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ABSTRACT
The object of this paper is to derive some interesting asymptotic formulz for
spectra of a general convex domain in two or three dimensions, linked with
variation of two positive distinct functions entering the boundary conditions

on two “parts” of the smooth boundary of this domain. Further results may
be obtained.

1. Introduction

The underlying problem (1.1)-(1.3) can be considered as a generalisation of recent
work of Zayed [1], which determine the precise shape of a vibraling membrane from

the complete knowledge of the cigenvalues pix(oq,07) for the Laplace operator A,
inR*. n=2or3.

Let ©Q be a simply connected bounded domain in R® with a smooth boundary
JQ in the case n = 2, or a smooth bounding surface S in the case n = 3. Consider
the impedance problem

(_-'3,\,, + /\)u =0 in (1, (1.1)

(L + m) u=1>0 on ¢ (or.S)), (1.2)
()Tl|

(,— + 02) =10 on th ) (or 5y), (1.3)
dny
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where §/dn; and 0/dn, denote differentiations along the inward pointing normals
to 0;Q (orSy) and 9,Q (orS;) respectively, in which 8,1 is a part of the boundary
JQ and 3,9 is the remaining part of 92 while ) is a part of the bounding surface
S and S is the remaining part of S, o, and o, are positive functions. Denote its
cigenvalues, counted according to multiplicity, by

0 < pmi(o1,02) < po(o1,02) < +++ £ pr(oy,02) <

. — 00 (1.4)

as k — .

At the beginning of this century the principal problem was that of investigating
the asymptotic distribution of the cigenvalues (1.4). It is well known [1] that, in the
case n = 2,

1e(o1,02) ~ (%) k (1.5)

as k — oo, while, in the case n = 3,

2 2/3
b ) (1.6)

u’k(alsa‘l) ~ (—-‘/— k

as k — oc, where || and V respectively are the area and the volume of the domain €.

The problem of determining further information about the geometry of  as
well as the impedances o7 and a3 from a complete knowledge of the eigenvalues
1k(01,02) has been discussed recently in [5] when n = 2 and in [6] when » = 3, in
the case oy and o are positive constants, through the asymptotic expansions of the

spectral function
[0 o)

6(t) = ZOXP{—l/l,k(U'l,(Tg)}, (1.7)
k=1
for small positive (.
Thus in the case n = 2,0 < 0,09 << 1

] 99 1

o(1) = At + —8(7rl)'/2 + 6 [l

3

T

(1101 ) + azmzm)] +0(1'/?) (1.8)

as L — 0, while in the case n = 3,0 < 0),09 << |

1% S 1
- Il — 30,)dS
o antpz t T6m T 127r3/2t‘/2{./51( da1)dS)

+ ([I—:iag)d.5'2}+()(l,'/"’) (1.9)

J 8,
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as | — 0, where
171 |
R, and R; are the principal radii of curvature.
With reference to [5, Section 2], (1.8) may be interpreted as:
(i) @ C R? is a convex domain and we have the impedance boundary conditions
(1.2), (1.3) with small impedances o; and o3, or
(i) @ C R? is a convex domain with
3
T
holes and has area |§}| and its boundary has length [892] = |09 + |0:9| together
with Neumann boundary condition, provided 3/7 (01|01 Q| + 02|8:9]) is an integer,
where |3,92| and |322| are the lengths of 3G and 9,0 respectively.
Similarly, with reference to [6, Section 2], (1.8) may be interpreted as:
(i) 2 C R? is a convex domain and we have the impedance boundary conditions
(1.2), (1.3) with small impedances oy and o, or
(i) @ C A® is a convex domain, has volume V and its surface has arca
S = 81+ 52 and a part of the surface has area §y and mean curvature (H — 3a,),
while the other part has area S; and mean curvature (H — 30;) together with Neu-
mann boundary condition.
[n Theorem 1, we generalise the results (1.8) and (1.9) to the case when oy and
o, are positive functions satisfying the Lipschitz condition, by using the expression

