LIFTING OF HOLOMORPHIC MAPPINGS ON LOCALLY CONVEX SPACES

RALF HOLLSTEIN

This note deals with the following question: If E and G are locally convex spaces, when can a holomorphic mapping f from E into a quotient space G/H be lifted to a holomorphic mapping $\hat{f}: E \to G$? In the present paper we shall characterize those locally convex spaces which have the holomorphic lifting property and the weak holomorphic lifting property, respectively. A locally convex space F is said to have the (weak) holomorphic lifting property if for each locally convex space E and each quotient space $G/H \cong F$ for which each bounded subset in G/H can be lifted to a bounded subset in G, every holomorphic mapping $f:E \to G/H$ of locally uniform bounded type has a lifting $\hat{f}:E \to G$ (resp. $\hat{f}:E \to G''_n$) of the same kind where G''_n denotes the bidual of G equipped with the natural topology. The holomorphic mappings $f:E \to F$ of locally uniform bounded type are just those holomorphic mappings for which there exist normed spaces E_o and F_o such that f has a factorization

$$E \xrightarrow{A} E_o \xrightarrow{\overline{f}} F_o \xrightarrow{B} F$$

where \overline{f} is holomorphic and A,B are continuous and linear. We shall show that each locally complete co- \mathcal{F}_1 -space (co- \mathfrak{L}_1 -space) has the (weak) holomorphic lifting property. A locally convex space E is called co- \mathfrak{L}_1 -space (resp. co- \mathcal{F}_1 -space) if for each absolutely convex bounded subset B of E there exists another absolutely convex bounded subset C of E containing B such that the continuous extension $T_{BC}: \widetilde{E}_B \to \widetilde{E}_C$ to the completions of the canonical mapping $J_{BC}: E_B \to E_C$ is 1-factorable (resp. discretely 1-factorable). Under additional assumptions we shall prove that conversely a locally complete space with the (weak) holomorphic lifting property is a co- \mathcal{F}_1 -space (co- \mathfrak{L}_1 -space). As a corollary we obtain the following result: A (B)-space E is isomorphic to ℓ_1 (I) for some index set I if and only if E has the holomorphic lifting property. Furthermore, we get the following characterization of \mathfrak{L}_1 -spaces (in the sense of J. Lindenstrauss, A.

Pełczyński [18]): A (B)-space E is an \mathfrak{L}_1 -space if and only if E has the weak holomorphic lifting property. As a further consequence one obtains a dual version of the holomorphic extension theorem of P.J. Boland [3]: If E is a (DFM)-space and G is an (FN)-space, then every holomorphic mapping f from E into every quotient space G/H has a holomorphic lifting $f: E \to G$.

In the first section of this note we give some fundamental properties of co- \mathcal{F}_1 -spaces and co- \mathfrak{L}_1 -spaces. In section 2 we deal with liftings of bounded linear mappings between locally convex spaces. Section 3 is devoted to locally convex spaces with the (weak) holomorphic lifting property. Applications to echelon and co-echelon spaces are given.

1. Co- \mathcal{F}_1 - AND Co- \mathfrak{L}_1 -SPACES

For a locally convex space E, $\mathfrak{U}(E)$ will denote a 0-neighbourhood basis of closed absolutely convex 0-neighbourhoods and $\mathfrak{B}(E)$ the system of all closed absolutely convex bounded subsets of E. If $U \in \mathfrak{U}(E)$ and $B \in \mathfrak{B}(E)$, then we denote by E_U and E_B the associated normed spaces and by $K_U: E \to E_U$ and $J_B: E_B \to E$ the canonical mappings. For $U, V \in \mathfrak{U}(E)$ with $V \subset U$ and $B, C \in \mathfrak{B}(E)$ with $B \subset C$, the canonical mapping $E_V \to E_U$ and $E_B \to E_C$ respectively, as well as its continuous extension $E_V \to E_U$ and $E_B \to E_C$ to the completions is denoted by K_{UV} and J_{BC} .

For locally convex spaces E and F, the vector space of all continuous linear mappings $E \rightarrow F$ is denoted by L(E,F).

Let E and F be (B)-spaces and let $I_F: F \to F''$ be the evaluation mapping. An operator $A \in L(E,F)$ is called p-factorable, $1 \le p \le \infty$, if the compose $I_F \circ A$ has a factorization

through some $L_p(\mu)$ -space where $S \in L(E, L_p(\mu))$ and $T \in L(L_p(\mu), F'')$. An operator $A \in L(E, F)$ is said to be discretely p-factorable if A has a continuous linear factorization

through the (B)-space $\ell_p(I)$ for some index set I. The operator ideal of all p-factorable (resp. discretely p-factorable) operators is denoted by \mathfrak{L}_p (resp. \mathcal{F}_p); see A. Pietsch [21], p. 272.

A locally convex space E is called ϵ -space (resp. π -space) if for each UeU(E) there exists a VeU(E) such that the canonical mapping $K_{UV}: \widetilde{E}_V \to \widetilde{E}_U$ is ∞ -factorable (resp. 1-factorable). The ϵ - and the π -spaces were introduced and investigated by means of locally convex tensor products in R. Hollstein [9], [10].

Let \mathcal{A} be any operator ideal. A locally convex space E is called co- \mathcal{A} -space if for each bounded set $B \in \mathcal{B}(E)$ there is a bounded set $C \in \mathcal{B}(E)$ containing B such that the canonical mapping $J_{BC}: \widetilde{E}_B \to \widetilde{E}_C$ lies in $\mathcal{A}(\widetilde{E}_B, \widetilde{E}_C)$ (cf. H. Junek [13] and H. Jarchow [12], 21.5). By definition, a locally convex space E is a co- \mathcal{L}_1 -space (resp. co- \mathcal{F}_1 -space) if for each $B \in \mathcal{B}(E)$ there is a $C \in \mathcal{B}(E)$ containing B such that $J_{BC}: \widetilde{E}_B \to \widetilde{E}_C$ is 1-factorable (resp. discretely 1-factorable).

The \mathfrak{L}_1 -spaces in the sense of J. Lindenstrauss and A. Pełczyński [18] are just the co- \mathfrak{L}_1 -Banach spaces; see Y. Gordon et al. [8], p. 355. Furthermore, a (B)-space E is a co- \mathcal{F}_1 -space if and only if E is isomorphic to $\mathfrak{L}_1(I)$ for some index set I (cf. 2.7).

Clearly, each co- \mathcal{F}_1 -space is a co- \mathcal{L}_1 -space. On the other hand, a co- \mathcal{L}_1 -space need not be a co- \mathcal{F}_1 -space in general; consider e.g. the Banach space $L_1(\lambda)$ where λ is the Lebesgue measure on [0, 1].

