MUTATIONS OF C*-ALGEBRAS AND QUASIASSOCIATIVE JB*-ALGEBRAS

Angel Rodríguez Palacios

Introduction

ne centroid of an algebra A is the largest ring over which A can be regarded as an gebra. In case A is a C*-algebra, the centroid of A also has a natural structure of C*-gebra and, for f in the centroid of A with $0 \le f \le 1$, the f-mutation of A (denoted f)) with the same norm as A is a (complete) normed algebra in the classical sense at the norm is submultiplicative (see [4], section 2). To be more precise, the algebras f) as above are examples of noncommutative JB*-algebras (see [2] for definition) nich are split quasiassociative over their centroids. In this note we prove that there e no other examples, thus answering by the desired negative a problem posed in . Our proof is strongly based in the main result in [4] and the Dauns-Hofmann eorem.

1. Mutations of C*-algebras

 \pm R be a (unital associative and commutative) ring and let A be an algebra over R $^{\prime}$ e assume

$$r \in R$$
, $rA = 0 \Longrightarrow r = 0$).

or any fixed r in R, the r-mutation of A (denoted $A^{(r)}$) is defined as the new algebra th the same R-module as A and product

$$(a,b) \longrightarrow r a b + (1-r) b a.$$

we centroid of A (denoted by C(A)) is defined as the set of those additive mappings from A into A satisfying

$$f(ab) = a f(b) = f(a) b$$
 for $a, b \in A$.

When A has zero annihilator, i.e.

$$a \in A$$
, $aA = Aa = 0 \Longrightarrow a = 0$,

it is well known that C(A) is a ring so that A can be regarded as an algebra C(A), and R can be imbedded in C(A) in an obvious way. If A is a complete nornal gebra with zero annihilator, then C(A) is a closed (commutative) subalgebra of Banach algebra BL(A) of all continuous linear operators on A (use the closed gratheorem to verify the inclusion $C(A) \subset BL(A)$), and, if actually A is a C^* -algebra under the involution defined by

$$f^*(a) = (f(a^*))^*$$
 for $f \in C(A), a \in A$.

Usually, for a C*-algebra A, the centroid C(A) appears in the literature unde concrete realization as closed self-adjoint subalgebra of the bidual of A, namely as center of the algebra of multipliers of A (see, for example, [3]).

In this section we deal with the following question. Given a C*-algebra A, de mine the elements f in the centroid of A for which the norm of A is submultiplication the f-mutation of A. As asserted in the introduction, elements f with $0 \le f$ are examples of such a situation.

Lemma. Assume that the C^* -algebra A is not commutative and let λ be in $\mathbb C$ s that

$$||\lambda a b + (1 - \lambda) b a|| \le ||a|| ||b||$$
 for $a, b \in A$.

Then $0 \le \lambda \le 1$.

Proof. By Kaplansky's theorem ([1], Appendix III, Theorem B), there exists a is with ||a|| = 1 and $a^2 = 0$. Let α , β be in $\mathbb C$ such that

$$|\alpha| = |\beta| = 1$$
, $\alpha \lambda = |\lambda|$ and $\beta (1 - \lambda) = |1 - \lambda|$,

and write $b := \alpha a^* a + \beta a a^*$. Then ||b|| = 1 and

$$1 = ||a|| ||b||$$

$$\geq ||\lambda a b + (1 - \lambda) b a||$$

$$= (|\lambda| + |1 - \lambda|) ||a a^* a||$$

$$= |\lambda| + |1 - \lambda|.$$

Therefore $0 \le \lambda \le 1$, as required.

neorem 1. Let g be in the centroid of a C*-algebra A and assume that

$$||g a b + (1 - g) b a|| \le ||a|| ||b||$$
 for $a, b \in A$.

ien there exists f in the centroid of A with $0 \le f \le 1$ and

$$f a b + (1 - f) b a = g a b + (1 - g) b a$$
 for $a, b \in A$.

oof. Let Prim(A) denote the set of primitive ideals of A endowed with the Jacobson pology. By the Dauns-Hofmann theorem ([3], Corollary 4.4.8) for h in C(A) and t Prim(A), there is a unique complex number $\hat{h}(t)$ such that

$$h a - \hat{h}(t) a \in t$$
, for $a \in A$,

d the mapping $h \to \hat{h}$ is a *-isomorphism from C(A) onto the C*-algebra (Prim(A)) of all complex valued bounded continuous functions on Prim(A). Now, for t in Prim(A) we denote by π_t the canonical mapping $A \to A/t$, by (1) we have

$$||\hat{g}(t) \pi_t(a) \pi_t(b) + (1 - \hat{g}(t)) \pi_t(b) \pi_t(a)|| = ||\pi_t(g \ a \ b + (1 - g) \ b \ a)||$$

