A CLASS OF OPERATORS FROM A BANACH LATTICE INTO A BANACH SPACE

by

OSCAR BLASCO

ABSTRACT:

In this paper we study a class of operators from a Banach lattice X into a Banach space B. These operators map positive sequences in weak- 1^p -spaces with values in X into sequences in 1^q -spaces with values in B. We obtain some different characterizations of them an we consider, in particular, the case $X = 1^r$.

The present paper is devoted to the study of certain class of operators from a Banach lattice X into a Banach space B. These operators map positive sequences in weak-1^p-spaces with values in X into sequences in 1^q-spaces with values in B. They are near the (p, q)-absolutely summing operators $\Pi_{pq}(X,B)$ [4] and also the operators of type $\leq (p, q)$ defined by Maurey [7].

We shall obtain different characterizations of such operators and we shall study them for sequence Banach lattices. Finally we shall relate this operators to the Orlicz property on a Banach lattice.

Throughout this paper X will denote a Banach lattice and B a Banach space. Given x_1, x_2, \ldots, x_n in X and $1 \le p < \infty$ we shall use the following notations

(1)
$$w_p(x_i) = \sup_{\|\xi\|_{X^*} \le 1} (\sum_{1=i}^n |<\xi, x_i>|^p)^{1/p}$$

(2)
$$w_p^+(x_i) = \sup_{||\xi||_{X^*} \le 1, \xi \ge 0} (\sum_{i=1}^n <\xi, |x_i| >^p)^{1/p}$$

(3)
$$1^p(B) = \{ (x_n) \subset B : (\sum_{n=1}^{\infty} ||x_n||^p)^{1/p} < +\infty \}$$

(4)
$$1^p[B] = \{(x_n) \subset B : w_p(x_n) < +\infty\}$$

(5)
$$1_{+}^{p}[X] = \{(x_{n}) \subset X : w_{p}^{+}(x_{n}) < +\infty\}$$

All this terminology enables us to introduce the following.

DEFINITION 1. Let $1 \le p,q < \infty$. An operator $T:X \to B$ is said to be positive (p,q)-summing if there exists a constant C > 0 such that for every $x_1, x_2, \ldots, x_n \ge 0$ in X we have

(6)
$$\left(\sum_{i=1}^{n} ||Tx_{i}||_{B}^{p}\right)^{1/p} \leq C w_{q}(x_{i})$$

For q ,

(6')
$$\sup_{1 \leqslant i \leqslant n} ||Tx_i||_{B} \leqslant C w_q(x_i)$$

We shall denote by $\Lambda_{pq}(X,B)$ (or $\Lambda_p(X,B)$ if p=q) the space of such operators. This becames a Banach space with the norm $\|\cdot\|_{\Lambda_{pq}}$ given by the infimum of the constants verifying (6) or (6').

Observe that
$$\Lambda_{\infty,q}(X,B) = L(X,B)$$
 for all $1 \le q < \infty$.

The positive (1,1)-summing operator are already known. They are called order summing or cone absolutely summing [10].

PROPOSITION 1. Let $1 \le p,q \le \infty$.

- (a) If p < q then $\Lambda_{pq}(X,B) = \{0\}$.
- (b) If $q \ge r$ then $\Lambda_{pq}(X,B) \subseteq \Lambda_{pr}(X,B)$.

(c) If
$$p \le r$$
 and $\frac{1}{p} + \frac{1}{s} = \frac{1}{q} + \frac{1}{r}$ then

$$\Lambda_{pq}(X,B) \subseteq \Lambda_{rs}(X,B) \text{ (In particular } \Lambda_p(X,B) \subseteq \Lambda_r(X,B) \text{ if } p \leqslant r).$$

(d) If
$$X_2 \xrightarrow{S} X_1 \xrightarrow{T} B_1 \xrightarrow{R} B_2$$
, $S \geqslant 0$ and $T \in \Lambda_{pq}(X_1,B)$ then , $T \cdot S \in \Lambda_{pq}(X_2,B_1)$ and $R \cdot T \in \Lambda_{pq}(X_1,B_2)$.

