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A KOROVKIN-TYPE THEOREM IN THE SPACE
OF RIEMANN INTEGRABLE FUNCTIONS *

Michele Campiti

ABSTRACT. We give a charactlerization of the Korovkin subspaces
of the space R(X') of Riemann integrable functions over a [laus-
dorff compact topological space X, equipped with the R—sequential
convergence. Some applications are presented in the context of the
space of 27 periodic real functions which are Riemann integrable
on the compact real interval [0,27] and of the space of Riemann
integrable functions on the standard siiplex and the hypercube of
R (p> 1)

Introduction

Our starting point is Lhe concept of R sequential convergence introduced in [6] in the
space R([a,b}) of Riemann integrable functious over a compact real interval [a, ).

Among the most important consequenacs of this type of convergence, we point
out the properly that polynomials are not only dense in the space C([a,b]) of real
continuouns functions on [a,b]. but also in R([a,b]) (cf. [6], Th. 2.6 or [8], Th. 1),
giving fundamental results in approximation tlicory.

Morcover. if we introduce in R([a.b]} the coucept of R-Cauchy sequence (ef.
6] or [8]), we iind the space R([a,b]) 1o be also R-(sequentially) complete (cf. [6],
Th. 2.5 or [8], Th. 1).

tn this paper, we are inlerested in a consequence of this type of convergence which
states that the classical Korovkin theorem also holds in the space R([a,b]); in fact.

* Work perfarmed under the auspices of the Ministero Pubblica Istruzione (60%)
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il (13,)nen is a scquence of positive lincar operators on the space R([a, b]) into itself,
then the sequence (7,(f))nenN converges R-sequentially to f for each f € R([a,b]) if
and only il the R sequential convergence is established for the three test functions
po. p1. p2 (where for each i = 0,1,2 and z € [a,b], pi(z) = 2*) (cf. [8], Th. 2).

The first question which arises [rom the above theorem is concerned with the
existence of other 1ypes of test functions in R([a, 8]).

Later on, the concepl of R -sequential convergence was generalized in [10] to
the space of Riemann integrable funciions on arbitrary sels; therefore it scems also
interesting Lo sce if. under appropriate hypothescs, other Korovkin-type theorems
remain true in this space.

In the present paper, we consider this last problem and the main result, that we
obtain ("Th. 2.4) also answers to the first question.

More precisely, we consider a compact Hausdorlf topological space X, an algebra
2 of subsels of X which is a base of X and a bounded regular and coregular (ef. Def.
2.2) content on © and characterize the R -Korovkin subspaces in R(X) for sequences
of positive linear operators, that is those subspaces IT of R(X) such that for every
sequence (1, )neN of positive linear operators of R(X) into R(X), the R sequential
convergence to h of the sequence (5, (h))nenN for cach b € I, implics the R-sequential
convergence to f of the sequence (Th(f))nen for cach f € R(X).

In particular. we show that il /{ is a Korovkin subspace in C(X), then I/ is an
R Korovkin subspace in R(X) (for the R sequential convergence).

We also consider the space Ror of Riemann integrable funclions on [0, 2#] taking
the same values at the points 0 and 27 and establish that the subspace gencrated
by the constant functions and the functions sin and cos is an R Korovkin subspace
in Ras.

Some applications are given showing that on the standard simplex of R? and on
the hypercube of R” the polynomials are dense in the space of Riemann integrable
functions with respect 1o the R sequential convergence.
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1. Preliminary results

\We first recall some preliminary definitions and properties.

Let X be an arbitrary set and Q an algebra of subsets of X (i.e. Q is closed
under finite unions and relative complement and the whole space X belongs to Q);
the elements of € are called clementary sets.

Let pr i Q@ — R be a bounded content, on €, that is g satisfies the following
conditions:
HN) < +x;

u{B) = 0;
j(A)y=>0 for cach 4 €

plAC ) - () + p(B) for cach A, 3 € Q such that AN B =40.

Let B(X) be the space of all real bounded functions on X endowed with the
natural order and the sup-norm: for each f € B(X),

(LAl = sup S (2)].
r¢X

For cach subset I3 of X, we put

(1) M(f.B) = sup f(x). m(f.B) = inf f(=x).
LEX reX
(2) S B) = sup 1(2) = [(y)l:
r.y€l

we casily have

(3) (.Y = M(L. B) = m(J. 13).

Now. we denote by & the set of all partitions of X. whose clements are non
emply elementary sets. Thus, we have P € G if there exist g, ... .. 1. € Q\ {0}
(n ¢ N) such that 7= { g0 .. 1.} and

N = U ;.

=1
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AinA; =0 foreachi=0, ..,n, 5=0,...,ni4#].

For cach f € B(X) and P = {Ay,...,A,} € G, we put

n n

(1) SUPW =Y MU AV MA), s P =Y m(f, A) p(Ad)

i=0 i=0

6 [ H@)dut) = jor sUL ), / (@) du(z) = sup (1, P, )

(if no confusion ariscs, we siply write [ f and [ f instead of [ f(z)du(z) and

respectively [ f(x)dp(a)),

i

(6) QU Pp) =) wlf, A (A = S Pop) — s(f, Pop)

i=0

(cf. [3D,

(7) HINDE li,lgl'sf)(f, ) (: /j(.‘l,')o"l_!(.l,’)-—/f(:l,')d/l(.‘l:)).

