LIFTING OF HOLOMORPHIC MAPPINGS ON LOCALLY
CONVEX SPACES

RALF HOLLSTEIN

This note deals with the following question: If E and G are locally convex
spaces, when can a holomorphic nzapping f from E into a quotient space G/H be
lifted to a holomorphic mapping f: E - G? In the present paper we shall charac-
terize those locally convex spaces which have the holomorphic lifting property
and the weak holomorphic lifting property, respectively. A locally convex space
F is said to have the (weak) holomorphic lifting property if for each locally
convex space E and each quotient space G/H=F for which each bounded subset
in G/H can be lifted to a bounded subset in G, every holomorp}uc mappmg

f:E = G/H of locally umform bounded type has a lifting f:E~G (resp. f:E~G' )
of the same kind where G denotes the bidual of G equipped with the natural
topology. The holomorph.ic mappings f:E-F of locally uniform bounded type
are just those holomorphic mappings for which there exist normed spaces E
and F, such that f has a factorization

g—A gL g B ¢

where f is holomorphic and A,B are continuous and linear. We shall show that
each locally complete co- F-space (co- L ;-space) has the (weak) holomorphic
lifting property. A locally convex space E is called co- £ ,-space (resp. co- F ;-
space) if for each absolutely convex bounded subset B of E there exists another
absolutely convex bounded subset C of E containing B such that the continuous
extension TBC EB—>EC to the completions of the canonical mapping Jg - :Eg~>E¢
is 1-factorable (resp. discretely 1-factorable). Under additional assumptions we
shall prove that conversely a locally complete space with the (weak) holomor-
phic lifting property is a co- F;-space (co- £ ,-space). As a corollary we obtain
the following result: A (B)-space E is isomorphic to 2, (I) for some index set I if
and only if E has the holomorphic lifting property. Furthermore, we get the
following characterization of L ,-spaces (in the sense of J. Lindenstrauss, A.
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Pefczyfiski [18]): A (B)-space Eisan £ ,-space if and only if E has the weak ho-
lomorphic lifting property. As a further consequence one obtains a dual version
of the holomorphic extension theorem of P.J. Boland [3]: If E is a (DFM)-space
and G is an (FN)-space, then every holomorphic mapping f from E into every
quotient space G/H has a holomorphic lifting {:E~>G.

In the first section of this note we give some fundamental properties of
co- F,-spaces and co- £, -spaces. In section 2 we deal with liftings of bounded
linear mappings between locally convex spaces. Section 3 is devoted to locally
convex spaces with the (weak) holomorphic lLifting property. Applications to
echelon and co-echelon spaces are given.

1. Co- F;- AND Co- L ,-SPACES

For a locally convex space E, ‘UL (E) will denote a 0-neighbourhoed basis of
closed absolutely convex O-neighbourhoods and 33 (E) the system of all closed
absolutely convex bounded subsets of E. If UeUL(E) and Be B(E), then we de-
note by Ey and Ey the associated normed spaces and by’ Ky :E2Ey-and
Jg:Eg~E the canonical mappings. For U,V €U,(E) with VCU and B,C ¢ $3(E)
with BCC, the canonica1~map2ing EV:EU~and Ep~E( respectively, as well as
its continuous extension Ey,~Ey; and Ez—E( to the completions is denoted by
Kyy and Jgc.

For locally convex spaces E and F, the vector space of all continuous linear
mappings E-F is denoted by L(E,F).

Let E and F be (B)-spaces and let Ip:F>F" be the evaluation mapping. An
operator AeL(E,F) is called p-factorable, 1 <p < oo, if the compose Iz°A has a
factorization

Lp(u)

through some Lp (u)-space where SeL(E,Lp(u)) and TeL(Lp(y),F "). An operator
AeL(E F) is said to be discretely p-factorable if A has a continuous linear facto-
rization

E_—A——>F
s\ /7t

tp(I)
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through the (B)-space £ p(1) for some index set I. The operator ideal of all p-fac-
torable (resp. dlscretely p-factorable) operators is denoted by f. (resp. F )
see A. Pietsch [21], p. 272. s

A locally convex space E is called e-space (resp, n-space) if for each Uecua(E)
there exists a Ve'UL(E) such that the canonical mapping Kyvy: EV_’EU is oo-fac-
torable (resp. 1-factorable). The e- and the n-spaces were introduced-and investi-
gated by means of locally convex tensor products in R. Hollstein [9], [10].