A locally convex space E is called co-Schwartz space if for each Be $\mathcal{B}(E)$ there is a Ce $\mathcal{B}(E)$ containing B such that $J_{BC}:\widetilde{E}_B\to\widetilde{E}_C$ is compact. Now we prove

1.1. Proposition: A co- Ω_1 -space E is a co- \mathcal{F}_1 -space if E is a co-Schwartz space.

Proof: Let Be $\mathcal{B}(E)$ be given. There exist $C,De\ \mathcal{B}(E)$ with $B\subset C\subset D$ such that $J_{BC}:\widetilde{E}_B\to\widetilde{E}_C$ is 1-factorable and $J_{CD}:\widetilde{E}_C\to\widetilde{E}_D$ is compact. The adjoint $J_{BC}:\widetilde{E}_C'\to\widetilde{E}_B'$ has a factorization

$$\widetilde{E}_{C}' \xrightarrow{S} L_{\infty}(\mu) \xrightarrow{T} \widetilde{E}_{B}'$$

through an $L_{\infty}(\mu)$ -space where $SeL(\widetilde{E}_{C}',L_{\infty}(\mu))$ and $TeL(L_{\infty}(\mu),\widetilde{E}_{B}')$. Since $J_{CD}':\widetilde{E}_{D}'\to\widetilde{E}_{C}'$ is compact, J_{CD}' admits a continuous linear factorization

$$\widetilde{E}_{D}' \xrightarrow{K} H \xrightarrow{L} \widetilde{E}_{C}'$$

through a closed subspace H of c_o (cf. G. Köthe [16], p. 226). Because $L_\infty(\mu)$ has the extension property, there exists an extension $\text{ReL}(c_o, L_\infty(\mu))$ of $\text{SoL} \in L(H, L_\infty(\mu))$. It follows that the adjoint $J_{BD}' = J_{BC} \circ J_{CD}'$ has a factorization

$$\widetilde{E}_{D}' \xrightarrow{K} c_{o} \xrightarrow{T \circ R} \widetilde{E}_{B}'$$

through c_o , hence the double adjoint $J_{BD}^{\ \prime\prime}\ \widetilde{E}_B^{\ \prime\prime}\to \widetilde{E}_D^{\ \prime\prime}$ factors through ℓ_1 . There is furthermore a $B'\in \mathcal{B}(E)$ with $D\subseteq B'$ such that $J_{DB'}:\widetilde{E}_D\to \widetilde{E}_{B'}$ is compact. Since $J_{DB'}^{\ \prime\prime}$ maps $\widetilde{E}_D^{\ \prime\prime}$ into $\widetilde{E}_{B'}$, the mapping $J_{BB'}:\widetilde{E}_B\to \widetilde{E}_{B'}$ is discretely 1-factorable. This completes the proof.

The co- \mathcal{N} -spaces are called co-nuclear where \mathcal{N} denotes the operator ideal of nuclear operators. By definition, each co-nuclear space is a co- \mathcal{F}_1 -space, in particular a co- \mathcal{L}_1 -space. On the other hand, a nuclear space need not be a co- \mathcal{L}_1 -space. In fact, let E be a (B)-space which is not an \mathcal{L}_1 -space, i.e. the identity Id:E \rightarrow E is not 1-factorable. If E_σ denotes the vector space E endowed with the weak topology, then E_σ is a nuclear space which cannot be a co- \mathcal{L}_1 -space since E and E_σ have the same bounded sets. If, however, E is a nuclear (DF)- or a nuclear (F)-space, then E is co-nuclear and hence a co- \mathcal{F}_1 -space and a co- \mathcal{L}_1 -space, respectively.

Next we consider permanence properties of co- \mathfrak{L}_1 - and co- \mathcal{F}_1 -spaces. First we note that closed subspaces and quotients of co- \mathfrak{L}_1 -spaces and co- \mathcal{F}_1 -spaces respectively are generally not of the same kind, e.g. for each infinite-dimensional \mathfrak{L}_1 -space (resp. ℓ_1 (I)-space) E there exist a closed subspace and a quotient of E which are not \mathfrak{L}_1 -spaces (resp. ℓ_1 (I)-spaces).

An injective inductive limit ind E_{α} of locally convex spaces E_{α} is said to be regular if every bounded set in ind E_{α} is contained and bounded in some E_{β} . Every regular inductive limit ind E_{α} of co- C_1 -spaces (resp. co- \mathcal{F}_1 -spaces) E_{α} is again a co- C_1 -space (resp. co- \mathcal{F}_1 -space). This follows from the following proposition which can easily be proved.

1.2. Proposition: Let \mathcal{A} be any operator ideal. Each regular inductive limit ind E_{α} of co- \mathcal{A} -spaces E_{α} is also a co- \mathcal{A} -space.

For a sequence $a = (\alpha_k)$ of numbers $\alpha_k \ge 0$ let

$$\ell_p(a) \colon = \, \{ (x_j) \, \epsilon \, \mathbb{K}^{\mathbb{N}} \colon (\, | \, x_j \, | \, \alpha_j) \, \epsilon \, \ell_p \, \} \,, \qquad 1 \leq p < \infty$$

and

$$c_o(a) := \{ (x_j) \in \mathbb{K}^{\mathbb{N}} : (|x_j| |\alpha_j) \in c_o \}$$

Let A be a monotonic increasing countable system $a^{(1)} \le a^{(2)} \le \dots$ of sequen-

ces $a^{(k)}=(\alpha_{jk})_j$ of positive numbers α_{jk} and let V be a monotonic decreasing system $v^{(1)}\geqslant v^{(2)}\geqslant \ldots$ of sequences $v^{(k)}=(\omega_{jk})_j$ of numbers $\omega_{jk}>0$. The space λ_p (A): = $\bigcap\limits_{k=1}^{\infty}\,\ell_p(a^{(k)})$ (resp. $\lambda_o(A)$: = $\bigcap\limits_{k=1}^{\infty}\,c_o(a^{(k)})$) is called echelon space of order p (resp. of order 0) which is an (F)-space with respect to the usual topology. The co-echelon space $\mathcal{K}_p(V)$ of order p is defined to be the inductive limit

$$\mathcal{K}_p(V) \colon = \inf_{k \to} \ \ell_p(v^{(k)}) \qquad \text{ for } 1 \leqslant p < \infty$$

and

$$\mathcal{K}_{o}(V)$$
: = $\inf_{k \to 0} c_{o}(v^{(k)})$.