We refer to [10] for the following properties which are true for every f,g € B(X)
and o € RY:

(&) G<If)y=1(-S.p) <2 /If(r)ld/l(w) < 2p(X) |15

(9) ./-/:(f-f-.f/)s./_.f+].(/= /uf=ojf, Jean==a/1.

(10) if < g then ‘/IS/ﬂ, ./_fs].q.
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Finally, if we put
/f(a:)d,u(.r) = /f(J:) ly(x) du(x)
S .

for each I3 € Q (where 1 denotes the characteristic function of B3), we have

(1) [\ dute) < w8171l
)]
for cach I3 C 9.

Now the set of Riemann integrable {unctions is defined by:

(12)  R(X) = {J € B(X): I(f.n) = 0} = jeb’(X):/j: /j

(sometimes we write R(X, p) instead of R(X)).
If [ € R(X), we put

./'j.(,,-)(/,,(z,-) =/_f(1:)dp,(a,-) :/f(lf)(ljl(;c)

I 13 € ©Q, we recall that a function f € B(X) is Riemann integrable if and only
if the functions [ 1y and f Ly are Ricmann integrable and, in this case

./.f - ./.u f+. X\D 4

In what follows, we suppose that X is a compact Hausdorfl topological space and
thal the algebra Q of subsets of X is a base of X, that is

(13) for cach & X and for cach neighbourhood U of &, there exists a neighbourhood
Aol with the properties

Aeq, AC U

Purther. we denote by C(XN) the space of all real continuous functions on X': since
X 15 compact we have C(X) C B(X) and since Q is a base of X. we have C(X ) C R(X)
(el {10]. Lenima 2).
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Proposition 1.1. Let X be a compact Hausdorff topological space, Q an algebra of
subsets of X which is a base of X and 1 : Q@ — R a bounded content.
If f € B(X) and if for cach ¢ € R}, there exist ¢ € C(X) and vy € C(X) such that
o< f<v, /w—®<m
then f € R(X).

Proof. Let ¢ € R} and 0 € C(X), ¥ € C(X) be such that
a<rse. [o-o<s

(we have rightly considered [(y — ¢) since C(X) C R(X) (cf. [10], Lemma 2). We

have (cf. (10)) _
/éﬁ/f5/¢5/¢

1(f,/t)=/_f—/f

s]&—]¢

=/:,-';—/¢
= [e-# <«

Since ¢ € Ry is arbitrary, it follows I(f) =0, that is f € R(X) (cf. (12)). W

and therefore

At this point, we recall that (cf. [3], 7.3.1, p. 208) a content 2 : Q — R is said to
be regular if for A € Q and € € Ry, there exist a compact sel. F € Q and an open set.
G ¢ Q such that

FcACG, G\ F) <.

In order to obtain the converse of Prop. 1.1, we give the following definition:

Definition 1.2, Let X be a topological space and € an algebra of subsels of X.
o o
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A content g1 : Q@ — R is said to be coregular if, for each clementary set A € Q and
for cach ¢ € R, there exist an open elementary set G € Q and a closed elementary
sct F' € Q such that

GCACE, HF\G) <e.

We give here some general properties of coregular coutents.

Proposition 1.3. Let X be a topological space, Q an algebra of subsets of X and
p:Q — R aregular content.
Then the following statements are equivalent:

a) u is coregular.

b) 1. For each closed elementary set F € Q and for cach ¢ € R, there exists
an open clementary sct G € Q such that

G cClr, wWFE\G) <

2. for cach open elementary set G € Q and for cach ¢ € R%, therc exists a
closed elementary set F € Q such that

GCF, wF\C) <e

Proof. 'The condition a) trivially implies the condition b).

Conversely, let A € Q and ¢ € Ry ; sinee g is regular there exist a closed (compact)
clementary set F; € © and an open clementary set Gy € Q such that

FiCACG, mcqru<%

The condition 1 of b) implies the existence of an open elementary set G € Q such
that

GCH, Mm\m<%

while the condition 2 of of b) unplies the existence of a closed clerentary set £ € Q
such that

| ™

GiCl,  p(I'\Gy)<

]

It follows ¢ C A C F and
PN G) = p(F\NGY) + (G \ F) + (17 \ G)

iy f, 8
33
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Proposition 1.4. Let X be a topological space, Q an algebra of subscts of X
containing the open subsets of X and p @ @ — R a bounded content. Then, the
following stalements are equivalent:

a) p Is coregular.

b) For cach A € Q one also has

AeQ and 1(A) = pu(A).

¢) For cach A € Q one also has

A® e Q and u(A) = p(A°).

d) lor cach A € Q such that A° =0, it results p(A) = 0.
e) For cach A € Q such that A = X, it results p(A) = p(X).