Let /& be any operator ideal. A locally convex space E is called co- # -spa-
ce if for each bounded set Be J (E) there is a bounded set Ce B (E) containing B
such. that the canonical mapping Jy: EB—>EC lies in ﬁ(EB,EC) (cf. H. Junek
[13} and H. Jarchow [12], 21.5). By definition, a locally convex space E is a
co- £,-space (resp. co- \T -space) if for each Be JB(E) there is a Ce B(E) con-
taining B such that Jg EB_’EC is 1-factorable (resp. discretely 1-factorable).

The L,-spaces in the sense of J. Lindenstrauss and A. Pelczynski [18] are
just the co- L£,-Banach spaces; see Y. Gordon et al. [8], p. 355. Furthermore, a
(B)-space E is a co- F,-space if and only if E is isomorphic to £,(I) for some
index set I (cf. 2.7).

Clearly, each co- J‘Tl-space isa co- f.l-space. On the other hand, a co- £,-
space need not be a co- F; -space in general; consider e.g. the Banach space
L;(A) where X is the Lebesgue measure on [0, 1].

A locally convex space E is called co-Schwartz space if for eack Be 3 (E)
there is a Ce B(E) containing B such that JBC:EB';EC is compact. Now we
prove

1.1. Proposition: A co- L. ,-spaceE is a co- F1-space if E is a co-Schwartz space.

Proof Let Be B(E) be given. There exist C DefB(E) with BCCCD such that
JBC EB—>EC is 1-factorable and Jnp: EC—>ED is compact. The adjoint
Jge: EC"’EB has a factorization

~ , S T ~
B’ —— Lo) ——— B

through an L, (u)-space where SeL(EC Loo(®) and TeL(L . (u), EB) Since
Jep ED —>EC is compact, J CD admits a continuous linear factorization

By ——H L

through a closed subspace H of ¢, (cf. G. Kéthe [16], p. 226). Because L _{w)
has the extension property, there exists an extension ReL(c,,L., (1)) of
SeL € L(H,Lo,(u)). It follows that the adjoint Jzp, = JpcleJp has a factori-
zation
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ED, S Co TR EB,

through c,, hence the double adjoint JBD EB"->ED factors through £, . There
is furthermore a B’ efB(E) with D C B’ such that JD,.B' ED—>EB' is compact.
Since JDB' maps ED into EB', the mapping Jgp': EB—’EB' is discretely 1-facto-
rable. This completes the proof.

The co- N>spaces are called co-nuclear where NN denotes the operator ideal
of nuclear operators. By definition, each co-nuclear space is a co- F;-space, in
particular a co- £,-space. On the other hand, a nuclear space need not be a
co- £ ,-space. In fact, let E be a (B)-space which is not an £ ,-space, i.e. the
identity Id:E-E is not 1-factorable. If E; denotes the vector space E endowed
with the weak topology, then E is a nuclear space which cannot be a co- £,-
space since E and E; have the same bounded sets. If, however, E is a nuclear
(DF)- or a nuclear (F)-space, then E is co-nuclear and hence a co- JF;-space and
aco- L,-space, respectively.

Next we consider permanence properties of co- L£,- and co- F-spaces.
First we note that closed subspaces and quotients of co- £ ;-spaces and co- F,-
spaces respectively are generally not of the same kind, e.g. for each infinite-di-
mensional £ ;-space (tesp. 2, (I)-space) E there exist a closed subspace and a
quotient of E which are not £ ,-spaces (resp. £, (I)-spaces).

An injective inductive limit gl_gl E, of locally convex spaces E, is said to be

regular if every bounded set in gg E, is contained and bounded in some Eﬁ'
Every regular inductive limit ‘ixng E, of co- £ | -spaces (resp. co- F;-spaces) Eq

is again a co- L,-space (resp. co- F;-space). This follows from the following
proposition which can easily be proved.

1.2. Proposition: Let A& be any operator ideal. Each regular inductive limit
gl_l:l) By, of co- A& -spaces By isalso a co- # -space.