For each $1 \le p < \infty$ the inductive limit $\mathcal{K}_p(V)$ is regular, hence, by 1.1, every co-echelon space $\mathcal{K}_1(V)$ is a co- \mathcal{F}_1 -space. Now we prove

1.3. Proposition: If a co-echelon space $K_p(V)$ of order $1 is a co-<math>\mathfrak{L}_1$ -space, then $K_p(V)$ must be nuclear.

Proof: Let $E = \mathcal{K}_p(V)$ be a co-echelon space of order $1 which is a co-<math>\mathfrak{L}_1$ -space and let $B \in \mathfrak{B}(E)$ be given. There exist $C,D \in \mathfrak{B}(E)$ with $B \subset C \subset D$ such that $J_{CD}: \widetilde{E}_C \to \widetilde{E}_D$ factors through \mathfrak{L}_p and the compose $I_{C} \circ J_{BC}: \widetilde{E}_B \to \widetilde{E}_C$ " of J_{BC} and the evaluation mapping $I_C: \widetilde{E}_C \to \widetilde{E}_C$ " has a continuous linear factorization through an $L_1(\mu)$ -space. The adjoint $J_{BD} = J_{BC} \circ J_{CD}: \widetilde{E}_D \to \widetilde{E}_B$ of J_{BD} is r-integral for some $r > \max(2,q)$ where 1/p + 1/q = 1, since J_{BD} is the compose of the $L_{\infty}(\mu)$ -factorable operator J_{BC} and the \mathfrak{L}_q -factorable operator J_{CD} (cf. A. Pietsch [21], 22.4.2). Now the compose of n r-integral operators is nuclear where n is any natural number with $2r \leq n$ (cf. [21], 20.2.4 and 29.7.2), hence one can find a set $M \in \mathfrak{B}(E)$ such that the adjoint $J_{BM}: E_M \to E_B$ of J_{BM} is nuclear. Since the double adjoint $J_{BM}: E_B \to E_M$ is quasinuclear. This shows that $\mathcal{K}_p(V)$ is co-nuclear. Thus, $\mathcal{K}_p(V)$ is as a (DF)-space also nuclear.

Furtheron, we have

1.4. Proposition: Every echelon space $\lambda_1(A)$ is a co- Ω_1 -space.

Proof: Let $\lambda_1(A)$ be an echelon space with respect to a monotonic increasing system A of sequences $a^{(k)} = (\alpha_{jk})_j$ of positive numbers. Let E be the co-echelon

 $\mathcal{K}_{o}(V)$ of order 0 where V is the associated decreasing system $v^{(1)} \geqslant v^{(2)} \geqslant \dots$ of sequences $v^{(k)} = (\omega_{jk})_j$ with $\omega_{jk} = 1/\alpha_{jk}$. By a result of K.-D. Bierstedt et al. [2], $\mathcal{K}_{o}(V)$ is topologically isomorphic to a dense subspace of the reduced projective limit $\underset{\leftarrow}{\operatorname{proj}}_{\overline{V}} c_{o}(\overline{v})$ where \overline{V} consists of all sequences $\overline{v} = (\varphi_{j})$ of non negative numbers φ_{j} which satisfy the condition $\sup_{j} (\varphi_{j}\alpha_{jk}) < \infty$ for all k. From this it follows that $E = \mathcal{K}_{o}(V)$ is an ϵ -space since each (B)-space $c_{o}(\overline{v})$ is an ϵ -space and since the ϵ -spaces are stable under the formation of reduced projective limits and dense subspaces (cf. [9], [10]). Thus for each $U \in \mathcal{U}(E)$ there exists a $V \in \mathcal{U}(E)$ contained in U such that $K_{UV} : \widetilde{E}_{V} \to \widetilde{E}_{U}$ is ∞ -factorable, hence the adjoint $K_{UV} : E'_{U^{o}} \to E'_{V^{o}}$ can be factored through an $L_{1}(\mu)$ -space. Since $\lambda_{1}(A)$ is isomorphic to the strong dual $(\mathcal{K}_{0}(A))'_{h}, \lambda_{1}(A)$ is a co- \mathcal{L}_{1} -space.

2. LIFTINGS OF BOUNDED LINEAR MAPPINGS IN LOCALLY CONVEX SPACES

Let E be a locally convex space, let G/H be a quotient space of a locally convex space G and let K: $G\rightarrow G/H$ be the quotient mapping. A mapping $\hat{f}:E\rightarrow G$ is said to be a lifting of a mapping $f:E\rightarrow G/H$ if $f=K\circ \hat{f}$. We say that $f:E\rightarrow G''$ is a lifting to G" of f if the following diagram commutes

where $I:G/H\rightarrow (G/H)''$ denotes the evaluation mapping.

Let E,F be locally convex spaces. A mapping $A \in L(E,F)$ is called bounded if A maps some 0-neighbourhood in E into a bounded subset of F. The vector space of all bounded linear mappings $E \rightarrow F$ is denoted by LB(E,F). If $A \in LB(E,F)$, then there exist $U \in U(E)$ and $B \in \mathcal{B}(F)$ such that A admits a factorization

$$E \xrightarrow{K_U} E_U \xrightarrow{A_{UB}} F_B \xrightarrow{J_B} F$$

where $A_{UB} \in L(E_U, F_B)$.

The following definition plays an important role on the investigation of liftings of bounded linear mappings.

2.1. Definition: A quotient space F/H of a locally convex space F is said to have the (BL)-property if each bounded subset B of F/H can be lifted to a bounded subset C of F, i.e. $B \subset K(C)$.

It is well-known that for a (DFM)-space or a normed space F every quotient F/H has the (BL)—property. This, however, need not be true for an (FM)-space F; consider e.g. an echelon space λ_1 which is an (FM)-space and has a closed subspace H such that $\lambda_1/H \simeq \ell_1$ (cf. G. Köthe [15], §31,5.). By a result of A.E. Merzon [20] an (F)-space H is quasi normable if and only if for each locally convex space F containing H as a topological linear subspace F/H possesses the (BL)-property. In particular, if F is an (FS)-space, then each quotient F/H has the (BL)-property.

For a locally convex space E let $E_{\mathfrak{B}}$ be denote the Cartesian ℓ_1 -product of all (B)-spaces \widetilde{E}_B , B $\epsilon \mathcal{B}(E)$, i.e. $E_{\mathfrak{B}}$ consists of all families $x = (x_B)$ where $x_B \in \widetilde{E}_B$ for all B $\epsilon \mathcal{B}(E)$ such that $(\|x_B\|)_B$ is absolutely summable. $E_{\mathfrak{B}}$ is a (B)-space with respect to the norm

$$\|\mathbf{x}\| := \sum_{\mathbf{B} \in \mathbf{\mathcal{B}}(\mathbf{E})} \|\mathbf{x}_{\mathbf{B}}\|.$$

The following proposition gives a connection between the (BL)-property and liftings of bounded linear mappings.