Proof. a)=b) Let A € Q; since A C A, we have p(A) < u(A). Suppose 1(A) < p(A)
and put € = p(A) — pu(A) (€ R7); by a), there exist a closed set F' € Q and an open
set (7 € Q such that

GCACE, u(F\G) <

The set I is closed and therefore 4 C F and p(A) < p(I7); it follows

p(A) = p(A) = p(A\ A) < u(F\G) < e

that is a contradiction; then pu{A) = u(A).

b)=¢) Let A € Q; by the forvula X \ A° = X\ A, we obtain A° = X \ (X \ 4)
and therefore, by b),

A )—NMW—MX\)

=p(X)—p(X\A
= pu(X) - (()—ﬂ(»
= pu().
¢)=>d) It is obvious since p(@) =
d)=¢) Let A € @ such that A4 = X; then X'\ 4 has emply interior and, by d),
N\ ) =0; hm'l(',(‘,

p(A) = p(X) — (X \ A) = p(X).
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e)=>a) Let A € Q and consider the open set G = A° € Q and the closed sct
F=A¢€Q;since G CACF,itis enough Lo prove that u(F\ G) = 0. In fact the
set I\ G has empty intlerior so its complement X \ (F \ G) is dense in X; by e), we
obtain

w(X) = p(F\G) = (X \(F\ @) = u(X),

and this implies p(F'\ G) = 0, completing the proof. Il

Roemark 1.5. 1) We observe that if we do not suppose that Q contains the open
subscls of X. the implications a)=d) and a)=>¢) of Proposition 1.4 remain true, and
further the conditions b) and ¢) together imply a).

2) Let p € N and consider a Peano-Jordan measurable compact subset X of R?;
further, denote by g the Peano-Jordan content on the algebra of all Peano-Jordan
measurable subsels of RP and by px the Peano-Jordan content on the algebra Q of
all Peano-Jordan measurable subsets of X (that is. tx = pa). Then px is clearly
regular since, il A € Q and ¢ € RY, ther exist a closed p-dimensional figure Py (ie. Py
is 1the union of a finite number of intervals in ®”) and an open p-dimensional figure
I’» such that

XNPhCcACXNR and u(Pe\ Py < ¢,
from which
px (X OPHIN(XNP)) = pux (X NP\ P)) <
further, the interior Pf of Py and the closure Pj of Pp are again p dimensional figures
and have the same measure of P and respectlively Ps; since

XNPCACXNP and w(Pa\ P{) = p(P2\ P1) <e,

it follows that ux is also coregular.

Moreover, the Lebesgue measure A on X is regular (cf. [3], 7.3.3. p. 210), but
it is not coregular (if A(X) > 0); for example, the set @' N X is dense in X bui
AQ" N X)) =0 and therefore the condition ¢) of Prop. 1.4 is not fulfilled.

Proposition 1.6. Let X be a compact Hausdorll topological space, Q an algebra of
subsets of X which is also a base of X (cf. (13)), p: 2 —~ R a bounded content both
regular and coregular and f € B(X).

Then f € R(X) if and only if, for cach ¢ € RY, there exist ¢ € C(X) and
v € C(X) such that
/(‘L?":— o) < .

(i) 0

IA
-~
IN
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Proof. By virtue of Prop. 1.1, we have only to show the necessity of the condition
(14). We proceed by different steps:

1) Suppose that f =14 with A € . Let ¢ € RY; since p is coregular there exist
an open sl (G € € and a closed set F' € Q such that

(15) GCACE, w(F\G) < =

[SSF g

Since p is regular and G € 1, there exists a closed set Fy € Q such that

(16) MCG,  p(G\F)< %
and since I € Q there exists an open sct Gy € €2 such that
(17) FCGy, pG\F)< %

The sets I and X \ G are closed and disjoint; by the normalily of X, there exists
a continuous function ¢ € C(X) such that

(18) <<, ¢ =1on Fy, ¢=00n X\G.

Analogously, the sets I and X \ (/; are closed and disjoint and therefore there
exists a continuous function ¢ € C(X) such that

(19) <y <, v=1onl, ¥ =0on X\G.

We have ¢ <land ¢ =0o0n X\ A (G C A)and further 0 <y andy=10on 4
(AC F); it follows ¢ < f < 9.

Finally. by (15)-(19),

Jw-o=[w-o+[ w-o+[ w-o
- ./(.'.\l-'.(l'il)_d))

< / 1x
Jann

=p(Gi\ F)

=\ F)+pu(G\ F)+ p(G\ )
« € €

<3t3t3

:("
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and this completes the proof in the first case.
2} Suppose that
L
f= L(-‘fi la,
i=0
with ap.ociap € Rand P ={4g....,4,) € 6.

In this case the resuli. follows from step 1). since the set, of all f € R(X) satislying
(11) is clearly a (real) vector space.

3) We examine now the general case f € R(X).

Let c € By sinee 1(f.p) = 0 {cf. (12)), there exists P = {Ag,..., 4.} € Q such
that (ell (6) and (7))

(20) SU- P = 5(J, i) < .

Censider the Tunctions

n n

g= Y mo AN, h= ML) L
i=l) =0
obviously {cf. (20))
[ C
(21) g<fsh jh=g) <y

morecover. by step 2), there exist ¢ € C(X) and & € C(.X) such that

) ¢
6<y. /(,r_:—c'))<§

an

h <. /(l.r -h)<e.

Then o < f < v and (cf. (21))

/H-0)=/h=40+/ﬂhﬂ%+/w—0)

cbilit
3737y
=

completing the prool. 1
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Remark 1.7, Suppose that © contains the open subscls of X. I 1 is not coregular,
the Proposition 1.4 ensures the existence of an elementary set A € Q with empty
interior and p(A) > 0; it follows that the characterisiic [unction 14 is Riemann

integrable but, for cach continuous functions ¢, € C(X) satisfying ¢ < 14 < ¢, it
results

/w—o)z H(A).

‘Therefore, if € contains the open subsels of X, the validily of Prop. 1.6 requires
jt to be coregular.