For a sequence a = (o ) of numbers oy, =0 let

Qp(a):={(xj)e]K]N:(lxj|aj)er}, 1<p<>
and
c(a): = {(xj)eIK]N: (Ix; 1) e c, }

Let A be a monotonic increasing countable system a<a® .. of sequen-
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ces ak) = ( of positive numbers a; i and let V be a monotonic decreasing
system v(1) > vj(2) = ... of sequences v(k) (w k) of numbers w wj > 0. The

space A (A): = . Ql Qp(a(k)) (resp. A (A): = . Ql co(a(k))) is called echelon

space of order p (resp. of order 0) which is an (F)-space with respect to the usual
topology. The co-echelon space JCP(V) of order p is defined to be the inductive
limit

K, (vV): =ind ,6®)  for 1<p<eo
k—>

and
Joo(V): =ind ¢, W,
k—>

For each 1 < p < eothe inductive limit JG, (V) is regular, hence, by 1.1, every
co-echelon space JG, (V) is a co- F;-space. Now we prove

1.3. Proposition: If a co-echelon spaceJC (VYoforder 1 <p < eoisaco- L;-
space, then JG (V) must be nuclear.

Proof: Let E =JC (V) be a co-echelon space of order 1 < p < cowhich is a
co- £,-space and let B e B (E) be given. There exist C ,De B (E) with BCCCD
such that Jep: EC—>ED factors through Qp and the compose IqoJp: EB—>EC
of Jgc and the evaluation mapping I: EC—>EC has a continuous linear factori-
zation through an L, (u)-space. The adjoint JBD = JBC°JCD ED_’EB of Igp
is r-integral for some r > max(2,q) where 1/p + 1/q = 1, since JBIS is the com-
pose of the L,,(u)-factorable operator I and the £,-factorable operator J¢p
(cf. A. Pietsch [21], 22.4.2). Now the compose of n r-integral operators is nu-
clear where n is any natural number with 2r <n (cf. [21], 20.2.4 and 29.7.2),
hence one can find a set M € B (E) such that the adjoint JBM EM"EB of Jam
is nuclear. Since the double adjoint Jgy: Eg”-Ey" is nuclear, the mapping
Jgm:Eg~Ey is quasinuclear. This shows that JG (V) is co-nuclear. Thus,
X5 p(V) isas a (DF)-space alsonuclear.

Furtheron, we have
1.4. Proposition: Every echelon space \,(A) is a co- L ,-space.

Proof: Let N\;(A) be an echelon space with respect to a monotonic increasing
system A of sequences a® = (ajk)j of positive numbers. Let E be the co-echelon
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J6 o (V) of order O where V is the associated decreasing system v(1) > v@) >

of sequences v(¥) = (wji); with @ Wik = I/OIJk By a result of K.—-D. Blerstedt
et al. [2], JG, (V) is topologlcally 1somorph1c to a dense subspace of the reduced
projective limit pro_]\7 co(_ V) where V consists of all sequences v = ((pj) of non ne-

gative numbers #; which satisfy the condition sup(soJ Jk) < eofor all k. From this

it follows that E = J{ (V) is an €e-space since each (B)-space c, (V) is an e-space
and since the e-spaces are stable under the formation of reduced projective limits
and dense subspaces (cf. [9], [10]). Thus for each U €WL(E) there exists a
V ¢°UL(E) contained in U such that Kyvy: EV"’EU is eo-factorable, hence the
adjoint KUV EUo—>EVo can be factored through an L, (u)-space. Since A (A) is
isomorphic to the strong dual (JC,(A))y, A1 (A) isa co- £;-space.

2. LIFTINGS OF BOUNDED LINEAR MAPPINGS IN LOCALLY CONVEX SPACES

Let E be a locally convex space, let G/H be a quotient space of a locally
convex space G and let K: G>G/H be the quotient mapping. A mapping f:E~G
is said to be a lifting of a mapping f:E-G/H if f=Kof. We. say that f:E~G"' isa
lifting to G” of f if the following diagram commutes

G"
£
1 K"

E G/H <« (G/H)"
£ I

where I:G/H-(G/H)" denotes the evaluation mapping.

Let E,F be locally convex spaces. A mapping A € L(E,F) is called bounded if
A maps some O-neighbourhood in E into a bounded subset of F. The vector
space of all bounded linear mappings E=F is denoted by LB(E,F). If A e LB(E,F),
then there exist U €Us(E) and B e B (F) such that A admits a factorization

Ky Ip

Ays
E Ey Fp

F

where Ay € L(Ey Fp).
The following definition plays an important role on the investigation of lif-
tings of bounded linear mappings.