2.2. Proposition: Let E=F/H be a locally complete quotient space such that each mapping $A \in LB(E_{\mathfrak{B}}, F/H)$ has a lifting $\hat{A} \in LB(E_{\mathfrak{B}}, F)$. Then F/H has the (BL)-property.

Proof: For B ϵ $\mathfrak{B}(E)$ let $I_B: E_B \to E_{\mathfrak{B}}$, $P_B: E_{\mathfrak{B}} \to E_B$, $J_B: E_B \to E$ and $K: F \to F/H$ be the canonical mappings. By assumption, the compose $J_B \circ P_B \in LB(E_{\mathfrak{B}}, F/H)$ has a lifting S ϵ LB(E $_{\mathfrak{B}}$,F). Because of $J_B \circ P_B = K \circ S$ one has $J_B = K \circ S \circ I_B$. The set $C: = S \circ I_B(B)$ is bounded in F with K(C) = B. This completes the proof.

For every locally complete bornological space F one can define an associated quotient space F_1/H in the following way: Let $\{B_\alpha\colon \alpha \in I\}$ be the system of all Banach disks B_α in F. For each $\alpha \in I$ the mapping

$$K_{\alpha}$$
: $\ell_1(B_{\alpha}) \rightarrow F_{B_{\alpha}}$, $(\lambda_x)_{x \in B_{\alpha}} \rightarrow \sum_{x \in B_{\alpha}} \lambda_x x$

is a surjective homomorphism. Since F is bornological, the mapping

S:
$$\underset{\alpha \in I}{\oplus} \ell_1(B_{\alpha}) \longrightarrow F$$
, $(z_{\alpha})_{\alpha} \rightarrow \underset{\alpha}{\Sigma} J_{\alpha} \circ K_{\alpha}(z_{\alpha})$

from the locally convex direct sum $\underset{\alpha}{\oplus} \ell_1(B_{\alpha})$ into F is a surjective homomorphism, too, where J_{α} : $F_{B_{\alpha}} \rightarrow F$ denotes the canonical embedding for each $\alpha \in I$.

Setting F_1 : = $\underset{\alpha}{\oplus} \ell_1(B_{\alpha})$, the space F is isomorphic to the quotient space F_1/H where H = Ker S.

Later we need

2.3. Lemma: For every locally complete bornological space F the associated quotient space F_1/H has the (BL)-property.

Proof: Let N be a bounded subset of F_1/H . Let $S: F_1/H \rightarrow F$ be the canonical topological isomorphism and let $K: F_1 \rightarrow F_1/H$ be the natural mapping. Since S(N) is bounded in F, there exists a Banach disk B_{β} in F and a bounded subset N_{β} in $F_{B_{\beta}}$ with $J_{\beta}(N_{\beta}) = S(N)$ where $J_{\beta}: F_{B_{\beta}} \rightarrow F$ denotes the canonical embedding. Furthermore, there is a bounded subset M_{β} in $\ell_1(B_{\beta})$ with $K_{\beta}(M_{\beta}) = N_{\beta}$. The set $M: I_{\beta}(M_{\beta})$ is then bounded in $F_1 = \bigoplus_{\alpha} \ell_1(B_{\alpha})$ where $I_{\beta}: \ell_1(B_{\beta}) \rightarrow \bigoplus_{\alpha} \ell_1(B_{\alpha})$ denotes the canonical embedding. Because of

$$\overset{\mathsf{V}}{\mathsf{S}}(\mathsf{K}(\mathsf{M})) = \mathsf{S}(\mathsf{M}) = \mathsf{J}_{\beta} \circ \mathsf{K}_{\beta} (\mathsf{M}_{\beta}) = \overset{\mathsf{V}}{\mathsf{S}}(\mathsf{N})$$

we have K(M) = N. Now we prove

2.4. Proposition: Let F be a locally complete co- \mathcal{L}_1 -space [resp. co- \mathcal{F}_1 -space]. Then for every locally convex space E and every quotient space $G/H \cong F$ having the (BL)-property, every mapping $A \in LB(E,G/H)$ has a lifting $\hat{A} \in LB(E,G''_n)$ [resp. $\hat{A} \in LB(E,G)$].

Proof: Let F be a locally complete co- \mathfrak{L}_1 -space and let A ϵ LB(E,G/H) be given. There exists a U $\epsilon \mathfrak{U}(E)$ and a B $\epsilon \mathfrak{B}(G/H)$ such that A is the compose of continuous linear mappings

$$E \xrightarrow{K_{U}} E_{II} \xrightarrow{A_{UB}} (G/H)_{B} \xrightarrow{J_{B}} G/H$$

By assumption, there is a $D \in \mathcal{B}(G)$ with $C: = K(D) \supset B$ such that the canonical mapping $J_{BC}: (G/H)_B \to (G/H)_C$ is 1-factorable. Thus the compose $I_{C} \circ J_{BC}: (G/H)_B \to (G/H)_C$ " of J_{BC} and the evaluation mapping $I_C: (G/H)_C \to (G/H)_C$ " has a continuous linear factorization

$$(G/H)_B \xrightarrow{T} L_1(\mu) \xrightarrow{S} (G/H)_C''$$

through some $L_1(\mu)$ -space. The linear mapping

$$R: G_D \longrightarrow (G/H)_C, x \longmapsto K(J_D(x))$$

is a surjective metric homomorphism. Now the mapping $S \in L(L_1(\mu), (G/H)_C'')$ has a lifting $\overline{S} \in L(L_1(\mu), G_D'')$ with $S = R'' \circ \overline{S}$ (cf. H.E. Lacey [17], p. 178). This leads to the following commutative diagram

where I: $G/H \rightarrow (G/H)_{n}^{\prime\prime}$ denotes the evaluation mapping. Because of

$$I \circ A = K'' \circ J_D'' \circ \overline{S} \circ T \circ A_{IIB} \circ K_{II}$$

the mapping $\hat{A} \in LB(E,G''_n)$, defined by

$$\hat{\mathbf{A}} := \mathbf{J_D}'' \circ \overline{\mathbf{S}} \circ \mathbf{T} \circ \mathbf{A_{UB}} \circ \mathbf{K_U}$$

is a lifting of A to G".

The lifting theorem for co- \mathcal{F}_1 -spaces F can be proved with the same factorization method using the well-known fact that every continuous linear mapping from a (B)-space into a quotient $X/H \simeq \ell_1$ (I) of a (B)-space X can be lifted to X.