A KOROVKIN-T'YPE THEOREM 211

2. The main thcorem

We fix a compact ITausdorff topological space X, an algebra Q of subsets of X which
is also a basce of X (cf. (13)) and a bounded content p: Q2 — R.

Denote by P(X) the set of all subsets of X; we nced to consider the outer content
i :P(X) — R defined by pulting, for each subset A of X,

(22) jiA) = ll?légl u(n).
ACB

Further, we say that a subset A4 of X is a i—null set if u(A) = 0.

If y1 is regular (resp. coregular), for each subset A of X, it results
(23) f(A) = inf{u(G): Ge R, ACG, G open}
(resp. i(A) = inf{u(K): K € Q, A C K, K compact}).

In fact, if ¢ € R, by (22) there cxists B € Q such that A C B and

u(B) < p(A) +

N~

then A C (4 and c

1(G) = p(B) + 1(G\ B) < %+ S=e

From now on, we consider the natural order on the spaces C(X) and R(X).

For cach £ € X, we denote by é; : C(X) — R the valuation functlional defined by
putling, for each g € C(X), 8:(g) = g(x).

A subspace H of C(X) is said Lo be cofinal if for cach f € C(X) there exists
h € IT such that f < h (clearly, in this case for each f € C(X) we also have k& < f for
some k € H). .

We observe that if I is a cofinal subspace of C(X), f € C(X) and v: C(X) — R
is a positive linear form on C(X), then a straightforward application of the Nahn-
Banach theorem yields a positive lincar form % : R(X) — R such that # = v on H

and ¢(f) = v(/[).

At this point we can introduce the concept of R-sequential convergence on the
space R{X).
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Definition 2.1. A sequence (f,)nen of clements of R(X) is called R convergent to
S € R(X) (in notation, [ =R — lim, o f) if

(R1) sup [|[fnl] < 420,
neN
(R2) lim /sup |fe = f]=0.
n— J k>

Uniform convergence clearly implies R-convergence.

Further, R convergence implies the convergence in L' norm and pointwise con-
vergence Lebesgue almost everywhere (cf. [6] and [10]).

Obscrve also that the integrand in (R2) is monotone with respect to n and this,

together with the equiboundedness property in (R1), is useful in many proofs as a
substitute of the o -additivity of the algebra Q.

In what follows, we consider the space R(X) equipped with the R-sequential
convergence and the natural order.

We recall the following:

Definition 2.2. A subspace ! of the vector space R(X ) is an R-Korovkin subspace
in R(X) for sequences of positive linear operators if for every sequence (Ty)nen of
positive lincar operators of R(X') into R(X), the condition

h=R— lim 1,(h) for cach h € I,

=X

also ensures

F=R— lim: T.()) for cach f € R(X).

In order to give a characterization of the R Korovkin subspaces in R(X) for
seauences of positive lincar operators, we need the following lemima:

Lemma 2.3, Let X be a compact mictrizable topological space, €0 an algebra of
subsets of X which is a base of X and p : Q — R a coregular bounded content.

Then, for each non empty subset A of X there exisls a sequence (Zn)nen of
clements of A such that, for cach n € N,

p| L) | = n().

k>n
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Proof. Since X is a compact metrizable space, there exists a countably base for the
neighbourhood system (Ay)nen of X and since Q is a base of X, we may also assume
An € Q for cach n € N.

Let A be a non empty subset of X and put
M={meN:ANnA, #0};

furtlier, for each m € N, choose y € AN A,,.

At first, we show that

ﬁ( U {ym}) = A(A).

me M

Obviously

ﬁ( U {Um}) < i(A);

meM

conversely let K be a compact subset of X such that K € Q and

U s} c k.

meM

If 2 € A\ K (C X\ K), there exists m € N such that z € A,, C X \ K and
therefore £ € AN Ay it follows m e M and yn € ANA, C X \ K, contradicting
Yym € K. Hence A C K and therefore by (23)

/.I.(A) S I_‘ ( U {ym}) :

rEM

Now, we define the map ¢ : N — M by putting 0(0) = min M and, for cach
n €N,

S(n+ 1) = min{m € M : 6(n) < m} if{meM:on)<m}#£0
o | min M if {meM:on)<m}=40

if A\l s finite. or

o(n+1)= min{m € M : ¢(n) < m} ifn+1#£E for cach k € N
o L min Az if n4+1 =4k for some k €N

il A7 is not finite.
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Finally, we consider the sequence (z,)nen defined by putting, for each n € N
Zn = Ya(n)- For each n € N, we have

U{Ik} = U {ym}

k>n meM

and this completes the proof. W

Il IT is a subspace of C(X) and if f € C(X), it is useful to consider the set
Uu(S) of all the 2 € X such that v(f) = f(x) for each positive lincar form v on C(X)
satisfying the condition v = 6, on H. It is well known that (cf. [2])

(21) Un(f)=<z€ X : sup h(z) = inf h(z)
hell hel
hf I<h

Now, we can state our main theorem.

Theorem 2.4, Let X be a compact Hansdorfl topological space, Q an algebra of
subscls of X which is a base of X (cf. (13)) and u : @ — R a bounded content both
regular and coregular (¢f. Def. 1.3).

Let H be a cofinal vector subspace of C(X). If II fullills the following condition
a) For each f € C(X) and for each compact subset K of X disjoint from Uy (f),
it results p(K) =0,
then H is an R Korovkin subspace in R(X) for sequences of positive linear operators

(cf. Del. 2.2).

