM

So far we used on A ® p only the normal topology T,,- The classical duality
1. (1) uses the 7- and the e-topology for spaces which have the approximation
property. Since convergence-free spaces are nuclear, they have the approxima-
tion property and the 7-and the e-topology on A ® u coincide. If 1. (1) would
be true for perfect convergence-free spaces it would take the form

(1) A&y =M@ ufand (W8 ) = A8,

where we used T, =T, (cf. 2.(2)).
(1) is in general not true as we will see later. Instead of (1) we have the follo-
wing duality theorem :

(2) If \uare perfect convergence-free, we have the following duality relations
e geu);, = 2\X @'nux and (A 511;1);1 =X ® M

Proof: a) We prove the second isomorphism. By 3.(3) we have (A & a1 =L,
This is a topological isomorphism if we equip both sides with the topology
Ty(A ®pu) = T ((A® ©)"). The o neighbourhoods of this topology on L(AuX)

are of the form { Ae L), = Z vy lag | %, <1, where xe), yeu are
positive. i=1 k=1
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We show that this topology coincides with the topology of Ly (A ,u*) whose
o-neighbourhoods are of the form U(B,V) ={ A € L(Au*), A(B) C V, B bounded
in A, V a o-neighbourhood in u*}. A neighbourhood V is of the form

o0

zeut, T ylzl< 1} , ¥ a positive element of u. Since B is of the form
i=1 0o 0o

{ x} ", x positive, we have U(B,V)=[Ae LW, T y;y sup | 2 ay =

o o i=1" "te{x} k=1

Z  Z vy laglx <1} Hence we have (A® u), = L (A.u*). By 3.(4)

i=1 k=1

Ly (A, #*) can be identified with A* ge,ux, so the second statement of (2) is
proved. b) The first isomorphism of (2) follows now immediately from the
second by taking on both sides the a-dual.

To get a better understanding of (2) we look at Grothendieck’s theory of
tensor products and try to identify the topology T, on A ® u with one of the
topologies compatible with the tensor product.

We recall some of the basic definitions (cf. [5] p. 154). If B(x,y) is a separa-
tely continuous bilinear form on E x F, both locally convex, one has

B(x,y) = (Bx)y = (By)x, where B ¢ L(E,F.), B e L(F,E}).
The correspondences B ~ B~B generate algebraic isomorphisms
B(E x F) = L(E,F9 = L(F,E,),

where B(ExF) is the espace of all separately continuous bilinear forms. ’
If the topologies on E and F are the Mackey topologies T}, then we have

(3) B(ExF)=LEJF)=LFE,)

This is easy: A e L(E,F;) is also weakly continuous and therefor Ty-conti-
nuous, hence lies in L(E,F} ). Conversely an A € L(E,F}) is weakly continuous
and therefore in I(E,F).

(3) is true for barrelled spaces. For barrelled spaces one knows (cf. [5], 159
(5)) that every separately continuous bilinear form is hypocontinuous and that
every separately equicontinuous subset H of B(ExF) is equihypocontinuous.

This means that if H(ExF) is the space of hypocontinuous bilinear forms we
have. :

(4) B(E x F) =H(E x F) = IJ(E,FI'() = L(F,El'() algebraically for barrelled
spaces EF. :

Let us recall that a subset H of H(E x F) is equihypocontinuous if to every
bounded subset M of E there exists a o-neighbourhood V C F such that
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IB(M,V)I < 1 for all B ¢ H and similarly that for every bounded N e F there
exists a o-neighbourhood U C E such that |B(U,N)!| < 1 for all B € H. Using (4)
one sees that H is equihypocontinuous for barrelled E,F if His equicontinuous
in I(E,F; ) and H equicontinuous in L(F,E}).

Following Grothendieck the finest locally convex topology on E ® F com-
patible with E ® F is the inductive topology T;, of uniform convergence on all
separately equicontinuous subsets of B(E x F) (see [5], § 44, 2.).

Recalling the above remarks on barrelled spaces E,F the topology T, is the
topology T,y of uniform convergence on all equihypocontinuous subsets of
H(E x F).

We are now able to identify T, on A ® u:

(5) Let N\ be perfect convergence-free. The normal topology T, on A ® wis the
topology T,, =T;,.

Proof T, on A ® u is defined by the polars of the normal covers M of posi-
tive matrices A € L(A u*). We show that M is equicontinuous in L{\,u*). For a
bounded subset B in u we take the normal cover of a positive y in u. The polar
Be defines a o-neighbourhood V in p*. Now A'y eA* and the polar of {A'y } "
defines a o-neighbourhood U C A and we have

sup Jz(Cx)I< = oy lx <1
Z€B, CeM, x€U i=1 k=1
orC(U)C VforallCe M, so I\?I;is equicontinuous.