(e) If
$$X_1 \subseteq X_2$$
 (for $x \in X_1$, $\|x\|_{X_2} \le \|x\|_{X_1}$) and $\overline{X}_1 = X_2$ (X_1 dense in X_2) then $\Lambda_{pq}(X_2,B) \subseteq \Lambda_{pq}(X_1,B)$.

Proof.

- (a) It is sufficient to take $x_n = n^{-1/p}x$ for some positive x in X to get a contradiction.
- (b) It is clear since $1^r[X] \subset 1^q[X]$ for $q \ge r$.
- (c) The argument used by Kwapien [4] can be reproduced in our case to prove the statement.
- (d) It is straightforward to show R. T ϵ Λ_{pq} (X_1, B_2) . To see that T. S ϵ Λ_{pq} (X_2, B_1) let us notice that if $x_1, x_2, \ldots, x_n \ge 0$ and $S \ge 0$ then

$$w_{\alpha}(Sx_i) =$$

$$= \sup_{\|\xi\|_{X_1^*} \le 1} (\sum_{i=1}^n |<\xi, Sx_i>|^q)^{1/q} =$$

$$||S^*|| \sup_{|X_1^*| \le 1} (\sum_{i=1}^n |\langle \frac{S^*\xi}{||S^*||}, x_i > |^q)^{1/q} \le ||S|| \cdot w_q(x_i).$$

(e) It is obvious since if $\xi \in X_2^*$ and $\|\xi\|_{X_2^*} \le 1$ then $\xi \in X_1^*$ and $\|\xi\|_{X_1^*} \le 1$.

PROPOSITION 2. Let $1 \le q \le \infty$. The following statements are equivalent

- (a) T e Λ_{pq} (X,B).
- (b) There exists a constant C > 0 such that for every $x_1, x_2, \dots, x_n \ge 0$ in X we have

$$(7) \quad \left(\sum_{i=1}^{n} || Tx_{i} ||_{B}^{p}\right)^{1/p} \leq C \quad \sup_{\Sigma \alpha_{i}^{q} = 1} || \sum_{i=1}^{n} \alpha_{i} x_{i} ||_{X} (1 < q \leq \infty)$$

$$(7') \quad \left(\sum_{i=1}^{n} \|Tx_{i}\|_{B}^{p}\right)^{1/p} \leq C \|\sum_{i=1}^{n} x_{i}\|_{X} \qquad q=1$$

- (c) T maps positive sequences (x_n) in $\ell^q[X]$ in sequences (Tx_n) in $\ell^p(B)$.
- (d) $\hat{T}: \ell_+^q[X] \to \ell^q(B)$, defined by $T(x_n) = (Tx_n)$, is continuous.

Proof. We shall show the equivalence of each statement with (a).

(a) $\leq = >$ (b) It follows from the following fact: For $1 < q \le \infty$, $\frac{1}{q} + \frac{1}{q'} = 1$

$$w_{q}(x_{i}) = \sup_{\|\xi\|_{X^{*}} \leq 1} (\sum_{i=1}^{n} |<\xi, x_{i}>|^{q})^{1/q} =$$

$$= \sup_{\substack{i \in \xi | i_{X^*} \le 1 \\ \Sigma \alpha_i^{q'} = 1}} \sup_{\substack{i = 1 \\ \Sigma \alpha_i^{q'} = 1}} |\sum_{i = 1}^{n} \langle \xi, \alpha_i x_i \rangle | =$$

$$= \sup_{\substack{\Sigma \alpha_i^{q'} = 1 \\ \Sigma \alpha_i^{q'} = 1}} \sup_{\substack{i \in \Sigma \\ i = 1}} |\langle \xi, \sum_{i = 1}^{n} \alpha_i x_i \rangle | =$$

$$= \sup_{\substack{\Sigma \alpha_i^{q'} = 1 \\ \Sigma \alpha_i^{q'} = 1}} |\sum_{i = 1}^{n} \alpha_i x_i ||_{X}$$

For q = 1 and $x_1, x_2, ..., x_n \ge 0$ then $w_1(x_i) = ||\sum x_i||_X([10])$.