Moreover, if X is metrizable and, for cach z € X, {2} € Q, then also the converse
holds.

Proof. Let (T, )nen be a sequence of positive linear operators of R(X) into itself and
suppose that, for each h € 1,

(25) h=R - lin 1,(h).
n—00

We show primarily that. for cach f € R(X), the sequence (1,(f))nen 18 equi-
bounded.

Denote by po + X — R the constant function of constant value 1. Since H is
cofinal, there exist iy € I and ha € H such that hy < py < hy; the sequences
(Ta(h1))nen and (Th(he))nen are equibounded (cf. (23) and (Ry)) and further, for
cach n €N,

Th(hy) £ To(po) £ Tou(ha);



A KOROVKIN-TYPE THEOREM 215

it follows thal Lhe sequence (T, (po))nen is equibounded. Now let f € R(X); for cach
n € N,

ITa(D = [10(f o) < |TaClf | 2o)| = /1] Ta(mo)
and therefore the sequence (1,,(f))nen is equibounded.
Now we show that, for each f € R(X),

Jim [suplzi(n - 1 =0.

At first. we suppose f € C(X). Let ¢ € R} and xy € Un(f); by (24), it follows
the existence of ¢ € I and ¥ € H such that

€ €
26 5 < [ <, b(ag) — ——— < f(2 S(z —_—
(26) o< [ <y ¥(x0) B a(X) J(z0) < $(20) + 8(X)
Since ¢, v and [ are continuous, there exists an open neighbourhood U (z) of
xg such that, for each x € U(zg),

(27) ¥(x) -

(4 C

S < f(z) < é(z) +

Let k € N; by (26), it follows
1e(9) < Te(f) £ Te(v)
and therelore, for cach z € X,
Te(S)(=) = J(=) < Te(¥)(x) — d(z) < |Te(w)(2) = ¢(2)] + [15()(x) — w(x)],

J(2) = Lr(S)(2) < ¥(2) = Ti(d)(x) < [Le(¥)(2) — o(2)] + [Ti(6)(2) — ¢(x)];
lience, for each 2 € X,

[Tk (N)(2) = J(2)] < [Te(¥)(2) = v(2)] + Ti(o) (&) — o(2)] + 2|6(z) — v(x)]
and by (27), for cach 2 € U/ (xy),

(28)  1T(/)(@) = (@)}  [Te(w)(2) = b(2)] + [Ti(0)(x )_O("")H‘znz,\')'

Put Qzg) ={4€Q:ACU(xe)}. IT 4 €Q(2p) (28) remains true for all 2 € A
and therefore. for every n €N,

(A
/sup [7%(f) = [] <'/sup|rk( ) — vl + /:u[)lll.(o)—o|+—;:l§x))
J . >n )
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from which (cf. (25) and (R2)) we deduce

(29) n“_f&!:‘;,’, 1Te(f) — fI < % :

Now let ag vary in Ung(f) and cousider Lhe sets:

(30) r= {J Qw), =4

zo€UN(S) a€l’

we may assurne that (29) holds for each element A € I'; further, since Q is a base of
X, the family (A)aeq(s,) Is a covering of U(zg) for each zg € Uy (f); consequently

U= | Ulx)

zo€Uu(S)
is an open subset of X and the family (A)aer is a covering of Uy (f) such that every
zo € Uy (J) is in the interior of some A € T (cf. (13)).

Put K = X \U; K is a compact subset of X disjoint from Uy (f) and then,
by a), #(K) = 0. Since 1 is regular, there exists an open subset G of X such that
GeQ, KCGand

« "y 6
(-”) ll((J) < ——2 Ml

where M = sup, N I[150(S) — S|, (el (23)).

The compact set X \ G is contained in U and then the family (A)ser is a cover
of X\ G (cf. (30)) and each zo € X \ G is in the interior of some 4 € T; it follows
the existence of a finite cover Ag,..., Ap (p € N) of clements of I'.

Put By = Ao\ G and, for each k=1,...,p,

k-1
B = Ak\ (U A;UC:);

i=0

then P = {3,...,1,,G} € G (we have supposed that cach element of P is not
emipty; otherwise we may consider 2\ {#}}) and, for each i = 0,...,p (cf. (29))

£y - c
(32) Jim '/ilzll: ITe(f) = f1 < 27(X) I

By).

3,
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Hence (cf. (32) and (31))

_ o
Jm [ sup () = 115 i (Z; Jawimin -1

+ / sup [1i(f) - fl)
G

, _
= ani_x’xgo /sup [Te(S) = Sl

i=0 B, k2n
+ limn /sup [Tx(f) = J]
n—rox:

(=%} ‘:Z"
T

k € - ~
< ; TA(X) u( %) + sup NTa () = Fll (G
(4 C
< 5 + 5
= €.

Since € € R} is arbitrary, the result is true for f € C(X).