2.1. Definition: A quotient space F[H of a locally eonvex space F is said to have
the (BLYproperty if each bounded subset B of F/H can be lifted to a bounded
subset C of F, i.e. B C K(C).
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Tt is well-known that for a (DFM)-space or a normed space F every quotient
F/H has the (BL)—property. This, however, need not be true for an (FM)-space
F; consider e.g. an echelon space A, which is an (FM)-space and has a closed
subspace H such that A, /H =&, (cf. G. Kithe [15], §31,5.). By a result of A.E.
Merzon [20] an (F)-space H is quasi normable if and only if for each locally con-
vex space F containing H as a topologicat linear subspace F/H possesses the
(BL)-property. In particular, if F is an (FS)-space, then each quotient F/H has
the (BL)-property.

For a locally convex space E let Eq be denote the Cartesian £, -product of
all (B)-spaces ’EB’ B eB(E), ie. Eq consists of all families x = (xg) where
Xp € ﬁB for all B € J3(E) such that (llxg )y is absolutely summable. Eq isa
(B)-space with respect to the norm

Ixl:= Z I xg .
BeBE) B

The following proposition gives a connection between the (BL)-property
and liftings of bounded linear mappings.

2.2. Proposition: Let E = F/H be a locally cor;\zplete quotient space such that
each mapping A € LB(Eq , F/H) has a lifting A € LB(Eg , F). Then F[H has
the (BL)-property.

Proof: For B e BB(E) let Ig: Eg~Eq ,Pp: Eq »Ep, Jg:Eg—E and K:F-F/H be
the canonical mappings. By assumption, the compose JzoPy € LB(E ¢ ,F/H) has
a lifting S € LB(Em ,F). Because of JgoPp = KoS one has Jg = KoSelg. The set
C: =Solp(B) is bounded in F with K(C) =B. This completes the proof.

For every locally complete bornological space F one can define an associa-

ted quotient space F/H in the following way: Let {B,: ael} be the system of
all Banach disks B, in F. For each ael the mapping

. Z
Ky £ (Ba)_)F By ()‘x)xeBa “%eB o )‘xx
is a surjective homomorphism. Since F is bornological, the mapping
S: e ,(By)—F, (zg)g > Z JooKq (zo)
ael o

from the locally convex direct sum 2 2,(Bg) into F is a surjective homomor-

phism, too, where J: FBa—>F denotes the canonical embedding for each cel.
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Setting F,: = 2 2, (Bg), the space F is isomorphic to the quotient space F,/H

where H=Ker S.
Later we need

2.3. Lemma: For every locally complete bornological space F the associated
quotient space F | [H has the (BL)-property.

Proof: Let N be a bounded subset of F,/H. Let §; F,/H-F be the canonicebl to-
pological isomorphism and let K: F,—>F/H be the natural mapping. Since S(N)
is bounded in F, there exists a Banach disk B g in F and a bounded subset N 8 in
Fy 8 with Jg N 8 )} = S(N) where J g:Fp 8 — F denotes the canonical em-

bedding. Furthermore, there is a bounded subset M g in%; (B 8 )withKg (M g)
= Ng . The set M: = Ig (MB ) is then bounded in F;, = 2 2,(By) where

Ig.2(Bg)—>®2(By) denotes the canonical embedding. Because of
o

SKOD)=S(M)=J5 -Kg Mg )=50N)

we have K(M) =N.
Now we prove

2.4. Proposition: Let F be a locally complete co- L ,-space [resp. co- N -space).
Then for every locally convex space E and every quotient space G/H = F having
the (BII\,)-property, every mapping A ¢ LB(E,G/H) has a lifting A ¢ LB(E.G,)
[resp. A € LB(E,G)].

Proof: Let F be a locally complete co- £, -space and let A e LB(E,G/H) be given.
There exists a U €'UL(E) and a B e 3 (G/H) such that A is the compose of conti-
nuous linear mappings

K A |
E U gy —B (g/H) —2— G/H

By assumption, there is a D e 3 (G) with C: =K(D) D B such that the canonical
mapping Jgc: (G/H)g = (G/H)¢ is 1-factorable. Thus the compose IceJpc :
(G/H)g ~ (G/H)¢" of Jp and the evaluation mapping I¢: (G/H)q ~ (G/H)"
has a continuous linear factorization

T S "
(G/H)y L1 () (G/H)c

through some L; (u)-space. The linear mapping
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is a surjective metric homomorphism. Now the mapping S € L(L, (1), (G/H)c'")
has a lifting S € L(L, (1), Gp,"") with S = R"’eS (cf. H.E. Lacey [17], p. 178). This
leads to the following commutative diagram

§ JD"
Ly(u) ==mmmmmmmmem >y — D2 . gn
T S l R"
E, ———— (G/H), ——— (G/H), c=——> (G/H)," K"
U A B J [+ I Cc
UB BC c
K Jc"
U Jc

y
E > G/He< (G/H)"
A 1 n

where I: G/H - (G/H),, denotes the evaluation mapping. Because of
IeA =K'oJp oS eToAy;goKy

the mapping A € LB(E,G/), defined by
A:=Jp5"eSeToAypoKy

is a lifting of A to G"'.