(a) $\langle = \Rightarrow \rangle$ (c). The direct implication is obvious. To see the converse let us suppose for every C these exist $x_1, x_2, \ldots, x_{N(C)} \ge 0$ such that

$$(\sum_{i=1}^{N(C)} ||Tx_i||^p)^{1/p} \le C w_q(x_i)$$

Let us take $C=n.2^n$, then there will be $x_1^n, x_2^n, \ldots, x_{m_n}^n \geq 0$ verifying $w_q(x_i^n) \leq 1/2^n$ and $(\sum\limits_{i=1}^{m_n} \|Tx_i^n\|^p)^{1/p} \geq n$. By considering the sequence $x_1^1, x_2^1, \ldots, x_{m_1}^1, x_1^2, \ldots, x_{m_2}^2, \ldots$ we have that this positive sequence belongs to $1^q[X]$ and its image does belong to $1^p(B)$.

(a) $\leq = >$ (d). It follows from the next simple fact:

For
$$(x_n) \ge 0$$
, $w_q(x_n) = w_q^+(x_n)$.

Obviously d) implies a). Now let us suppose $T \in \Lambda_{pq}(X,B)$ and $(x_n) \in 1_+^p [X]$.

$$(\sum_{i=1}^{n} ||Tx_{i}||^{p})^{1/p} \leq (\sum_{i=1}^{n} ||Tx_{i}^{+}||^{p})^{1/p} + (\sum_{i=1}^{n} ||Tx_{i}^{-}||^{p})^{1/p} =$$

$$\leq C.w_q(x_i^+) + C.w_q(x_i^-) \leq 2Cw_q^+(x_i).$$

Therefore
$$\|\hat{T}(x_n)\|_{1^p(B)} \le 2Cw_q^+(x_n)$$
. #

Remark. By condition (b) we notice that a Banach lattice satisfy a lower p-estimate [6] if and only if the identity I belongs to $\Lambda_{p,1}(X,X)$.

This is the first connection of these spaces with some classical spaces. Another operators very related to these are the (p,q)-absolutely summing operators (cf. [4], [3]), as easily follows from both definitions. Let us recall another concept quite similar to these above. The (p,q)-concave operators, called in [7] operators of "type mixte" $\leq (p,q)$.

An operator $T \in L(X,B)$ is said to be (p,q)-concave if there exists a constant C such that for every x_1, x_2, \ldots, x_n in X we have

(8)
$$\left(\sum_{i=1}^{n} \| Tx_{i} \|_{B}^{p} \right)^{1/p} \le C \| \left(\sum_{i=1}^{n} |x_{i}|^{q} \right)^{1/q} \|_{X}$$

where
$$(\sum\limits_{i=1}^{n}|x_{i}|^{q})^{1/q}$$
 is the element in X given by $\sup\limits_{\sum\alpha_{i}^{q}}\sum\limits_{i=1}^{n}\alpha_{i}x_{i}$.

We shall denote by $C_{pq}(X,B)$ the espace of (p,q)-concave operators endowed with the usual norm $\|\cdot\|_{C_{pq}}$ given by the infimum of the constants verifying (8).

With all this terminology we have

PROPOSITION 3. For $1 \le q \le p \le \infty$

$$\Pi_{pq}(X,B) \subseteq \Lambda_{pq}(X,B) \subseteq C_{pq}(X,B).$$

Proof. The first inclusion is obvious and the second one is a simple consequence of Prop. 2 (d) and the fact that $\|(\sum_{i=1}^{n}|x_{i}|^{q})^{1/q}\| \ge w_{q}^{+}(x_{i})$ as it can be seen by using the homogeneus calculus on lattices [6].

In general the inclusions are strict as it will be shown later, but for q = 1 we have the following.

PROPOSITION 4.

- (a) $\Lambda_{p1}(X,B) = C_{p1}(X,B)$
- (b) $\Lambda_{p1}(X,B) \subseteq C_{qq}(X,B)$ for all q > p.

Proof. It is inmediate since for $x_1, x_2, \dots, x_n \ge 0$ then

$$\| \sum_{i=1}^{n} |x_i| \|_{X} = \| \sum_{i=1}^{n} x_i \|_{X} = w_1(x_i).$$

Now a result of Maurey [7] shows $C_{p1}(X,B) \subset C_{qq}(X,B)$ if q > p and then (b) follows from (a).