Now, suppose [ € R(X), and let € € RY; by virtue of Prop. 1.6, there exist
é €C(X) and ¥ € C(X) such that

s<f<w, /(¢—¢)<i-

For cach k € N, we have

and therefore, for cach n € N,

sup [Te(f) = £l < sup [Te(&) — ¢+ sup |1i(¢) — 0| + 2 (¢ — o).
k>n k>n k>n
Since o, v € C(X), it results

limn /sup [Te(v) —v| =0,

n—oc k>u
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lim /:l;p ITe(¢) — ¢l =0

n— 20
and consequently

fim /supl’]'k(f)—f|52/(i.-")—¢)<f-

n=00 k>n

Since ¢ € Ry is arbitrary, it follows

lim /sup |Te(f) = f1=0;

k>n

thus the first part of the proof is complete.

Conversely, suppose that X is metrizable and, for cach 2z € X, {#} € Q. TLet H
be an R Korovkin subspace in R(X) for sequences of positive linear operators; we
argue by contradiction and suppose that there exist f € C(X) and a compact subset
K of X disjoint from Uy (f) such that g(K) > 0.

For each 2 € X \ Uy (f), there exists a positive linear form v, : C(X) — R such
that vy = 6, on H and vz(f) # f(2) (cf. (24)) and then there exists also a positive
lincar form oy : R(X) — R such that 9; = é; on H and 3,(f) # f(z). For each
n € N, put

(33) An= { € X\Un()) : [5(f) - f(2)| 2 ——i—l} .

Il u(An) = 0 for cach n € N, then for cach ¢ € R} and n € N, we can find an
open subset G, € Q such that A, C G, and p(Gyn) < /27T (cf. (23)); since K is
compact, there exists a finite subse'. M of N such that

K C U Gm;

meM

then

U Gmen

meM
and

i ( U (:.',,,) <) m(Gm) <

meM meM



A KOROVKIN-TYPE TUEOREM 219

cf. [3 y 1.3.9 y P- 11 ' since € €ER is arbit-rary. it follows M K)=0 (Cf 22 y that is
+

llence, there exists p € N such that j(A,) = § > 0. By virtue of Lemma 2.3,
there exists a sequence (2, ),eN of clements of Ay such that, for cach n €N,

(341) Bl U{z}] =6

k>n

Fix n € N and let f € R(X). Consider the map f, : X — R which agrees
with f on X \ {#,} and assume the value e, (f) al zy; since {,} € Q, we have
S ix\{r,) ER(X) and fl{,,} € R(X); hence f, € R(X).

Now. we consider the map T, : R(X) — R(X) defined by putting, for cach
J € R(X)., Tulf) = [fn; since g, Is positive and lincar, 1), is a positive lincar
operator of R(X) into itsell.

Next, consider the sequence (1%)nen; for cach n € N and h € H, we have
T (h) = h (since &, = b;, on ) and therefore

h=R - lim T,(h).

N=—0C
We conclude the proof by showing that f cannot be the R limit of the sequence
I Y 8 1

(1 (/Nnen, that is a contradiction.

If the sequence (T, neN is not equibounded, it cannot be R-converzent. Sup-

] € ' o I

pose thal (7,(f).en is equibounded and let n € N and P = {Bo,....B,} € &
(9 € N): denote by Cy, ..., Cr (r € N) all the clements of P containing some xx with
k>n.

Then

Utsbc e (e

k>n

and (ef. (34) and (22))
(35) b<p (U c',-) = Z,;((‘.‘:,-).
i=0 i=0
For simplicity, put f, = SUPE>, {(1%x(f) = fl; for cach i = 0,...,r, there exists
k> nosuch that ¢ € and therefore (ef. (1) and (33))
‘1(./11 . (.1) 2 frl(mk)
Z 1) (k) = S ()

|82, () = S (k)]
l

pil

(36)

I/
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It follows (cf. (1), (36) and (35))

q

SUns Por) = 3 M(Ju, Bi) i B:)

=0

> ) M(fa, Ci) u(C)
i=0

v

1 r
— 2 HG)
rpY

>
“p+l
and finally, by (5)
r [ 5
sup |13 - = n 2> .
[ == [z 725

Since n € N is arbitrary, the sequence (T, (f))nen cannot be R convergent to f.
|

Let JI be a subspace of C(X); if we introduce the Choquet boundary 95 X of X
with respeet to M (cf. [5]. Def. 29.1, p. 176) as the sct of all the 2 € X such that
v = 6, for each positive linear form v : C(X) — R satislying the condition v = 6, on
I, we have, by the definition of Uy (f)

(37) ouX= ] Uulh).

feC(X)

Corollary 2.5. Let X be a compact Hausdorfl topological space, 2 an algebra of
subsets of X which is a base of X and p : Q — R a bounded content hoth regular
and coregular.

If a subspace 1 of C(X) satislics the following condition:
(38) for cach compact subset K of X disjoint from 8y X, il results p(K) = 0,
then 1 is an 'R Korovkin subspace in R(X) for sequences of positive lincar operators.
In particular the condition (38) is true in the case in which ji(X \ 854 X) =2 0 or
dy X = X (ie. Il is a Korovkin space in C(X)).

Proof. "Fhe condition (38) clearly implies the condition a) of 'Th. 2.4. W

Now we apply Cor. 2.5 10 the following corollarics.
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Corollary 2.6. Let X be a compact lausdorff topological space, Q an algebra of
subscts of X which is a base of X, p : 2 — R a bounded content both regular and
coregular and A a closed ji -null sct.

Then, the subspace H of C(X) formed by all the h € C(X) such that the restric-
tion hj4 of h to A is constant is an R—Korovkin subspace in R(X ) for sequences of
positive linear operators.