The lifting theorem for co- g;-spaces F can be proved with the same facto-
rization method using the well-known fact that every continuous linear mapping
from a (B)-space into a quotient X/H =%, (I) of a (B)-3pace X can be lifted to X.

Now we shall show the converse of 2.4 under additional assumptions.

2.5, Theorem: Let F be a (B)-space or a bornological reflexive space. The follo-

wing assertions are equivalent

(1) Fisaco- L,-space.

(2) Every mapping A ¢ LB(Fg ,F, /H) has a lifting A ¢ LB(Fg ,(F;)}).

(3) For every locally convex space E and for every quotient space G/H = F
having the (BL)-property, every A e LB(E,G/H) has a lifting Ae LB(E,G,).

Proof: The implication (1) = (3) was proved in 2.4 and (3) = (2) follows by 2.3.
It remains to show (2) = (1).
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Let B={ B,: e I'} be the system of all Banach disks in F and let B e $be
given. Let Py: Fg — Fg and Jp: F3—F be the canonical mappmgs The compose
A =JgoPy liesin LB(Fg ,F) and has, by assumption, a lifting Ae LB(Fgq (FO))
such that S"oA =IoA where S: Fi»Fand I: F—>F denote the canonical map-
pings. Let M be the unit ball in Fg . Since A(M) is bounded in (F W =
= 412 (21(By)" there exists a finite set NCI' such that the bidual space

Fo= o (2,(By) of Fy: = @ £, (Bg) contains A(M) as a bounded subset.
aeN aeN

Thus, IcA admits a factorization

" 0 ’ "

Fg F/ F; F!

where A e LB(Fm F.)and I : F -F; denotes the canonical embedding. Let

A € LB(Fy F,) be the restriction mapping of A, to Fg. We obtain the follo-
wing commutative diagram

I"
1 o]
R — FY
a n
A, [ s
F > F F"
BT, I n

The (B)-space F, is as the bidual of F, = eN 2, (Bg) an L; (u)-space, hence the
ae :

compose IoJ: Fy~F, can be factored through an L, (u)-space.

If F is a (B)-space, then the identity 1d: F-F is 1-factorable, thus F is an
£ ,-space.

Now let F be a reflexive space. Then the mapping Jg: Fy - F hasa conti-
nuous linear factorization

R R
— L, (@) ——F.

Fg

Furthermore, there exists a C ¢ J (E) containing B such that R, can be decom-
posed into

T Jc
L; () Fe — E

where T € L(L;(u),Fc). Now we have JooJpo =Jg = JcoTeRy, hence Jgo =
= TeRy, since J¢ is injective. It follows that Jg is 1-factorable. This completes
the proof.
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For co- JF; -spaces the following lifting theorem holds

2.6. Theorem: Let F be a locally complete bornological space. The following

assertions are equivalent

(1) Fisg co- F,-space.

(2) Every mapping A e LB(Eq ,F, /H) has a lifting Ae LB(Fq ,F1).

(3) For every locally convex space E and for every quotient space G/H == F with
the (BL)-property, every A e LB(E,G/H) has a lifting Ae LB(E,G).

Proof: In view of 2.3 and 2.4 it remains to prove the implication (2) = (1).

Let B3 ={Bgy: @ e '} bethe system of all Banach disks in F and let B e 3 be
given. Similar as in the proof of 2.5 one can show that there exists a finite set
N C TI' such that the mapping Jg: Fp—F can be factored through the £; (I)-space
F, = aéeN 2; (Bg). Now one can find a C e B(F) with B C C such that

Jgc: Fp~F( factors through F, hence Jp is discretely 1-factorable. We con-
clude that F is a co- &;-space. This completes the proof.