There is a way of using operators in Λ_{pq} to deduce semothing about Π_{pq} and $\,C_{pq}$ as the following result shows.

PROPOSITION 5.

- (a) Te $\Pi_{p1}(X,B)$ if and only if for every operator S in $L(c_o,X)$, T. $S \in \Lambda_{p1}(c_o,B)$ and if T. $S \parallel_{\Lambda_{p1}} \leq C$. If $S \parallel$.
- (b) T e $\Lambda_{p1}(X,B)$ if and only if for every positive operator S in $L(c_0,X)$, $T \cdot S \in \Lambda_{p1}(c_0,B)$ and $||T \cdot S||_{\Lambda_{p1}} \leq C \cdot ||S||$.
- (c) T e $C_{pq}(X,B)$ if and only if for every positive operator S in $L(C(\Omega),X)$ for a compact space Ω , T . S $\in \Lambda_{pq}(C(\Omega),B)$ and $||T . S||_{\Lambda_{pq}} \leq C$. ||S||.

Proof. Parts (a) and (b) can be verified in the same way. We only show part (a). If $T \in \Pi_{p1}(X,B)$ and $S \in L(c_o,X)$ then $T \cdot S \in \Pi_{p1}(c_o,B)$ and of course $T \cdot S \in \Lambda_{p1}(c_o,B)$ and $||T \cdot S||_{\Lambda_{p1}} \leq ||T||_{\Lambda_{p1}}$. ||S||.

To see the converse, let us take x_1, x_2, \ldots, x_n in X and let us consider

$$S:c_0 \longrightarrow X$$
 defined by $S(\xi_n) = \sum_{i=1}^n \xi_i \cdot x_i$.

Obviously
$$\|S\| \le \sup_{\|\xi\|_{X^*} \le 1} \sum_{i=1}^n |<\xi, x_i>|$$
.

Now denoting by e_i the basis in c_o , since $e_i \ge 0$ prop 3 (b) implies that

$$\left(\sum_{i=1}^{n} \|Tx_{i}\|^{p}\right)^{1/p} = \left(\sum_{i=1}^{n} \|T.Se_{i}\|_{B}^{p}\right)^{1/p} \leqslant$$

$$\leqslant C \parallel S \parallel . \parallel \overset{n}{\underset{i \ = \ 1}{\Sigma}} e_i \parallel_{c_o} \leqslant C \ . \ \sup_{\parallel \xi \parallel_{X^*} \leqslant 1} \ \overset{n}{\underset{i \ = \ 1}{\Sigma}} \ | < \xi, x_i > |$$

The demostration of (c) can be done with a slight modification of the argument in page 56, [6].

A study of positive p-summing operators $\Lambda_p(X,B)$ when X is a L_p -space was done by the author in [1]. Here we shall deal with 1_p -spaces.

PROPOSITION 6. Let $1 \le q \le p \le \infty$.

(a)
$$\Lambda_{pq}(\ell^1,B) = L(\ell^1,B)$$
.

(b)
$$\Lambda_{pq}(c_0,B) = \Pi_{pq}(c_0,B) = C_{pq}(c_0,B)$$
.

Proof.

(a) Given T in $L(\ell^1, B)$ and $x_1, x_2, \dots, x_n \ge 0$ in l^1 we have

$$\sum_{i=1}^{n} ||Tx_{i}|| \leq ||T|| \cdot \sum_{i=1}^{n} ||x_{i}||_{l^{1}} = ||T|| \cdot ||\sum_{i=1}^{n} x_{i}||_{l^{1}}$$

