A NOTE ON ISOMORPHISMS BETWEEN POWERS OF BANACH SPACES

J. C. Díaz

ABSTRACT. We are concerned with the following problem: "Let E and F be Banach spaces such that E^I is isomorphic to F^I for some infinite set I. Then, when does it follow that E is isomorphic to F?" Here, we provide a partial answer to this problem and characterize the Banach spaces E which are isomorphic to any F whenever $F^{\mathbb{N}}$ is isomorphic to $E^{\mathbb{N}}$.

: use standard terminology of the theory of locally convex spaces (l.c.s from now).

Given E and F l.c.s, F < E means that F is a complemented subspace of E. l.c.s. E is called prime (resp. primary) if, whenever F < E, then $\dim F < \infty$ or $\simeq E$ (resp. whenever $E \simeq F \oplus G$ then either $E \simeq F$ or $E \simeq G$).

For a Banach sequence space $(\mu, ||\cdot||_{\mu})$ and a Banach space E we shall let $\mu(E)$ the Banach space of all sequences $(x_n)_n$ such that $x_n \in E$, for all $n \in \mathbb{N}$, and $||\cdot|_{n} \in \mathbb{N}$, with the norm

$$||(x_n)_n|| = ||(||x_n||)||_{\mu}.$$

The following lemma is the key of this paper.

mma 1. Let E be an l.c.s. and let us fix $\mathcal{U}(E)$ a base of absolutely convex neighurhoods of 0 in E. If B is a (complemented) normable subspace of E, then there ists a neighbourhood $V_0 \in \mathcal{U}(E)$ such that B is isomorphic to a (complemented) bspace of the local Banach space E_V , for each $V \in \mathcal{U}(E)$, $V \subset V_0$.

oof. Let us denote by Q the norm defining the topology of B, and by P_V the nkowski functional of V, for each $V \in \mathcal{U}(E)$. Then, it is straightforward that there

is $V_1 \in \mathcal{U}(E)$, and, for each $V \in \mathcal{U}(E)$, there is $M_V \in \mathbb{R}$ such that

$$Q(x) \le P_{V_1}(x), \qquad P_{V_1}(x) \le M_{V_1}(x), \qquad \forall x \in B$$

So. if $V \subset V_1$ we get

$$P_{V_1}(x) \le P_V(x) \le M_V P_{V_1}(x), \quad \forall x \in B.$$

Hence, for each $V \subset V_1$, the canonical mapping $I_V : E \to E_V$, restricted to B, is isomorphism onto $I_V(B)$.

Let us now assume that B is complemented in E and denote by H the project from E onto B. There exists $V_2 \in \mathcal{U}(E)$ such that

$$P_{V_1}(H(x)) \le P_{V_2}(x), \quad \forall x \in E.$$

Then, for each $V \in \mathcal{U}(E)$, $V \subset V_2$, we can define a continuous mapping $H_V : E_V$ – so that $H_V \circ I_V = H$. It follows that $I_V(B)$ is isomorphic to B and complemented E_V , for each $V \in \mathcal{U}(E)$ with $V \subset V_1 \cap V_2$.

Remark. Let us recall the following fact which we shall need below: Let E and be l.c.s. isomorphic to their Cartesian square, and such that E < F < E. Then isomorphic to F.

We are now in conditions to prove our main result.

Theorem 2. Let E, F be Banach spaces and let I be an infinite set. The follow are equivalent:

- 1) E^I is isomorphic to F^I .
- 2) There is an index $n \in \mathbb{N}$ such that $E < F^n$ and $F < E^n$.
- 3) $E^{\mathbb{N}}$ is isomorphic to $F^{\mathbb{N}}$.

Proof. 1) \rightarrow 2) Let us assume that E^I is isomorphic to F^I . Then E is isomorphic to a complemented subspace of F^I , hence, from Lemma 1, E is isomorphic to complemented subspace of F^J , for some finite set $J \subset I$. In the same way, there finite set $J' \subset I$ such that F is isomorphic to a complemented subspace of $E^{J'}$. result follows by taking

$$n = \max\{\operatorname{card}(J), \operatorname{card}(J')\}.$$

- 2) \rightarrow 3) Under the assumption, it is easy to see that $E^{\mathbb{N}} < F^{\mathbb{N}} < E^{\mathbb{N}}$. M over, $E^{\mathbb{N}}$ and $F^{\mathbb{N}}$ are isomorphic to their Cartesian square. The assertion is the consequence of the remark.
 - 3) \rightarrow 1) It is immediate.

From 2) of Theorem 2 we get the following.

rollary 3. Let E and F be Banach spaces isomorphic to their Cartesian square d let I be an infinite set. If E^I is isomorphic to F^I then E is isomorphic to F.