(0‘1 |0l Ql + oy !02!2])

Z{l‘k(ah“‘z) + 1’}_2, (1.10)
k=1

where P is a positive constant.
In Theorein 2, we show that this generalisation plays an important role in
establishing a method to study the asymptotic behaviour of the difference

Z {ur(es, B2) — prlar, B1) }, (1.11)

te(o1,02) <

for large values of A, where the three pairs of functions (o, 02), (2, 81) and (a3, 8)
are distinct and satisfy the Lipschitz condition and the summation is taken over all
values of k for which pix(o1,0,) < A. The method uses an interesting and important
Tauberian theorem due to Hardy and Littlewood and developed by Titchmarsh [3].

+ Theorems 3 and 4 contain further results wich can be considered as a generali-
salion of the resulls of Theorem 2.
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2. Statement and proofs of results

Theorem 1

If the functions 01(Q), 02(Q) satisfy the Lipschitz condition and if P is a positive
constant, then in the case n = 2

- 1Y) Q
Z{ﬂk(”l o)+ P} = l l 1(|33'~*|/2 + 6}1’2 {1 B %[/8,9 01(Q)dQ

+ /8 @]} +0(57) 2.1)

as P — oo, while in the case n = 3

i -2 V AS‘
> {slonon) + PY = oo + 5ip + g, (@ - 3@ 40

+ /bz [H(Q) - 302(Q)] dQ} +0 (—ﬁ) (2.2)

as P — 0.

Remark 1. The expression (1:10) is just the Laplace transform of the function t6(1)
with respect to £, and P > 0 is the Laplace transform parameter. Using this we
deduce that the formulax (2.1) and (2.2) can be considered as a generalisation of the
formulee (1.8) and (1.9) respectively.

Theorem 2 _
If the three pairs of functions (01(Q), 02(Q)). (1(@),51(Q)), (2(Q), 32(Q))
are distinct and satisfying the Lipschitz condition, then in the case n = 2,

S fnelen -l = 5{ [ (@) - (@) 40

uilo1,02)<A
+ / [62(Q) - 81(Q)] dQ} to(})
J 8.9 (2.3)

as A — oo, while in the casen = 3

,\dz

T {u(02.82) — e, 81} = W{ / [2(Q) — ()] dQ

me(71,02)<A
. + / [ﬂz(Q)_ 5 (Q)] (]Q} + 0(,\3/2)
" (2.4)

as A — x.
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Formulae (2.1)-(2.4) can be considered as a generalisation of the familliar for-
mulie of Gel'fand and Levitan [2] for the difference of traces of two Sturm-Liouville
operators. These formulx also can be considered as a useful extension of recent
results of Zayed [4, Section 2].

Let us now give the proofs of Theorems 1, 2, using the Laplace transform of
Green's function of the heat equation

(A,,, - i) =0, n=2or 3,
at

with respect to the time ¢, and use * as the Laplace transform parameter [4].

Proof of Theorem 1. With reference to [4, Section 2], let
. 1
G(M,My;—s%) = 5 Ko(s|M — Mq|) — g(M, My;~s?), (2.5)
be the Green’s function of the expression (A — s2)u in the domain Q@ C R? for the
impedance boundary conditions (1.2), (1.3) on & and 9,9 respectively, where s
is a sufficiently large positive coustant while M and M, are points belongiug 1o the

domain Q. As M| — M the equality

G(M,My;—s7) — G(M, My;—*) =

1)y (M) pe(M) |
- 32 _32 ¢k(1 : P ’ 2.6
( L :Z:n {ur(or,02) + stHuk(o1, 02) + 52} (2.6)
where {¢x(A)} are normalized cigenfunctions and s # s, implics
2% log (l:') + g(.-”,;'l_l; —s'f) - _'(1(.-'11., M; —32) _
Mot 02

2 2 dL(M) ‘.
- 2 - 2.7
b ) ; {nel(or,02) + 51} {pi(or,02) + 2} (2.7)

Thus we get the formula

_ 1

T 4ws?