Now we shall show the converse of 2.4 under additional assumptions.

- 2.5. Theorem: Let F be a (B)-space or a bornological reflexive space. The following assertions are equivalent
- (1) F is a co- \mathcal{L}_1 -space.
- (2) Every mapping $A \in LB(F_{\mathfrak{B}}, F_1/H)$ has a lifting $\hat{A} \in LB(F_{\mathfrak{B}}, (F_1)''_n)$.
- (3) For every locally convex space E and for every quotient space $G/H \cong F$ having the (BL)-property, every $A \in LB(E,G/H)$ has a lifting $\hat{A} \in LB(E,G''_n)$.

Proof: The implication $(1) \Rightarrow (3)$ was proved in 2.4 and $(3) \Rightarrow (2)$ follows by 2.3. It remains to show $(2) \Rightarrow (1)$.

Let $\mathcal{B} = \{B_{\alpha}: \alpha \in \Gamma\}$ be the system of all Banach disks in F and let $B \in \mathcal{B}$ be given. Let $P_B: F_{\mathfrak{B}} \to F_B$ and $J_B: F_B \to F$ be the canonical mappings. The compose $A = J_B \circ P_B$ lies in LB($F_{\mathfrak{B}}$, F) and has, by assumption, a lifting $\hat{A} \in LB(F_{\mathfrak{B}}$, $(F_1)_n''$) such that $S'' \circ \hat{A} = I \circ A$ where $S: F_1 \to F$ and $I: F \to F_n''$ denote the canonical mappings. Let M be the unit ball in $F_{\mathfrak{B}}$. Since $\hat{A}(M)$ is bounded in $(F_1)_n'' = \bigoplus_{\alpha \in \Gamma} (\ell_1(B_{\alpha}))''$ there exists a finite set $N \subset \Gamma$ such that the bidual space $F_0'' = \bigoplus_{\alpha \in N} (\ell_1(B_{\alpha}))''$ of $F_0: \bigoplus_{\alpha \in N} \ell_1(B_{\alpha})$ contains $\hat{A}(M)$ as a bounded subset. Thus, $I \circ A$ admits a factorization

$$F_{\mathbf{R}} \xrightarrow{\hat{A}_1} F_0'' \xrightarrow{I_0''} F_1'' \xrightarrow{S''} F_n''$$

where $\hat{A}_1 \in LB(F_{\mathfrak{B}}, F_0'')$ and $I_0 \colon F_0 \to F_1$ denotes the canonical embedding. Let $\hat{A}_0 \in LB(F_B, F_0'')$ be the restriction mapping of \hat{A}_1 to F_B . We obtain the following commutative diagram

The (B)-space F_0'' is as the bidual of $F_0 = \bigoplus_{\alpha \in \mathbb{N}} \ell_1$ (B_{\alpha}) an $L_1(\mu)$ -space, hence the compose $I \circ J_B \colon F_B \to F_n''$ can be factored through an $L_1(\mu)$ -space.

If F is a (B)-space, then the identity Id: $F \rightarrow F$ is 1-factorable, thus F is an \mathfrak{L}_1 -space.

Now let F be a reflexive space. Then the mapping $J_B\colon F_B\to F$ has a continuous linear factorization

$$F_{B} \xrightarrow{R_{1}} L_{1}(\mu) \xrightarrow{R_{2}} F.$$

Furthermore, there exists a C ϵ \mathfrak{B} (E) containing B such that R₂ can be decomposed into

$$L_1(\mu) \xrightarrow{T} F_C \xrightarrow{J_C} F$$

where T \in L(L₁(μ),F_C). Now we have J_C \circ J_{BC} = J_B = J_C \circ T \circ R₁, hence J_{BC} = T \circ R₁, since J_C is injective. It follows that J_{BC} is 1-factorable. This completes the proof.

For co- \mathcal{F}_1 -spaces the following lifting theorem holds

- 2.6. Theorem: Let F be a locally complete bornological space. The following assertions are equivalent
- (1) F is a co- \mathcal{F}_1 -space.
- (2) Every mapping $A \in LB(F_{\mathfrak{B}}, F_1/H)$ has a lifting $\hat{A} \in LB(F_{\mathfrak{B}}, F_1)$.
- (3) For every locally convex space E and for every quotient space $G/H \cong F$ with the (BL)-property, every $A \in LB(E,G/H)$ has a lifting $\hat{A} \in LB(E,G)$.

Proof: In view of 2.3 and 2.4 it remains to prove the implication $(2) \Rightarrow (1)$.

Let $\mathcal{B} = \{B_{\alpha}: \alpha \in \Gamma\}$ be the system of all Banach disks in F and let $B \in \mathcal{B}$ be given. Similar as in the proof of 2.5 one can show that there exists a finite set $N \subset \Gamma$ such that the mapping $J_B \colon F_B \to F$ can be factored through the $\ell_1(I)$ -space $F_o = \bigoplus_{\alpha \in \mathbb{N}} \ell_1(B_{\alpha})$. Now one can find a $C \in \mathcal{B}(F)$ with $B \subset C$ such that $J_{BC} \colon F_B \to F_C$ factors through F_o , hence J_{BC} is discretely 1-factorable. We conclude that F is a co- \mathcal{F}_1 -space. This completes the proof.

If F is a (B)-space such that every bounded linear mapping A from a (B)-space E into a quotient $G/H \simeq F$ of a (B)-space G has a bounded linear lifting \hat{A} : $E \rightarrow G$, then F is isomorphic to $\ell_1(I)$ for some index set I (cf. G. Köthe [14], p. 188). Thus, by 2.6 we get

2.7. Proposition: A (B)-space E is a co- \mathcal{F}_1 -space if and only if E is isomorphic to $\ell_1(I)$ for some index set I.

By a result of K. Floret [7], p. 110, a bounded linear mapping A from a \mathfrak{L}_1 -space E into a quotient G/H of a locally convex space G has a bounded linear lifting $A: E \to G''_n$ if the image A(B) of the unit ball B in E is contained in the closure $\overline{K(C)}$ for some bounded subset C of G where K:G \to G/H denotes the quotient mapping. We mention without proof that this result can be generalized to locally convex π -spaces by using the above factorization method. Let us further remark that liftings of compact linear mappings between locally convex spaces were investigated in R. Hollstein [9] with tensor product methods.

3. LOCALLY CONVEX SPACES WITH THE (WEAK) HOLOMORPHIC LIFTING PROPERTY

Throughout this section all locally convex spaces are assumed to be complex vector spaces.