Proof. Since p(A) = 0, by (38) it is enough to show that X\ A C dy X. Let z € X\ A
and fix ¢ € RY; further, let f € C(X) and suppose f > 0. Since f is continuous and
A is closed, there exists a neighbourhood U of # such that U ¢ X \ A4 and, for cach
y e U, |f(x) = f(y)| < ¢ further, there exists a continuous function g:X — Rsuch
that 0 <g <1, g=0o0n X\ U and g(z) = 1.

Now, pul

m = inf f(y), M = sup [(y)
yeX yeEX

and consider the maps £ : X — R and k: X — R defined by putting, for cach y € X,
h(y) = m (1= g(y)) + (JS(x) = ) g(u),
k(y) = M (1= g(9) + () + ) 9(v).
If y € X\ U, we have g(y) = 0 and therefore

hy)=m< f(y) <M =k(y)
and if yely
h(y) < J(y) (1 - g(9) + f(y) 9(v)
= [(y)
=) (1 =g®) + f() 9 ()
< k(y);
hence h < f < k.
Further, b € i,k € i and h(x) = f(z) — ¢, k(2) = f(x) + .
Sinee ¢ € Ry is arbitrary, by virtue of (21), it follows 2 ¢ Uy (f).
[ [ is not positive. we obtain again 2 ¢ Uy (f) by applying the preceding argu-
menis 1o the positive and negative part of f.
By (37). we conclude x € 9y X. M
Corollary 2.7. Let X be a compact Hausdorll topological space, Q0 an algebra of

subsets of X which is a base of X,y : @ — R a bounded content both regular and
corcgular and S a subsct of C(X) which separates the points of X.
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Then, the subspace H of C(X) generated by
poUSUS?
is an R~ Korovkin subspace in R(X) for sequences of positive linear operators, where
5?2 ={n?:hes}.
Proof. 1t follows by Cor. 2.6 since it resulls 9y X = X (cf. [2] and [9]). B

Corollary 2.8. lLet X be a compact Hausdorfl topological space, Q0 an algebra of
subscts of X which is a base of X, i : Q@ — R a bounded content both regular and
coregular.

If a subspace I of C(X) contains the constant functions and, for cach 2y € X,
there exists h € 11 such that

h(zg) =0 and h(2) >0 forcach z€ X\ {xo},
then 11 is an R Korovkin subspace in R(X) for sequences of positive linear operators.

Morcover, il Iy, ..., hy, are continuous functions on X which separate the points
of X, then the subspace 1l of C(X) generated by

n
pn,hl,...,h",Zh?

i=1

is an R Korovkin subspace in R(X) for sequences of positive linear operalors.
Proof. 1t follows by Cor. 2.6 since il results 9y X = X (cf. [4]). ®

Iinally, we consider the case of a Peano-Jordan measurable compact subset X of
®?” and the Peano-Jordan content (cf. Remark 1.5, 2)).

Corollary 2.9. Let X be a Peano-Jordan measurable compact subset of BP (p > 1)
and consider the Peano-Jordan content px oa the algebra Q of all Peano-Jordan
measurable subsels of X.

For cach i = 1,...,p denote by pr; : X — R the restriction to X of the i-th
projection of R? onto R.

Then, the subspace 1 of C(X) generated by the constant functions and
. v .2 .2
pry..... pry.pry+---4pr,
is an R Korovkin subspace in R(.X') for sequences of positive linear operators.

Prool. It follows by the preceding Cor. 2.8. R

in particular, if p = 1, we obtain the Korovkin type theorem stated in [8],
Th. 2.
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3. Applications

In this section we give some other applications of the preceding corollaries in the case
of particular compact subsets X of R? (p > 1) and the Peano-Jordan content Ux
on X.

1. Let us consider the compact interval [0,2 7] of R and assume the following nota-
tions:

Rox ={J € R([0,27]) : f(0) = f(2 7))
(R2a2 may be identified with the space of all 2 x-periodic real functions on R which
are Ricrann integrable on [0,2 7)),

S={(e.y) eR* : 2* +y* = 1}.

Consider the projections pry and pry of S on &: since pri 4+ pri = py (as usual,
pa is the constant function on S of constant value 1), it follows from Cor. 2.9 that the
subspace of R(S) generaled by the functions

PU! l‘)rl ' I)r21
is an R Korovkin subspace in R(S) for sequences of positive linear operalors.
Further, the map
2 R(S) ~— Rox
defined by setling
(M) = f(cost,sint)

for cach f € R(S) and t € [0,.27] and £ € [0,27], is a lincar isomorphisim of R(S
H )

into Rar (both equipped with the R sequential convergence) and therefore since

Po -7 PO Pi. COS = 2 0 Pry. Sin = p o pry, the subspace of Raz generated by

Po, €os,sin
is an R-Korovkin subspace in Ray for sequences of positive lincar cperators. A

Now. we give an application of this last result; as observed above, cach JERu;
can be extended in a natural way to a 27 periodic function on R. so it makes sense
to consider. for cach fixed positive g € R((0.27]) and a ¢ R*, the map & R--R
defined by setling, for cach » € R,

§r(r) = / Sl —al)g(t)dt.