Z{/lk(”|702)+$2}_2 +
k=1

N

8.

//g;(.-lff,l’u;—s"’)(l.-lf. (2.8)
Q
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Using methods similar to those used in [5] we can show that

_ Q] 1 _3/
//(]g (M, M;-s%)dM = — 5 T33! Mal(Q)dQ

faol}ro() o

as s — o0o. On inserting (2.9) into (2.8) and letting s2 = P we arrive at the for-
mula (2.1).
Similarly, let

exp(—s|M - M,|)
Az [M = My

G(M, M —5%) = —§(M, My;—-s?), (2.10)

be the Green’s function of the expression (Az — s2)u in the domain @ C R? for the
impedance boundary conditions (1.2), (1.3) on Sy and S, respectively. As M; — M,
the equality (2.6) implies

8 — 8 _ ‘
uﬂ-_) +G(M,M;—53) — g(M,M;—s%) =

= (g2 — 42 (M)
= (o )kz=:1 {ne(ar,02) + s} {nr(o1,00) + 8%} (211)

Thus we get the formula
Z{/lk a,02) I-sz}_q ///Ja (M, M;—s )(IM (2.12)

Using methods similar to those used in [6] we can show that

// /JS (M, M5 =) ad = o+ 2isz{/Sl[u«z)—sa.(cz)] dQ

+ [ [H(Q)-30:(Q)] dQ} +0 (3%)(2.13)

J Sq

as s — oo. On inserting (2.13) into (2.12) and letting s* = P, we arrive at the
formula (2.2). O
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Note that the proof of cither (2.9) or (2.13) is omitted here since it is very
similar to those obtained in [5] or [6] respectively.

Proof of Theorem 2. With reference to [4, Section 2], let us assume that a(Q) >
a1(Q), (Q € 0,92) and B2(Q) > £i1(Q), (Q € %) and introduce the non-negative

and non-decreasing function

aN) = > {mler,B2) - pr(er,B)}; (2:14)

ie(o2,02)<A

moreover we let

¥(P) = Zoo: {1k(az, B2) = pa(0n, 8)) {p(o2, B2) + 2uk(n, 1) + 3} . (2.15)
k=1

{ni(az, B2) + P} {ur(ar, B1) + P}

Using formula (2.1) first for the functions (a;(Q), 81(Q)), then for the functions

(@2(@),52(Q)) and subtracting the second one from the first, we find after some
reduction that

P {pr(aa, B2) — pr(ay, i)} 1 . .
zk2=:1 {nr(az,B:) + PY +¥(P)= o7 P2 {/&n[ 2(Q) - ()] dQ

+ /ﬁ @ - 5@ dQ} +0 (P—l,;)

(2.16)

as I> — oo, wich can be rewritten for any a < iy (@2, 32) in the equivalent form

+x

d®(A 1
[ Gt U= g ] (@ - @) g

@

<

1 /)2 [3:(Q) - 8:(Q)] dQ} 10 (P:/z) @17)

as P’ — oo,
Further, noting that

U(P) = o{/u+°°(,\ + Py dqs(,\)}
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as > — oc, we get

T2 do(A 1
/L (A 4-(1’))3 Y 4np? {./a,n [22(@) - @1(@)] dQ

+ [ _[(@- ) dQ} (2.18)

as I’ — oo.