So Λ_1 $(l^1,B) = L(l^1,B)$ and therefore the same for $1 \le q .$ (b) It is a simple consequence of the following fact: $For <math>x_1, x_2, x_3, \ldots, x_n \in c_0$ we have

$$\| \left(\sum_{i=1}^{n} |x_{i}|^{q} \right)^{1/q} \|_{\infty} = \sup_{k} \left(\sum_{i=1}^{n} |x_{ik}|^{q} \right)^{1/q} =$$

$$= \sup_{k} \sup_{\Sigma \alpha_{i}^{q'} = 1} |\sum_{i=1}^{n} x_{ik} \alpha_{i}| =$$

$$= \sup_{\Sigma \alpha_{i}^{q'} = 1} |\sum_{i=1}^{n} x_{i} \alpha_{i}||_{\infty} =$$

$$= \sup_{\|\xi\|_{1^{1}} \leq 1} (\sum_{i=1}^{n} |\langle \xi, x_{i} \rangle|^{q})^{1/q}$$

The last inequality is obtained by duality $((c_0)^* = 1^1)$ and by interchanging the supremums.

Remark. Kwapien in [4] showed that $\Pi_{r,1}(l^1,l^p) \neq L(l^1,l^p)$ for r < r(p) being $\frac{1}{r(p)} = 1 - |\frac{1}{p} - \frac{1}{2}|$.

So we notice that in general the spaces $\Lambda_{pq}(X,\!B)$ are larger than $\Pi_{pq}(X,\!B).$

PROPOSITION 7. Let
$$1 and $\frac{1}{p} + \frac{1}{p'} = 1$$$

$$\Lambda_p(\ell^{p'},B) = \Lambda_1(\ell^{p'},B) = \ell^p(B).$$

Proof. We shall prove that

$$l^{p}(B) \subseteq \Lambda_{1}(l^{p}',B) \subseteq \Lambda_{n}(l^{p}',B) \subseteq l^{p}(B).$$

Given a sequence (x_n) belonging to $l^p(B)$, we consider the operator $T:l^{p'}\longrightarrow B$ defined by $T(\xi_n)=\sum\limits_{n\in N}\xi_nx_n$. Let us take $\xi_1,\xi_2,\ldots,\xi_m\geqslant 0$ in $l^{p'}$ then

$$\sum_{i=1}^{m} \|T(\xi_i)\| \leqslant \sum_{i=1}^{m} \sum_{n \in \mathbb{N}} |\xi_{in}| \|x_n\| =$$

$$= \sum_{n \in \mathbb{N}} \left(\sum_{i=1}^{m} \xi_{in} \right) ||x_{n}|| \leq \left(\sum_{n \in \mathbb{N}} ||x_{n}||^{p} \right)^{1/p} \cdot ||\sum_{i=1}^{n} \xi_{i}||_{1^{p'}}$$

Therefore T belongs to $\Lambda_1(1^p',B)$ and $||T||_{\Lambda_1} \leq (\Sigma ||x_n||^p)^{1/p}$. Given now an operator T in $\Lambda_p(1^{p'},B)$ we consider the sequence $T(e_n) = x_n$ being e_n the canonic basis in $1^{p'}$. Let us prove that $(x_n) \in 1^p(B)$

$$\begin{split} &(\Sigma \parallel \mathbf{x}_n \parallel^p)^{1/p} = (\Sigma \parallel \mathbf{T}(\mathbf{e}_n) \parallel^p)^{1/p} \leqslant \\ \leqslant & \|\mathbf{T}\|_{\Lambda_p} \sup_{\|\xi\|_{p} \leqslant 1} (\Sigma \mid <\xi, \mathbf{e}_n > \mid^p)^{1/p} \leqslant \|\mathbf{T}\|_{\Lambda_p} \end{split}$$

COROLLARY 1. For $1 \le p,r \le 2$ $\Lambda_r(\ell^p,B) = \Lambda_1(\ell^p,B)$.

Denoting by σ_2 the Hilbert-Schmidt operators then we get the following

COROLLARY 2.
$$\Lambda_1(\ell^2, \ell^2) = \sigma_2$$
.

Proof. It is obvious since $\Lambda_2(l^2, l^2) = \sigma_2$ as it can be shown easily.