Let E and F be locally convex spaces. A continuous mapping f: E→F is said

to be holomorphic in E if for each $y' \in F'$ the function $y' \circ f$ is Gâteaux-holomorphic, i.e. for all a,b \in E the function $z \to y'$ (f(a+zb)) is holomorphic in \mathbb{C} . The vector space of all holomorphic mappings from E into F is denoted by H(E,F).

3.1. Definition: A mapping $A \in H(E,F)$ is said to be of locally uniform bounded type if there exist $U \in U(E)$ and $B \in B(F)$ such that for all $x \in E$ there are $\lambda_x > 0$ and $\mu_x > 0$ with

$$f(x + \lambda_x U) \subset \mu_x B$$
.

By H_{lub} (E,F) we denote the linear subspace of H(E,F) consisting of all mappings of locally uniform bounded type. By definition, every mapping $f \in H_{lub}$ (E,F) is locally bounded, i.e. each point $x \in E$ has a neighbourhood whose image under f is bounded.

Now we prove

3.2. Proposition: Let E and F be locally convex spaces. A mapping $f \in H(E,F)$ is of locally uniform bounded type if and only if there exist $U \in U(E)$ and $B \in \mathcal{B}(F)$ such that f can be decomposed into

$$E \xrightarrow{K_U} E_U \xrightarrow{\overline{f}} F_B \xleftarrow{J_B} F$$

where $\overline{f} \in H(E_{IJ}, F_{R})$.

Proof: Let $f \in H_{lub}(E,F)$. There exist $U \in U(E)$ and $B \in \mathcal{B}(F)$ such that for all $x \in E$ there are $\lambda_x > 0$ and $\mu_x > 0$ with $f(x + \lambda_x U) \subset \mu_x B$. If x - y lies in the null space of U, then one has f(x) = f(y), since by the Liouville theorem the bounded entire function $\alpha \to y'$ ($f(x+\alpha(y-x))$) in C is constant for all $y' \in F'$. The mapping $\overline{f} : E_U \to F_B$, defined by $\overline{f}(K_U(x)) = f(x)$ is well-defined and holomorphic with $J_B \circ \overline{f} \circ K_U = f$.

Now let $f \in H(E,F)$ be a holomorphic mapping which can be decomposed into

$$E \xrightarrow{K_U} E_U \xrightarrow{\overline{f}} F_B \xrightarrow{J_B} F$$

where $\overline{f} \in H(E_U, F_B)$. Since \overline{f} is continuous there exist, for each $x \in E$, numbers $\lambda_x > 0$ and $\mu_x > 0$ such that $\overline{f}(K_U(x) + \lambda_x K_U(U)) \subset \mu_x B$. Thus, we have $f(x + \lambda_x U) \subset \mu_x B$.

From 3.2 it follows immediately that a mapping f: E is holomorphic of

locally uniform bounded type if and only if there exist normed spaces $E_{\rm o}$ and $F_{\rm o}$ such that f admits a factorization

$$E \xrightarrow{A} E_o \xrightarrow{\overline{f}} F_o \xrightarrow{B} F$$

where \overline{f} is holomorphic and A,B are continuous and linear.

For normed spaces E and F a mapping $f \in H(E,F)$ is said to be of bounded type if it is bounded on all bounded subsets of E. Following, J.F. Colombeau, J. Mujica [5] a holomorphic mapping f between locally convex spaces E and F is said to be of uniform bounded type if there exist $U \in \mathfrak{U}(E)$ and $B \in \mathfrak{B}(F)$ such that f can be decomposed into

$$E \xrightarrow{K_U} E_U \xrightarrow{\overline{f}} F_B \xleftarrow{J_B} F$$

where \overline{f} is holomorphic of bounded type. The vector space of all holomorphic mappings $f: E \rightarrow F$ of uniform bounded type is denoted by $H_{n,h}(E,F)$.

For all locally convex spaces E and F the following inclusions hold

$$H_{llb}(E,F) \subset H_{llb}(E,F) \subset H(E,F)$$
.

If E and F are normed spaces, then one has

$$H(E,F) = H_{lub}(E,F)$$
,

but even \mathbb{C} -valued holomorphic mappings on locally convex spaces are generally not of locally uniform bounded type. For example, let E be the (FN)-space H(\mathbb{C}) of all entire functions on \mathbb{C} equipped with the topology of uniform convergence on the compact subsets of \mathbb{C} . The mapping $f: H(\mathbb{C}) \to \mathbb{C}$, $\varphi \to \varphi(\varphi(0))$ is holomorphic but is not of locally uniform bounded type (cf. J.F. Colombeau [4], 2.7.2).

In general, $H_{ub}(E,F)$ is a proper subspace of $H_{lub}(E,F)$. Consider e.g. a holomorphic mapping between (B)-spaces E and F which is not of bounded type.

If E is a (DFM)-space and F is a metrizable locally convex space, then by a result of J.F. Colombeau, J. Mujica [5] one has

$$H_{ub}(E,F) = H_{lub}(E,F) = H(E,F).$$

Let us remark that R. Meise and D. Vogt [19] have investigated necessary and sufficient conditions for (FN)-spaces E satisfying the relation $H(E,\mathbb{C}) = H_{u,l}(E,\mathbb{C})$.

3.3. Definition: A locally convex space F is said to have the holomorphic lifting

property [resp. weak holomorphic lifting property] if for every locally convex space E and for every quotient $G/H \simeq F$ having the (BL)-property, every mapping A ϵ $H_{lub}(\dot{E},G/H)$ has a holomorphic lifting \dot{A} ϵ $H_{lub}(E,G)$ [resp. \dot{A} ϵ $H_{lub}(E,G''_n)$].

Now we prove

3.4. Proposition: The following assertions hold

- (1) Every locally complete co- \mathfrak{L}_1 -space has the weak holomorphic lifting property.
- (2) Every locally complete co- \mathcal{F}_1 -space has the holomorphic lifting property.

Proof: (1) Let F be a locally complete co- \mathcal{L}_1 -space, let $G/H \cong F$ be a quotient space with the (BL)-property, let E be any locally convex space and let $f \in H_{1ub}(E,G/H)$. There exist $U \in U(E)$ and $B \in \mathcal{B}(G/H)$ such that f admits a factorization

$$E \xrightarrow{K_U} E_U \xrightarrow{\overline{f}} (G/H)_B \xrightarrow{c J_B} G/H$$

where $\overline{f} \in H(E_U, (G/H)_B)$. Applying 2.4, $J_B \in LB((G/H)_B, G/H)$ has a lifting $\hat{J}_B \in LB((G/H)_B G_n'')$ with $I \circ J_B = K'' \circ \hat{J}_B$ where $I: G/H \to (G/H)''$ and $K: G \to G/H$ denote the canonical mappings. Thus we have

$$I \circ f = I \circ J_B \circ \overline{f} \circ K_U = K'' \circ \mathring{J}_B \circ \overline{f} \circ K_U ,$$

hence $\hat{f}:=\hat{J}_B\circ\overline{f}\circ K_U$ ϵ $H_{lub}(E,G_n'')$ is a lifting of f to G_n'' . This proves that F has the weak holomorphic lifting property.