If F is a (B)-space such that every bounded linear mapping A from a
(B)-spaﬁ:e E into a quotient G/H = F of a (B)-space G has a bounded linear
lifting A: E-G, then F is isomorphic to £; (I) for some index set I (cf. G. Kothe
[14], p. 188). Thus, by 2.6 we get

2.7. Proposition: A (B)-space E is a co- F-space if and only if E is isomorphic
to £, (1) for some index set 1.

By a result of K. Floret [7], p. 110, a bounded linear mapping A from a
£ ;-space E into a quotient G/H of a locally convex space G has a bounded li-
near lifting A: E-G,, if the image A(B) of the unit ball B in E is contained in the
closure K(C) for some bounded subset C of G where K:G~G/H denotes the
quotient mapping. We mention without proof that this result can be generalized
to locally convex m-spaces by using the above factorization method. Let us fur-
ther remark that liftings of compact linear mappings between locally convex
spaces were investigated in R. Hollstein [9] with tensor product methods.

3. LOCALLY CONVEX SPACES WITH THE (WEAK) HOLOMORPHIC LIFTING
PROPERTY

Throughout this section all locally convex spaces are assumed to be complex
vector spaces.
Let E and F be locally convex spaces. A continuous mapping f: E-F is said
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to be holomorphic in E if for each y’ € F’ the function y'ef is Gateaux-holomor-
phic, i.e. for all a,b € E the function z = y' (f(a+zb)) is holomorphic in €. The
vector space of all holomorphic mappings from E into F is denoted by H(E,F).

3.1. Definition: A mapping A e H(E,F) is said to be of locally uniform bounded
type if there exist U €USE) and B e B(F) such that for all x € E there are
A, > 0and u, >0 with

f(x +\U) C u,B.

By Hy,, (E,F) we denote the linear subspace of H(E,F) consisting of all
mappings of locally uniform bounded type. By definition, every mapping
f € Hy,p (E,F) is locally bounded, i.e. each point x € E has a neighbourhood
whose image under f is bounded.

Now we prove

3.2. Proposition: Let E and F be locally convex spaces. A mapping f € H(E,F)
is of locally uniform bounded type if and only if there exist U eUs(E) and
B € B(F) such that  can be decomposed into
K T J
E—Y—Ey Fpe—2 - F

where fe H(E;,Fg).

Proof: Let f e Hy, (E,F). There exist U €W(E) and B e 3 (F) such that for all
x € E there are A, > 0 and u, > 0 with f(x + A, U) C u,B. If x —y lies in the
null space of U, then one has f(x) = f(y), since by the Liouville theorem the
bounded entire function a - y' (f(x+a(y—x))) in @ is constant for all y' € F'.
The mapping f: Ey—Fp, defined by f(KU(x)) =f(x) is well-defined and holomor-
phic with JgefoK; =1.

Now let f € H(E,F) be a holomorphic mapping which can be decomposed
into

E—~U Ey ! FBfJB F

where T € H(Ey;,Fg). Since f is continuous there exist, for each x € E, numbers
Ax > 0 and gy > 0 such that f(Ky(x) + A,Ky(U)) C u,B. Thus, we have
f(x+A, U) C u,B.

From 3.2 it follows immediately that a mapping f: E-F is holomorphic of
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locally uniform bounded type if and only if there exist normed spaces E, and
F, such that f admits a factorization

A f B
E E F F

o} o]

where f is holomorphic and A,B are continuous and linear.

For normed spaces E and F a mapping f € H(E,F) is said to be of bounded
type if it is bounded on all bounded subsets of E. Following, J.F. Colombeau,
J. Mujica [5] a holomorphic mapping f between locally convex spaces E and F
is said to be of uniform bounded type if there exist U € U,(E) and B € B(F)
such that f can be decomposed into

K f J
U o B
E Ey Fp

F

where f is holomorphic of bounded type. The vector space of all holomorphic
mappings f: E-F of uniform bounded type is denoted by H,, (E,F).
For all locally convex spaces E and F the following inclusions hold

Hyp(EF) € Hy (EF) C H(EF).
IfE and F are normed spaces, then one has

H(E3F) = Hlub(E>F) L

but even C-valued holomorphic mappings on locally convex spaces are generally
not of locally uniform bounded type. For example, let E be the (FN)-space H(T)
of all entire functions on € equipped with the topology of uniform convergence
on the compact subsets of €. The mapping f: H{(C) — €, ¢ = ¢(x(0)) is holomor-
phic but is not of locally uniform bounded type (cf. J.F. Colombeau {4], 2.7.2).

In general, H,(E,F) is a proper subspace of H;,,(E,F). Consider e.g. a
holomorphic mapping between (B)-spaces E and F which is not of bounded type.

