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SOME CHARACTERIZATION THEOREMS
FOR THE DISCRETE HOLOMETRIC SPACE

A. Vijaydkumar

ABSTRACT. This paper extends our earlier results on the prop-
erties of the discrete holometric space. Here, a characterization of
_domains is given and proved that domains are invariant under D-
isometries. Also, we introduce the notion of D-kernel and some of
its properties are studied.

1. The discrete holometric space

: consider the discrete subset of the complex plane H = {(¢™zg, ¢"yo); m,n € Z}
ere ¢ € (0,1) is fixed and (20, yo) is a fixed point in the first quadrant, zq, yo # 0.
e points z = (¢™zo, ¢"yo) are called lattice points.

The discrete plane H was first considered by Harman [4] in 1972 to evolve the
crete analogue of analytic function theory. Earlier, in [6,7] we have introduced and
estigated the properties of D-linear sets, r-sets, etc. which are discrete analogues

segments and circles. Some special type of discrete transformations also have been
.died in [8].

We shall now consider the following fundamental concepts.
finition 1. Let 2z € H and consider
N(z) = {(g™*" 20,4" v0), (™ =0, 4" ' %0), (™ ' 70, ¢ %0), (4™ 20, 4" " *10)}-

discrete curve joining any two points z; and z; in H is a finite sequence of points
H,C =(z1,22,...,2:) where z;41 € N(z),for i =1,2,...,t — 1. A discrete curve
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between two given points consisting of a minimum number of lattice points is cal
a path joining them.

Definition 2. Let z = (¢™zo, ¢"yo) € H. Then

S(2) = {(d™20,9" ), (4™ 20, 9" ¥o), (4" 20, 4" o), (4™ 20, 4" T y0)}

is called the basic set associated with z. A finite union of basic sets is called a regi
R. If R can be expressed as a union of basic sets, Ul_,B; with B; N B;y1 #
t=1,2,...,t — 1, then it is called a domain, denoted by D.

Definition 3. Consider two points z; = (¢™!zg, ¢ yo) and 25 = (¢™?zg,q"?yYg) €
The distance d between z; and za is defined as d(z1,22) = N — 1, where N is
number of lattice points of a path joining them. Equivalently,

d(z1,23) = |1 — ma| + |n1 — na|.

This metric takes only integral values and H = (H, d) is called the discrete holomet
space.

Definition 4. Let A be a finite subset of H. A is said to be D-linear if we can la
the points of A as A = {21, 22,...,2,} such that

n—1

d(z1,20) = ) d(2i, zig1).
i=1

Note 5. When we write the D-linear set A = {23,22,...,2,} we mean t
Z1,29, ..., 2 are in that order in which

n—1
d(zl, z,,) = Z d(z.-, Z,‘+1).
i=1

2. A characterization of domains

In this section, we shall give an equivalent definition of domains, following [1] .
prove that they are invariant under D-isometries.

Definition 6. Consider two basic sets B; and By. Then,

min{d(z1,22) : z; € By, 22 € By}
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defined as the distance between B; and Bj, denoted by d(B, B»).

efinition 7. Two basic sets By and B3 are adjacent if there are two pairs of points
,Zi EBI,Zz,ZQEBz such that :

d(Zl,Zz) = d(z;., Z;) = d(Bl,Bz) =1.

efinition 8. z; = (¢™* z¢,¢™ yo) and 22 = (¢™2 20,¢"™2 o) are in the same hori-
ntal (vertical) set if ny = na (my = my).

ote 9. If B; = S(z,) and By = S(z3) are two adjacent basic sets, then z;, zo belong
the same horizontal or vertical set. Consequently, for a given basic set, there are
ur basic sets adjacent to it.

heorem 10. If D = U§=1 B; is such that B; and B;y; are adjacent for i =
2,...,t—1, then D is a domain.

roof. Let D = Uf=1 B; such that B; and B;y; are adjacent for i = 1,2,...,t — 1.
hen B;y; falls in one of the four cases mentioned in note 9. In any case, we can
1d a basic set (say) B, such that B; N B # 0 and B;;; N B # #. Include B also in
ir collection of basic sets and, proceeding like this, D can be expressed as a union
‘basic sets {B}}]_; with BN B/, # 0, where T > t. Hence D is a domain.

ote 11. In [1], Bajaj has defined connectedness in an integer-valued metric space
. follows. Let (A, d’) be an integer-valued metric space. Then (A4, d') is connected
there do not exist non-empty disjoint sets A; and Az, A; C A, Ay C A, such that
1UAs = A and

min{d'(z,y) 1z € Ay, y € A3} > 1.

. a theorem, he further establishes that (A, d’) is connected if and only if given any
ur z, y of distinct points in A, there are points = ;, 23, ..., £, = y in A, such
at

d'(z;, i) =1 fori=1,2,...,p~1.

heorem 12. Consider a union of basic sets,

hen, R is connected if and only if {B;}_, can be relabelled as {B!} such that
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Proof. Let R = U:=1 B; be connected. That is, given any two points z and £ of
there are points z = 21, 23, ..., 2z = £ such that

d(zi,zig1) =1 fori=1,2,...,n—1.
Consider B; and choose all other basic sets B; in {Bg, Bs, ..., B;} such that
d(leBi) < 1.

By tracing back if necessary at each step to Bj, these basic sets together with B;
be relabelled as Bj, Bj,..., B} such that

d(B!,Bl;)<1 fori=12,...,t—1.