(2) Using 2.4, the assertion (2) can be shown in a similar way.

Now we shall prove the converse of 3.4(1) under the assumptions of 2.5.

- 3.5. Theorem: Let F be a (B)-space or a bornological reflexive space. The following assertions are equivalent
- (1) F is a co- Ω_1 -space.
- (2) F has the weak holomorphic lifting property.
- (3) Each mapping $f \in H_{lub}(F_{\mathfrak{B}}, F_1/H)$ has a holomorphic lifting $\hat{f} \in H(F_{\mathfrak{B}}, (F_1)''_n)$.

Proof: It remains to prove the implication (3) \Rightarrow (1). By 2.5 it suffices to show that each linear mapping $A \in LB(F_{\mathfrak{B}}, F_1/H)$ has a linear lifting $A \in LB(F_{\mathfrak{B}}, F_1/H)$.

Let $A \in LB(F_{\mathfrak{B}}, F_1/H)$ be given. By assumption, there exists a holomorphic lifting $\hat{A} \in H(F_{\mathfrak{B}}, (F_1)''_n)$ with $K'' \circ \hat{A} = I \circ A$ where $K: F_1 \to F_1/H$ and $I: F_1/H \to (F_1/H)''_n$ denote the canonical mappings. For each $x \in F_{\mathfrak{B}}$ there exists a power series $\sum_{m=0}^{\infty} \frac{\hat{d}^m \hat{A}(x)}{m!}$ (y-x) wich converges uniformly to $\hat{A}(y)$ in a neighbourhood of x where, for each $m \in \mathbb{N}, \frac{\hat{d}^m \hat{A}(x)}{m!}$ is a continuous m-homogeneous polynomial from $F_{\mathfrak{B}}$ into $(F_1)''_n$ (cf. S. Dineen [6], p. 55). Setting

neous polynomial from $F_{\mathfrak{B}}$ into $(F_1)_n''$ (cf. S. Dineen [6], p. 55). Setting $\check{A}:=\hat{d}^1\hat{A}(0)$ ϵ LB $(F_{\mathfrak{B}},(F_1)_n'')$, $\check{A}(x)$ is the directional derivative of \check{A} at 0 in direction to x. Thus, for each $x \in F_{\mathfrak{B}}$ one has

$$K'' \circ \mathring{A}(x) = K''(\lim_{\lambda \to 0} (1/\lambda) \, \mathring{A}(\lambda x)) = I \circ A(x)$$

hence $\overset{\vee}{A} \in LB(F_{\mathfrak{B}}, (F_1)_n'')$ is the required linear lifting of A. This completes the proof.

Up to minor modifications, the proof of the following theorem is the same as in 3.5

- 3.6. Theorem: Let F be a locally complete bornological space. The following assertions are equivalent
- F is a co- \(\mathcal{F}_1\)-space.
- (2) F has the holomorphic lifting property.
- (3) Each mapping $f \in H_{lub}(F_{\mathfrak{B}}, F_1/H)$ has a holomorphic lifting $f \in H(F_{\mathfrak{B}}, F_1)$.

By the above mentioned result of J.F. Colombeau and J. Mujica [5] each holomorphic mapping from a (DFM)-space into a metrizable locally convex space is holomorphic of uniform bounded type. From 3.4 it follows

3.7. Corollary: Let E be a (DFM)-space and let F be a co- \mathcal{F}_1 -Fréchet space [resp. co- \mathcal{L}_1 -Fréchet space]. Then for each quotient space $G/H \simeq F$ having the (BL)-property, every mapping $f \in H(E,G/H)$ has a lifting $\hat{f} \in H(E,G)$ [resp. $\hat{f} \in H(E,G''_n)$].

It is well-known that every Fréchet-valued holomorphic mapping on a closed subspace of a (DFN)-space G has a holomorphic extension to G (cf. J.F. Colombeau, J. Mujica [5], 7.4). From 3.7 we obtain a dual version of this holomorphic extension theorem

3.8. Corollary: Let E be a (DFM)-space and let F be an (FN)-space. Then for every quotient $G/H \simeq F$ with the (BL)-property every holomorphic mapping $f: E \rightarrow G/H$ has a holomorphic lifting $f: E \rightarrow G$.

From 3.8 it follows that every holomorphic mapping f from a (DFM)-space E into a quotient G/H of an (FN)-space G has a holomorphic lifting \hat{f} : E-G since the quotient of an (FN)-space possesses always the (BL)-property.

Let us remark that a holomorphic mapping f from an (FN)-space E into a quotient G/H of an (FN)-space G need not be holomorphically liftable to G. For example, let G be the (FN)-space H(\mathbb{C}). G has a continuous norm, hence there exists a closed subspace H of G which is not complemented in G (cf. G. Köthe [15], § 31.4(1)). We assume that the identity Id: $G/H \rightarrow G/H$ has a holomorphic lifting Id. $G/H \rightarrow G$. The argument used in the proof of 3.5 shows that Id: $G/H \rightarrow G/H$ has a continuous linear lifting Id: $G/H \rightarrow G$. If K: $G \rightarrow G/H$ denotes the canonical mapping, then the mapping $P:=Id \circ K$ is a continuous projection with Ker P=H, hence we have a contradiction.

For (B)-spaces, we get by 2.7 and 3.6

- 3.9. Proposition: Let F be a (B)-space. The following assertions are equivalent
- (1) F is isomorphic to $\ell_1(I)$ for some index set I.
- (2) F has the holomorphic lifting property.
- (3) For every (B)-space E and every quotient $G/H \simeq F$, every holomorphic mapping $f: E \rightarrow G/H$ has a holomorphic lifting $\hat{f}: E \rightarrow G$.

It is well-known that the \mathfrak{L}_1 -spaces are precisely those (B)-spaces F which have the compact lifting property, i.e. for every (B)-space E and every quotient $G/H \simeq F$, every compact linear mapping A: $E \rightarrow G/H$ has a compact linear lifting $A: E \rightarrow G$. By 3.5 we obtain the following characterization of \mathfrak{L}_1 -spaces by means of holomorphic liftings

- 3.10. Proposition: Let F be a (B)-space. The following assertions are equivalent
- (1) F is an \mathcal{L}_1 -space.
- (2) F has the weak holomorphic lifting property.
- (3) For every (B)-space E and every quotient space $G/H \simeq F$ of a (B)-space G, every holomorphic mapping $f: E \rightarrow G/H$ has a holomorphic lifting $f: E \rightarrow G''$.