$$\leq ||g \ a \ b + (1 - g) \ b \ a||$$

$$< ||a|| ||b||$$

all $a, b \in A$. Changing a by $a' \in \pi_t(a)$ and b by $b' \in \pi_t(b)$ and taking infimum, we tain

$$||\hat{g}(t) \pi_t(a) \pi_t(b) + (1 - \hat{g}(t)) \pi_t(b) \pi_t(a)|| \le ||\pi_t(a)|| ||\pi_t(b)||.$$

t is not 1-codimensional in A, then A/t is not commutative so, by the Lemma, $\leq \hat{g}(t) \leq 1$ in this case. Let f be in C(A) such that

$$\hat{f}(t) = \max\{0, \min\{1, \operatorname{Re} \hat{g}(t)\}\}$$
 for $t \in \operatorname{Prim}(A)$.

nen clearly $0 \le f \le 1$ and $\hat{f} - \hat{g}$ vanishes in the set of primitive ideals of A which is not 1-codimensional so in particular, using (1), we have $(f-g)[A,A] \subset t$ for y primitive ideal t which is not 1-codimensional. But if the primitive ideal t is codimensional, then the inclusion $[A,A] \subset t$ is obvious so

$$(f-g)[A,A] (= [(f-g)A,A]) \subset t,$$

o. Therefore

$$(f-g)[a,b]=0$$
 for $a,b \in A$.

)W

$$f a b + (1 - f) b a = b a + f [a, b]$$

= $b a + g [a, b]$
= $g a b + (1 - g) b a$.

2. Quasiassociative JB*-algebras

An algebra B over a ring R is said to be a split quasiassociative algebra (over R there are an associative algebra A over R and an r in R such that $B = A^{(r)}$. Sociative algebras are particular types of noncommutative Jordan algebra which are defined as those nonassociative algebras satisfying

$$a(ba^2) = (ab)a^2$$

$$a(ba) = (ab)a$$

for all a, b in the algebra. Recall ([2]) that a noncommutative JB*-algebra is complete normed noncommutative Jordan complex algebra (say B) with algebra volution * such that

$$||U_b(b^*)|| = ||b||^3$$

for all b in B, where U_b is defined by

$$U_b(c) = (b c + c b) b - c b^2$$

for all c in B. (Associative) C*-algebras and (commutative) JB*-algebras are particular types of noncommutative JB*-algebras. Also, for any noncommutative JB algebra B, B+ (the 1/2-mutation of B) is a JB*-algebra under the same normal involution as B.

For next reference we state the main result in [4] which is a particular non triconverse to the last assertion.

Proposition ([4], Theorem 2). Let A be an associative complex algebra and assuthat A^+ is a JB^* -algebra for suitable norm and involution. Then A, with the sanorm and involution, is a C^* -algebra.

Note that the given involution on A^+ is not assumed to be an algebra involut on A.

If A is a C*-algebra and f is in C(A) with $0 \le f \le 1$, then $A^{(f)}$ (with the sa norm as A) is a noncommutative JB*-algebra which is split quasiassociative over centroid (see [4]). Now we can prove the converse result.

Theorem 2. Let B be a noncommutative JB^* -algebra which is split quasiassocia over its centroid. Then there are a C^* -algebra A and an f in C(A) with $0 \le f$ such that $B = A^{(f)}$.

Proof. By the definition of split quasiassociative algebras there are an associa algebra A over C(B) and g in C(B) such that $B = A^{(g)}$. Since $A^+ (= B^+)$

-algebra, it follows from the above Proposition that A, with the same norm and olution as B, is a C-algebra. Clearly g belongs to C(A). Now, if the product of g denoted by juxtaposition, then, since g is a normed algebra, we have

$$||g a b + (1 - g) b a|| \le ||a|| ||b||$$

all a, b in the C*-algebra A. By Theorem 1 there exists f in C(A) such that $f \leq 1$ and f = 1 and f

References

-] I. KAPLANSKY, Rings of Operators, Math. Lecture Note Series, Benjamin, New York, 1968.
-] R. Payá, J. Pérez and A. Rodríguez, Noncommutative Jordan C*-algebras, Manuscripta Math. 37 (1982), 87-120.
- G. K. Pedersen, C*-Algebras and Their Automorphism Groups, London Math. Soc. Monographs 14, Academic Press, London, 1979.
-] A. Rodríguez, Jordan axioms for C*-algebras, Manuscripta Math. 61 (1988), 297-314.

Received 10/JUN/88

Angel Rodríguez Palacios Departamento de Análisis Matemático Facultad de Ciencias Universidad de Granada 18071 Granada SPAIN