One proves similarly that M is equicontinuous in L(u,\*).

Now the converse. If M e L(A 1) is equicontinuous it follows for every po-
sitive xe) and every positive y eu that forze{y }™,te {x} ™ one has

sup lz(Ct)|=sup IZ T y; x, ¢ | <oo.
CeM ik

This means that M is T, (A gnp)-bounded in L(A,u*) and § 2 (1) says that Misa

bounded set and therefore contained in the normal cover a positive A e L(A uX).

S. SUPPLEMENTARY RESULTS

We investigate now when our duality theorem 4.(2) differs from the classical
theorem 4.(1).

For perfect covergence-free spaces we have always
M A u=A® " CMCAB u.

We explain the exaxt meaning of (1). If x = (x;) € A, y = (¥;) € u, then follo-
wing the remarks in section 3 we write X ® y as the matrix (y; X )and A ® u



132 Gottfried Kothe

consists of the finite sums of all these matrices. The elements of Au are written
as matrices with columns y(l), y(z), ..., with y(i) € uand y(i) # 0 only for the
i of some W-set M of A. Obviously A ® 1 C Ay and since Au is perfect and conver-
gence-free we have also (A ® )™ C Au.

Every matrix of Au is obviously an element of L(A* ) and by 3.(4) an
element of A 55;1.

When is (A ® )™ a strict subspace of Au? We have

2) Aew = 5:1# is a strict subspace of Mu if and only if N+ v and u # w.

a) Obviously ¥ ® u = yvu = (¢ ® p)". Similarly we have (A ® w)" = Aw. To
see this remember that wew is the normal cover of w ® w. Hence since for a
W-set N of A we have Ay = w, we have (A ® w)" =Ayw and Aw is the union of
all Ajw.

b) (w® )" is a strict subspace of wy: The elements of w ® ¥ are represen-
ted by the adjoints of the matrices representing ¥w. Since (vw)" = vw, (w ® )"
consists of all matrices with a finite number of rows different from o, but wy
consists of all matrices having finite columns and so (w ® ¥)" is a strict subspace
of wy.

¢) Assume now A # ¢, and p # w. Then X has a sectional subspace Ay =w
and p has a sectional subspace uy =¢. Then by b) (A ® M)pM N i8 @ strict subspa-
ce of Ay un = (Mt)ppx N~ This implies that (A ® )™ is a strict subspace of M.

For the second inequality in (1) we have.

(3) Muis a strict subspace of \ geu ifand only if A\ ¥ w and u# .

Proof: a) One checks easily that the matrices representing the elements of Ay are
exactly the matrices of L(A* ¢) = A® <. Hence hp =2 ® -

Similarly wp can be identified with L{p,u) = w ® oM (cf. [6] p. 133).

b) If X # w and p # ¢ there exist sectional subspaces Ay, =y and Uy = w.
Then A has the sectional subspace Ay, = Myhdy = ww. On the other hand
the sectional subspace L(A* ’“)MxN L(Afj ) = Uw,w) and this is the space
of all row-finite matrices which is strictly larger tha @w. It follows that Au is a
strict subspace of L(A* u) which can be identified with \* & _u*.

From (2) and (3) follows immediatly

(4) Let N\ u be perfect convergence-free. Then )\®nu is a strict subspace of
A® oM except in the cases A =¢ =pand A = w = . With these exceptions the
topology T, on \ ® u is strictly finer than T, =Tp.

This shows that the duality 1.(1) is true only in the cases A = ¢ = y and
A=w=u.
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We give an application of (4). Hollstein proved in [2].
OX ® w is not barrelled.

We give a simpler proof using his main idea: ¢ ® w =w is a Ptdk space (see
[5] p. 31). The identity map I of ¥ ®_ w onto ¥ ® _w is continuous and if
¥ ®_ w were barrelled, I would be an isomorphism ([5] p. 27 (3)) which contra-
dicts (4).

More general:

(6) Two perfect convergence-free spaces \u are barrelled and even ultraborno-
logical. With the exception of A\ =¢ =u and A = w = u the fensor product \ ®, i
is not even barrelled.

Look again at he identity map I of A ® u onto A ® .u. We have a sectional
subspace Ay ® uy = ¥ ® w or w ® ¢, which is isomorphic to ¢ ® w, and I res-
tricted to Ay ® py is the identity map of ¢ ®,w onto p ® w. Since by (5)
Ay ® 4y is not barrelled, A ® _u can not be barrelled.
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