Notice that the hypothesis on E and F in Corollary 3 can't be dropped unless ne additional assumption is added. Indeed, take a Banach space E non isomorphic its Cartesian square, (e.g. see [1]) and put $F := E \oplus E$. Then $F^{\mathbb{N}}$ is isomorphic $E^{\mathbb{N}}$ but E is not isomorphic to F. These results lead us to introduce and study class \mathcal{R} consisting on those Banach spaces E such that E is isomorphic to F, for y Banach space F such that $E^{\mathbb{N}}$ is isomorphic to $F^{\mathbb{N}}$. We are now concerned with ding a characterization of \mathcal{R} .

'oposition 4. A Banach space E is in \mathcal{R} if and only if the following three conditions Id:

- i. $E \simeq E \oplus E$.
- ii. For every Banach space such that E < F < E, one has $E \simeq F$.
- iii. For every Banach space such that $E \simeq F^n$ for some $n \in \mathbb{N}$, one has $E \simeq F$.

oof. In a first place, let us assume that $E \in \mathcal{R}$. Condition i. hold as we have eady noted. To show condition ii. (resp. condition iii.) let F be a Banach space of that E < F < E (resp. $E \simeq F^n$ for some $n \in \mathbb{N}$), then $E^{\mathbb{N}} < F^{\mathbb{N}} < E^{\mathbb{N}}$, hence $\mathbb{N} \simeq F^{\mathbb{N}}$ (resp. it is clear that $E^{\mathbb{N}} \simeq F^{\mathbb{N}}$). Thus, in any case, E is isomorphic to F.

To show the converse implication let us take a Banach space F such that $\simeq F^{\mathbb{N}}$. From 2) of Theorem 2, and by i., we have $F^n < E < F^n$, for some $\in \mathbb{N}$. By applying conditions ii. and iii. we get $E \simeq F$, so $E \in \mathcal{R}$.

By using Proposition 4 it is easy to see that $E \in \mathcal{R}$ whenever E is a prime Banach ace isomorphic to its Cartesian square. So, the familiar Banach spaces c_0 and ℓ_p , $\leq p \leq \infty$, are in \mathcal{R} (let us note, however, that there are no prime Banach spaces own other than c_0 and ℓ_p , $1 \leq p \leq \infty$). The spaces $\ell^{p_1} \oplus \ell^{p_2} \oplus \cdots \oplus \ell^{p_n}$, $1 \leq p_i < \infty$, o are in \mathcal{R} (cf. [6]). Furthermore, we shall obtain from Proposition 4 the following ficient condition for a Banach space to be in \mathcal{R} .

orollary 5. Let E be a Banach space such that:

- a) E is isomorphic to $\mu(E)$, where μ is one of the spaces c_0 or ℓ^p , $1 \le p \le \infty$.
- b) E is primary.

Then $E \in \mathcal{R}$.

Proof. It is left to the reader to check that a) implies conditions i. and ii. of Prosition 3 (to see ii. use the Pelczyński's decomposition method), and b) clearly improndition iii.

Now, a large class of examples arises. Indeed, the following Banach spaces in \mathcal{R} .

- α) $L^{p}([0,1]), 1 \le p < \infty$.
- β) C([0,1]) (cf. [5]).
- γ) $\ell^p(X)$ where X is a Banach space with a symmetric basis, not isomorpho to ℓ^1 , and $1 , <math>\ell^p(\ell^\infty)$; $c_0(\ell^\infty)$; the Pelczyński's complementa universal space U for all Banach spaces with unconditional bases (cf. and [4]).
- δ) $\ell^p(L^r)$, $1 \le p, r < \infty$ ([2] and its references).

References

- [1] C. Bessaga and A. Pelczyński, Banach spaces non-isomorphic to their Ca sian square, I, Bull. Acad. Pol. Sci. 8 (1960), 77-80.
- [2] M. CAPON, Primarité de $\ell^p(L^r)$, Math. Ann. 250 (1980), 55-63.
- [3] P. G. CASAZZA AND BOR-LUH LIN, Projections on Banach spaces with symmetric bases, Studia Math. 52 (1974), 189-193.
- [4] P. G. CASAZZA AND C. A. KOTTMAN, On primary Banach spaces, Bull. Ar. Math. Soc. 82 (1976), 71-73.
- [5] A. Pelczyński, On C(S) subspaces of separable Banach spaces, Studia Ma 31 (1968), 513-522.
- [6] P. WOJSTASZCZYK, On complemented subspaces and unconditional bases $\ell^p \oplus \ell^q$, Studia Math. 47 (1973), 197–206.

Received 9/NOV

J. C. I Matemáticas, ETSI Agrónoi 14004 Córd SPA