Ji)
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we have §5 € Ray; in fact, it is clear in the case in which f and g are continuous while

in the general case we fix € € R7, and by Prop. 1.6 we consider ¢, 9 € C(X) such that

27
6<f<y, / (6= B)(t)dt < e
J O

it results £, < & < €y and, for cach z € R, the inequalities

27

/“ (v=o)z—at)g(t)d <ilg]| (Ww—0)z~—al)g(t)d

] 0

1 r—2ew .
= —|lyil ;/0 (¢ — o)(s) ds
1 2w
Wz [ o= o
0

2r
.\1/ (v —¢)(s)ds

Jo
< AMe

IA

y
(for a suitable M € i&; which does not depend on ¢) imply
iy 2T 27
/ (&, —Ex)(a)dx = / dr / (v—o)ax—al)gt)dt <27 Me;
Jo Ju Jo
since « € R is arbitrary, by Prop. 1.6 it follows & € Raux.

Now. we can state the following result; the sequence of positive lincar operators
that we define is similar to a particular one considered in [1], Prop. 2.5 (for complex-
valued Lebesgue integrable functions).

Proposition 3.1. Let (f,)nen be a sequence of positive clements of Ryy such that:
i)
27
lim () dl = 1,

=90 Jo

i) there exists o € R such that

. ; 1
T
where e
: 1 e .
Jala) = ol ; exp(—iat) f(f)dl

lor cach n ¢ N.
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Further, for cach n € N, consider the positive lincar operator L, : Roz — Rox
defined by setling

2r
Ln(f)(z) = A flz—at) fa(t)dt

for each f € Ror and ¢ € R.
Then, for each f € Ryy,

(39) =R - nli_l.‘rolo L.(f)
on the compact interval [0,2 7.

Prool. 1t is cnough to prove that (39) holds for pg and the functions sin and cos.

For each n € N and & € &, we have

La(po)(z) = Ja () dt;
by i), the (39) lollows with f = py.
Further, we observe that the condition i) implies

n—0)

27
lim / sin{x — ot) fu(1) dt = sinz,
0

27
litn / cos(z —al) [o(1)dl = cosx

n=—00 0

uniformly for # € R; hence

lim L,(sin) = sin
n—0)

and

lim L, (cos) = cos
n—ooo

for the uniform convergence of Rax, which implies the R-sequential convergence. B

Remark 3.2, For example, the conditions 1) and ii) of Prop. 3.1 are satislicd by

a) the sequence of the Féjer’s kernels ((1/2 ) I\',;)”GN, where
9
1 sin{n 4+ 134/2\" ey
Kp(ly=¢1m 4- 1 ( sinl /2 i ¢ €j0. 2]

T i 1 ¢ 40,27}

(cf. [L1], Cho 1L, 83, (A));
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1) cach sequence of Poisson’s kernels ((1/2 ) Pp)nen. where
_ 1—1r2
T 14712 —2r, cost

P(t) for cach t € [0,2 7],

rn €]0.1[ and the sequence (r,),en converges to 1 (cf. [6], p. 302, (V), (V1)). W

The next examples are coucerned with the R-sequential convergence of the Bern-
stein polynomials on the standard simplex and on the hypercube of B (p > 1).

2. Let us consider the standard p simplex

r
XN = {(.1:|,...,1:,,) e’ | Vi=1,....n:x; >0, X < l}
ix=1

of R? (p > 1) and, for each m €N, n > 1, the n-th Bernstein operator I3, : R(X) —
RX) defined by setbing

n!
Ba() e, owp) = E - Jhy/n, ... hy/n)
(/) ! e M (U=l — =y ( !
it 4h,<n

P n—hy—---—h,
Pt ph E "
‘lll...'l']!p (l_ J‘l‘) .
i=1

for cach f C R(X) and (zy,....2,) € X.
Then, for cach [ € R(X), it results

(10) S =R - lim B,([).
nN— 00
In fact. consider the subspace I of C(X) generated by pg and pr,..... Pry,
pr",",....pr;': (cl. Cor. 2.9): we have By(py) = po and for cach n € N, n > | and
P=1.... e By (pr;) = pr; and

9 1 " ‘ 1 . I 1 .
[f,,(pr,-') == B3(pry) + (I - —) |‘)r," = = + (l - ;) prf.

n \
It follows
- R — lim ”,,([J(_',)
H—

and. for cach i = 1..... P
pr; = R — lim I$,(pr;):
T — X
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since foreachn > landi=1i ...,

. 1 . 1
sup|B¢(pri) — prf| = sup — |pr; — pré| < =,
kZTl. I‘-Zn, k 1]

it results also
pri=R~— lim B, (pr?).
n—0Q

By virtue of the Cor. 2.9 we obtain the (10). M

3. Let us consider the hypercube X = [0,1] of R” (p > 1) and, for cach n € N,
n > 1, the n-th Bernstein operator B3y, : R(X) — R(X) defined by sctling

= 2 (1) () syl = et

hy, Lhp=0

for cach f € R(X) and (xy1,...,2,) € X.
Then, for cach [ € R(X), it results

S =R - lim B,(f).

n—oC

Also in this case we have By (po) = ppand foreachn € N, n > tandi=1,... "
13, (pr;) = pr; and

; 1 1 .
By(pr?)==pr;+ ([ 1— =) pri
w (pr?) — Py + ( n) pr;
as before, we obtain the proof by Cor. 2.9. N

The applications 2. and 3. show that on the standard simplex of B? and on
the hypercube of RP the Bernstein polynomials are dense in the space of Ricmann
integrable Minetions with respect Lo the R-sequential convergence.
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