Remark. For $1 \le p \le 2$ $\Lambda_p(l^p, B) = l^{p'}(B)$. For p-concave operators we have

(9)
$$C_p(l^p,B) = L(l^p,B) = l^{p'}[B]$$

Indeed, for T in $L(l^p,B)$ and ξ_1 , ξ_2 , . . . , ξ_n ϵ l^p we have

$$\left(\sum_{i=1}^{n} \|T\xi_{i}\|^{p}\right)^{1/p} \leq \|T\|\left(\sum_{i=1}^{n} \|\xi_{i}\|_{l^{p}}^{p}\right)^{1/p} =$$

$$= (\sum_{i=1}^{\infty} \sum_{m} |\xi_{i,m}|^{p})^{1/p} = \|(\sum_{i=1}^{n} |\xi_{i}|^{p})^{1/p}\|_{l^{p}}$$

From this it follows that, in general, $\Lambda_p(X,B)$ is smaller than $C_p(X,B)$.

In [1] we found a relationship between the Radon-Nikodym property on B and the positive p-summing operators. Here we shall deal with the Orlicz property.

Let us recall that a Banach space B is said to have the Orlicz property if every sequence x_n such that $\Sigma ||x_n||^2 < \infty$ is an unconditionally convergent series in B.

PROPOSITION 8. Let X be a Banach lattice. The following statements are equivalent:

- (a) X has the Orlicz property.
- (b) $\Lambda_{2,1}(X,B) = L(X,B)$ for every Banach space B.
- (c) For every Banach lattice Y, every regular operator T, $T:Y \longrightarrow X$ is positive (2,1)-summing.

Proof. This is an easy consequence of Prop. 1 (d) since the identity I:X \longrightarrow X belongs to $\Lambda_{21}(X,X)$ and each regular operator $T = T_1 - T_2$ being T_1 and T_2 positive ones.

In [3] it was shown that $\Pi_2(c_0,X) = L(c_0,X)$ implies the Orlicz property on X, now we are able to approach to the converse.

PROPOSITION 9. If X has the Orlicz property then

- (a) $\Pi_q(c_0, X) = L(c_0, X)$ for all q > 2.
- (b) $\Pi_p(X,B) = \Pi_1(X,B)$ for all Banach space B and $1 \le p \le 2$.

Proof. It is sufficient to apply successively Prop. 8(b), 6(b) and 4(b) to solve part (a).

Part (b) is a simple consequence of a Rosenthal's result [9] which assures that $\Pi_q(c_0,X) = L(c_0,X)$ if and only if $\Pi_{q'}(X,B) = \Pi_1(X,B)$ for all Banach space B and $\frac{1}{q} + \frac{1}{q'} = 1$.

As l^p (1 $\leq p \leq 2$) has the Orlicz property, we can prove an analogous result to Corollary 1, proved by Kwapien in [5].

COROLLARY 3. For
$$1 \le r \le 2$$
 and $1 \le p \le 2$ $\Pi_r(\ell^p, B) = \Pi_1(\ell^p, B)$. #

REFERENCES

- O. BLASCO: Positive p-summing operator on L_p-spaces. To appear Procc. of Amer. Math. Soc.
- [2] O. BLASCO: Boundary values of vector valued harmonic functions considered as operators. To appear in Studia Math.
- [4] S. KWAPIEN: Some remarks on (p,q)-absolutely summing operators in 1_p-spaces. Studia Math 29 (1968), 327-337.
- [5] S. KWAPIEN: A remark on p-absolutely summing operators in 1_r -spaces. Studia Math. 34 (1970), 109-111.

Oscar Blasco

- [6] J. LINDENSTRAUSS, L. TZAFRIRI: Classical Banach spaces, Vol. I and Vol. II, Springer Verlag, Berlin 1979.
- [7] B. MAUREY: Type et cotype dans les espaces munis de structures locales inconditionelles. Seminarie Maurey-Schwartz 1973-74 (Exposés XXIV et XXV).
- [8] A. PIETSCH: Absolut p-summierende Abbildungen in normierten Roumen. Studia Math. 28 (1967) 333-353.
- [9] H.P. ROSENTHAL: On subspaces of Lp. Annals of Math. 97 (1973), 344-373.
- [10] H.H. SCHAEFER: Banach lattices and positive operators. Springer-Verlag, Berlin 1974.

Oscar Blasco Dpto, de Teoría de Funcione: Facultad de Ciencias 50009 - Zaragoza (SPAIN)