If no such basic sets exist, then every other basic set B, is such that d(By, B,) :
Choose one such B,. So by definition every pair of poinis 2; € B; and z3 € B
with d(z;,z3) > 2. For any such pair, we cannot find a sequence of points satisfy
the hypothesis and hence the supposition that there are no basic sets with the ab
property leads us to a contradiction. Now, in the remaining basic sets of R, if t}
is at least one basic set B; which is at distance < 1, with at least one among
Bj,..., By (say) By, then we can similarly relabel the collection of all such basic :
together with those already relabelled, by tracing back if necessary at each steg
B, such that the distance is less than or equal to 1. Thus, proceeding likewise
basic sets constituting R can be relabelled as {B{};_; such that d(Bj}, B ;) < 1.
The converse can be proved easily. Hence the theorem.
Note 13. In the labelling { B;} mentioned, if further B}, Bj,, are adjacent then R
domain. Conversely if R is a domain, then it is connected and there is labelling B} s

that Bj, B}, are adjacent for i = 1,2,.... Thus we have a metric characterizatio
domains. :

Using the above results, we prove the following theorem establishing the pre
vence of the property of being a domain under D-isometries [8].

Theorem 14. If D is a domain and T : H — H is a D-isometry, then T(D) is .
a domain.

Proof. Let D = U:=1 B; be a domain. Then the basic sets B; and B;4; are adjac

and for any two points z, £ of D , there are points z = 2y, 29, ..., € =z, in D s
that d(z;,2;41) = 1,4 =1,2,...,n — 1. Since T is a D-isometry, by definition,
points z1, 2g,...,2, with d(z;, 2;4,) = 1 will be mapped onto points w;,ws,....

with d(w;,w;4+1) = 1 and further the adjacency of basic sets will also be presers
Hence TY(D) is also a domain.
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3. D-kernel

>oley [2], German [3], Soltan [5] and many others have studied convexity and related
ncepts in metric spaces. In [7], we have defined D-convexity for subsets of H and
udied some of its properties. In this section, we introduce the notion of D-kernel
¢ subsets of H and some characterization theorems are proved.

efinition 15. Let A be a nonempty finite subset of H. Then, A is D-convex if for
ery z,,zs € A,
[21,29]) = {2 € H : B(21,2,25)} C A.
"Here, B(z1, 2, 25) means that z is holometrically between z; and z,, and satisfies
d(z1,z9) = d(21,2) + d(z, z3).

ste that the empty set is trivially D-convex and the definition could be extended to
finite snbsets of H also.

efinition 16. Let A be a subset of H. Then the set of all the z; € A such that for
ery z; € A, all the D-linear sets with z; and z; as end points are contained in A4, is
lled the D-kernel of A, denoted by D — ker(A).

xamples 17. (1) Let

Ay = {z0 = (%o, %0), 21 = (¢%0,Y0), 22 = (¢ 20,9 Y0), 23 = (T0,9 Y0),
za = (g7 20, %0), 25 = (7" 20, ¢ %), 26 = (£0,4" ¥0)}-

aen, )
D- ker(Al) = {Zo}

) Let

Az = A1 U{zr = (g0,  10)}-
hen,

D — ker(As3) = {0, 21, 26, 27}-

) Let

Az = Ay U{zz = (g7 20,9 30)}
hen,

D — ker(As) = As.

In the above examples, it turns out that D — ker(As) is D-convex, Az is D-
mvex and its D-kernel is itself. This is true in general and is proved in the following
eorerms.
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Theorem 18. For any nonempty subset A of H, D — ker(A) is always D-convex

Proof. Consider two points 23,2, € D — ker(A). That is, for every z; € A, all
D-linear sets joining 2; to z; and 23 to z; are contained in A. Required to prove t
all the points between 2; and 23 are in D—ker(A). That is, if £ is any such point, t
all the D-linear sets joining £ and z;, for every z; € A are contained in A7 Supf
not. That is, there exists at least one point n € A such that the D-linear set joir
£ and 7 is not contained in A. That is, there exists a D-linear set (say)

Ll = {Eaalﬁa%“-)n} ‘

joining 1 and € of A containing some points not in A. Now £ is a point betweer
and zg. So there exists a D-linear set joining z; and £ viz.,

L2 = {zlyﬁlaﬂZa""E}'

Now
L3 = {zlaﬂl)ﬂ21"~,£7alya2)'-'an}

gives a D-linear set joining z; and # (this works since 7 is a point between 2z; and
which is not contained in A and n € A, which implies that z; ¢ D — ker(A4). ~
leads us to a contradiction. Hence the theorem.

Theorem 19. Let A be a nonempty subset of H. Then, D —ker(A) = A if and «
if A is D-convex.
Proof. Let D — ker(A) = A. Then, by the previous theorem, A is D-convex.

Conversely, let A be D-convex. So by definition, for every 2, z; € A,
{z € H:B(zi,2,z;)} C A

Now, D — ker(A) is equal to the set of all the z; € A such that for every z; ¢
all the D-linear sets joining z; and z; are contained in A, and equal to A since
D-convex. Hence D — ker(A) = A if and only if A is D-convex.

Theorem 20. Let A and B be two D-convex sets. Then, ANB C D — ker(AU

Proof. Since A and B are D-convex sets, AN B is also D-convex. Let z € Af
To prove that z € D — ker(A U B). That is, to prove that for any z; € AUB, e
D-linear set from z to z; 1s contained in AU B. Without loss of generality, let 2; ¢
Then z,z; € B and B is D-convex. So the result follows.
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