For (B)-spaces E and F, $H_K(E,F)$ denotes the vector space of all holomorphic mappings $\underline{f} \colon E \to F$ such that for each $x \in E$ there is a neighbourhood V of x such that $\overline{f(V)}$ is compact in F. Let us remark that R.M. Aron [1] has proved with a tensor product method that for each quotient space F = G/H for which F' is complemented in G' and F has the approximation property, every $f \in H_K(E,G/H)$ has a lifting $\hat{f} \in H_K(E,G)$.

By 3.4 every co-echelon space $\mathcal{K}_1(V)$ has the holomorphic lifting property and by 1.4 and 3.4 every echelon space $\lambda_1(A)$ possesses the weak holomorphic lifting property. For (co-) echelon spaces of order 1 , we get

- 3.11. Proposition: Let E be a co-echelon space $\mathcal{K}_p(V)$ or an echelon space $\lambda_p(A)$ of order 1 . The following assertions are equivalent
- (1) E is nuclear.
- (2) E has the weak holomorphic lifting property.
- (3) E has the holomorphic lifting property.

Proof: If $E = \mathcal{K}_p(V)$, $1 , then the equivalence <math>(1) \Leftrightarrow (2) \Leftrightarrow (3)$ follows from 1.3 and 3.6.

Now let E be an echelon space $\lambda_p(A)$ of order $1 . It remains to show the implication (2) <math>\Rightarrow$ (1).

Suppose that E has the weak holomorphic lifting property. By 3.5 E is a co- \mathfrak{C}_1 -space. Let us show that the strong dual E_b' is an ϵ -space, i.e. for each $U \in \mathfrak{U}(E_b')$ there is a $V \in \mathfrak{U}(E_b')$ contained in U such that the canonical mapping $K_{UV} : (E_b')_V \longrightarrow (E_b')_U$ is ∞ -factorable. Let $B \in \mathfrak{B}(E)$ be given. There exists a $C \in \mathfrak{B}(E)$ containing B such that the canonical mapping $J_{BC} : E_B \to E_C$ is 1-factorable. It follows that the adjoint $J_{BC} : E_C' \to E_B'$ has a continuous linear factorization through an $L_\infty(\mu)$ -space. Since E is reflexive, one has $E_B' = (E_B' \circ)''$ and $E_C' = (E_C' \circ)''$ isometrically, hence the double adjoint $K_B \circ_C \circ'' : (E_C' \circ)'' \to (E_B' \circ)''$ of the canonical mapping $K_B \circ_C \circ : E_C' \circ \to E_B' \circ$ factors through $L_\infty(\mu)$. Thus, $K_B \circ_C \circ : \infty$ -factorable and we conclude that $E_b' = \mathcal{K}_q(V)$ is an ϵ -space where 1/q + 1/p = 1 and V is the associated matrix of A. By B. Hollstein [11], lemma 3, every co-echelon space $\mathcal{K}_q(V)$ of order $1 < q < \infty$ which is an ϵ -space must be nuclear. It follows that $\lambda_p(A)$ is nuclear. This completes the proof.

REFERENCES

- [1] Aron, R.M.: Extension and lifting theorems for analytic mappings, p. 257-267 in "Functional Analysis; Surveys and Recent Results", K.-D. Bierstedt, B. Fuchssteiner (Ed.), North-Holland Math. Studies, 38 (1980).
- [2] Bierstedt, K.-D., Meise, R., Summers, W.H.: Köthe sets and Köthe sequence spaces, p. 27-91 in "Functional Analysis, Holomorphy and Approximation Theory", J.A. Barroso (Ed.), North-Holland Math. Studies 71 (1982).
- [3] Boland, P.J.: Holomorphic functions on nuclear spaces, Transact. AMS 209, 275-281 (1975).
- [4] Colombeau, J.F.: Differential calculus and holomorphy, North-Holland Math. Studies 64 (1982).
- [5] Colombeau, J.F., Mujica, J.: Holomorphic and differentiable mappings of uniform bounded type, p. 179-200 in "Functional Analysis, Holomorphy and Approximation Theory", J.A. Barroso (Ed.), North-Holland Math. Studies 71 (1982).
- [6] Dineen, S.: Complex analysis in locally convex spaces, North-Holland Math. Studies 57 (1981).
- [7] Floret, K.: \mathfrak{L}_1 -Räume und Liftings von Operatoren nach Quotienten lokalkonvexer Räume, Math. Z. 134, 107-117 (1973).
- [8] Gordon, Y., Lewis, D.R., Retherford, J.R.: Banach ideals of operators with applications, J. Functional Analysis 14, 85-129 (1973).
- [9] Hollstein, R.: Extension and lifting of continuous linear mappings in locally convex spaces, Math. Nachr. 108, 275-297 (1982).
- [10] Hollstein, R.: Locally convex & tensor products and & spaces, Math. Nachr. 120, 73-90 (1985).
- [11] Hollstein, R.: A Hahn-Banach theorem for holomorphic mappings on locally convex spaces, Math. Z. 188, 349-357 (1985).
- [12] Jarchow, H.: Locally convex spaces, Stuttgart, Teubner (1981).
- [13] Junek, H.: Locally convex spaces and operator ideals, Leipzig, Teubner (1983).
- [14] Köthe, G.: Hebbare localkonvexe Raume, Math. Ann. 165, 181-195 (1966).
- [15] Köthe, G.: Topological vector spaces I, Berlin-Heidelberg-New York, Springer (1969).
- [16] Köthe, G.: Topological vector spaces II, Berlin-Heidelberg-New York, Springer (1979).
- [17] Lacey, H.E.: The isometric theory of classical Banach spaces, Berlin-Heidelberg-New York, Springer (1974).
- [18] Lindenstrauss, J., Pełczyński, A.: Absolutely summing operators in \$\mathcal{L}\$ p-spaces and their applications, Studia Math. 29, 275-326 (1968).

- [19] Meise, R., Vogt, D.: Holomorphic functions of uniformly bounded type on nuclear Fréchet spaces, preprint.
- [20] Merzon, A.E.: On the covering of bounded sets in locally convex spaces, J. Funct. Anal. Appl. 6, 335-336 (1972).
- [21] Pietsch, A.: Operator ideals, Berlin, Deutscher Verl. d. Wiss. (1978).

R. Hollstein Universität-GH-Paderborn Fachbereich 17 Warburger Str. 100 D-4790 Paderborn Federal Republic of Germany