If E is a (DFM)-space and F is 2 metrizable locally convex space, then by a
result of J.F. Colombeau, J. Mujica [5] one has

H,,(E,F) = Hy,,(E,F)=H(E,F).
.Let us remark that R. Meise and D. Vogt [19] have investigated necessary and
sufficient conditions for (FN)-spaces E satisfying the relation” H(E,L) =
=H,(E,T).

3.3. Definition: A locally convex space F is said to have the holomorphic lifting
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property [resp. weak holomorphic lifting property] if for every locally convex
space E and for every quotient G/H = F having the (BL)-property, every map-
ping A e Hy,(B,G/H) has a holomorphic lifting A e Hy,y(E,G) [resp.
A e Hy, (E,.G))]

Now we prove

3.4. Proposition: The following assertions hold

(1) Every locally complete co- £1-space has the weak holomorphic lifting
property.

(2) Every locally complete co- F,-space has the holomorphic lifting property.

Proof: (1) Let F be a locally complete co- £ ,-space, let G/H = F be a quotient
space with the (BL)-property, let E be any locally convex space and let
f € Hy,,(E,G/H). There exist U €WL(E) and B e B (G/H) such that f admits a
factorization

Ky Ig

where f e H(Ey.(G/H)g). Applying 24, Jg € LB((G/H),G/H) has a lifting
Jp € LB(G/H)g G)with IeJz =K"oJy where I: G/H - (G/H)" and K: G~G/H
denote the canonical mappings. Thus we have

Tof = loJ yofoKy; =Ko JgofoKyy ,

hence f: =J goleKy € Hy,  (E,Gp) is a lifting of f to G),. This proves that F has
the weak holomorphic lifting property.
(2) Using 2.4, the assertion (2) can be shown in a similar way.

Now we shall prove the converse of 3.4(1) under the assumptions of 2.5.

3.5. Theorem: Let F be a (B)-space or a bornological reflexive space. The follo-

wing assertions are equivalent

(1) Fisaco- L,-space.

(2) F has the weak holomorphic lifting property. .

(3) Each mapping f € Hy,,(Fq ,F,/H) has a holomorphic lifting { ¢ H(Fq ,
(F1)p).

Proof: It remains to prove the implication (3) = (1). By 2.5 it suff;lces to show
that each linear mapping A € LB(Fq ,F,/H) has a linear lifting A € LB(Fqg ,
(F1)p)-
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Let A € LB(Fq ,F,/H) be given. By assumptlon there exists a holomorphic
lifting A e H(Fq (F:),) with K'oA = IoA where K: F,~F,/H and
I: F, /H~>(F,/H), denote the canonical mappings. For each x € Fq there exists

e dMAw) ) .
a power series ¥ — (y — x) wich converges uniformly to A(y) in a
m=o0 m! 3 m A )
X
neighbourhood of x where, for eachm e ]N,—'— is a continuous m-homoge-
m:

neous polynomlal from Fg 1nto (F1), (cf. S. Dineen [6], p. 55) Setting
A: =gt A(O) e LB(Fg ,(F; ) A(x) is the directional derivative of A at 0 in
direction to x. Thus, for eachx ¢ Fq one has

K'oA(x) = K(}l\xm (1) AQW) = IoA(x)

hence A € LB(Fg ,(Fl);_l') is the required linear lifting of A. This completes the
proof.

Up to minor modifications, the proof of the following theorem is the same
asin 3.5

3.6. Theorem: Let F be a locally complete bornological space. The following
assertions are equivalent

Q1) Fisa co- F-space.

(2) F has the holomorphic lifting property.

(3) Each mapping f € Hy,(Fg ,F1/H) has a holomorphic lifting. feH(Fm JFo).

By the above mentioned result of J.F. Colombeau and J. Mujica [5] each
holomorphic mapping from a (DFM)-space into a metrizable locally convex
space is holomorphic of uniform bounded type. From 3.4 it follows

3.7. Corollary: Let E be'a (DFM)-space and let F be a co- F,-Fréchet space
[resp. co- L, -Fréchet space). Then for each quotient space G/H F having the
(BL) property, every mapping f € H(E,G/H) has a lifting fe H(E,G) [resp.
fe H(E,G,)].

It is well-known that every Fréchet-valued holomorphic mapping on a clo-
sed subspace of a (DFN)-space G has a holomorphic extension to G (cf. J.F.
Colombeau, J. Mujica [5], 7.4). From 3.7 we obtain a dual version of this holo-
morphic extension theorem

3.8. Corollary: Let E be a (DFM)-space and let F be an (FN)-space. Then for
every quotient G/H =~ F with the (BL)-property every holomorphic mapping
f: E~G/H has a holomorphic lifting f- E~G.
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From 3.8 it follows that every holomorphic mapping f from a (DFM)-space
E into a quotient G/H of an (FN)-space G has a holomorphic lifting f: E-G since
the quotient of an (FN)-space possesses always the (BL)-property.

Let us remark that a holomorphic mapping f from an (FN)-space E into a
quotient G/H of an (FN)-space G need not be holomorphically liftable to G. For
example, let G be the (FN)-space H(T). G has a continuous norm, hence there
exists a closed subspace H of G which is not complemented in G (cf. G. K6the
[15], § 31 4(1)). We assume that the identity Id: G/H-G/H has a holomorphic
lifting Id: G/H~G. The argument used m the proof of 3.5 shows that
Id: G/H-G/H has a continuous linear lifting 14: G/H—>G If K: G=G/H denotes
the canonical mapping, then the mapping P: = =IdoK is a continuous projection
with Ker P =H, hence we have a contradiction.

For (B)-spaces, we get by 2.7 and 3.6

3.9. Proposition: Let F be a (B)-space. The following assertions are equivalent

(1) F is isomorphic to 2, (1) for some index set 1.

(2) F has the holomorphic lifting property.

(3) For every (B)-space E and every quotient G/H = F, every holomorphic
mapping £: E~G/H has a holomorphic lifting f E~G.

It is well-known that the L,-spaces are precisely those (B)-spaces F which
have the compact lifting property, i.e. for every (B)-space E and every quotient
G/H F, every compact linear mapping A: E-»G/H has a compact linear lifting
A: BE-G. By 3.5 we obtain the following characterization of L 1-spaces by
means of holomorphic liftings

3.10. Proposition: Let F be a (B)-space. The following assertions are equivalent

(1) Fisan L, -space.

(2) F has the weak holomorphic lifting property.

(3) For every (B)-space E and every quotient space G/H ~ F ofa (B);space G,
every holomorphic mapping f: E~G/H has a holomorphic lifting f: E~G".

For (B)-spaces E and F, Hy(E,F) denotes the vector space of all holo-
morphic mappings f: E-F such that for each x € E there is a neighbourhood
V of x such that f(V) is compact in F. Let us remark that R.M. Aron [1] has
proved with a tensor product method that for each quotient space F = G/H for
which F' is complemented in G’ and F has the approximation property, every
f € Hy (E,G/H) has a lifting f € Hy (E,G).

By 3.4 every co-echelon space JG ; (V) has the holomorphic lifting property
and by 1.4 and 3.4 every echelon space A;(A) possesses the weak holomorphic
lifting property. For (co-) echelon spaces of order 1 < p < oo, we get
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3.11. Proposition: Let E be a co-echelon space JCP(V) or an echelon space
Ap(A) of order 1 < p < o= The following assertions are equivalent

(1) E is nuclear.

(2) E has the weak holomorphic lifting property.

(3) E has the holomorphic lifting property.

Proof: If E = JQP(V), 1 < p < oo, then the equivalence (1) < (2) ¢ (3) follows
from 1.3 and 3.6.

Now let E be an echelon space Ap(A) of order 1 < p < . It remains to
show the implication (2) = (1).

Suppose that E has the weak holomorphic lifting property. By 3.5 E is a
co- £,-space. Let us show that the strong dual Ej, is an e-space, i.e. for each
U eclL(E{)) thereisa V e‘U;(E'b) contained in U such that the canonical mapping
Kyv: (E’\{:)V—»(E;’)U is oo-factorable. Let B e J3(E) be given. There exists a
C ¢ B (E) containing B such that the canonical mapping Jp: Eg—~E( is 1-facto-
rable. It follows that the adjoint Jg: Eo'~>Ey’ has a continuous linear factoriza-
tion through an L (u)-space. Since E is reflexive, one has E5' = (E'g»)"" and
B¢’ =(E'co)" isometrically, hénce the double adjoint Kgoco': (E'go)”’ (E'go)"
of the canonical mapping Kpoco: E'co~E'po factors through L.{u). Thus,
Kpoco is co-factorable and we conclude that E;, = J0,(V) is an e-space where
1/q + 1/p =1 and V is the associated matrix of A. By R. Hollstein [11], lemma
3, every co-echelon space Jﬂq(V) of order 1 < q < oewhich is an e-space must
be nuclear. It follows that )\P(A) is nuclear. This completes the proof.
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