Applying a Tauberian Theorem of Hardy and Littlewood (sce, for example,
[3, p. 364]), we find that

o0 ~ 3o [ @ -a@laa+ [ [@-m@)de} @10

as A — 20. Analogously, one establishes the asymptotic formula

> o) = et 80} ~ o [ [oa(@) - an(@)] dQ

(o .B81)<A

¥ /m [8:(@) - 51(@)] dQ} (2.20)

as A — oo,
Fuarther, noting that

Z {pr(az, B2) = prlay, Br)} < Z {pr(ag,B2) — pir(ar,B1)}

nelog. A7) <A uk(01,02)< A
< Z {pi(az, B2) — pr(ar, /1)}
ue(a],B7) SN
(2.21)
where

o3(Q) = max{0(Q),a2(Q)},  F5(Q) = max{02(Q), 52(Q)},
a1 (Q) = min{o1(Q), xi(Q)}, 37(Q) = min{a2(Q). 8,(Q)},
and the [act that as A — oc the functions:

Z {pe(az, 82) — pi(ar, B1)} = Z {ur(03,03) = ur(er, B1)}

ik (o, 35) <A pr(ag . 35)<A
= > (a3, 85) — pala2,8,)},
oy, B3) <A
(2.22)
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and likewise for (a1, 37) are asymptotically equal to
A
2 {[) Q [23(@) - ()] dQ + / [82(Q) - 8:(Q)] dQ} :

we obtain (2.3) for the special case a2(Q) > a1(Q) and 5;(Q) > £1(Q). Similarly,
we derive (2.4) for the special case 02(Q) > a1(Q), (@ € Si) and £2(Q) > /(Q),
(Q € 52) as follows: Using the formula (2.2) first for the functions (a3 (Q),5.(Q)),
then for the functions (ay(@), 52(Q)) and subtracting the second one from the first,
we find for any a < pi(az,82) that

PO de(A) o] |
2 [ m”’(”—w{/ [02(Q) — 01(Q)] dQ

/[ (Q) — Bi( Q)]dQ}+0( 2) (2.23)

as I — o, and consequently

oo dd(A 1 [
/,., (A +(P))3 ~ T6x 372 { J, [02(@) — (@) 4@
+ L [8:2(Q) — B1(Q)] dQ} (2.24)

as I’ — oc.
As we have done beflore, we see that

a/2

b~ Sy {A (@ -«@]da+ /S Q- m(@) dcz} (2.25)

as A — oco. Analogously, one establishes the asymptotic formula

Z {ni(az, B2) = pi(er, B1)} ~ :\5—2-{/ [2(Q) — 1 (Q)] dQ

k(o ,31)<A
+ A [32(Q) - 51(Q)] d()} (2.26)

as A — oo.
On using (2.21) and the fact that as A — 20 the functions (2.22) for (o3, 85)
and likewise for (a7, 37) are asymptotically equal to

_/_\:r_/j {[' [2(Q) = a1 (Q)] dQ +/ [3:(Q) - 81(Q)) (1()} ,
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we obtain (2.4) for the special case a2(Q) > o (Q) and 52(Q) > 6,(Q).
In order to prove the theorem in the general case it is suflicient to apply the
equality

Z {1e(a2, B2) — pilay,81)}) = Z {urla5.057) = prlar, B1)}

ni(oy,02) <A e(a,02) <A

- Z {[Lk((fa,a(’;:)—[lk((_l'z,ﬂg)},

pr(or.02)<A

where

a5(Q) = max{0n(Q), a2(Q)},
;" (Q) = max{ﬁl((}),;’jg(())}

and apply the special case of the theoremn which we just proved. O

3. Further results
Using formmlae (1.5) and {1.6) we obtain:

Corollary 1

As N = o0 we casily show that in the case n = 2

N
: ‘ 21
Z{/l.;.,((xz,__ﬁg) — pr(ay,B1)} = (m> N + o(N), (3.1
k=1
while in the case n = 3
N 2]
{/‘tk(m-_).,-"f‘_,) — (. 5 )} - (‘7) N+ o(N), (3.2)
k=1
whore
/o / [02(Q) = 01 (Q)] Q) + / 14(Q) - £1(0)] dQ, (3.3)
Jo0 J a0
and
J = / [ag(Q) — m((})] d@Q + / [__a‘?ff-_»(Q) — ;31(62)] dq. (3.1)
J S J Sy
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Remark 2. Theorem 2 (or Corollary 1) implies that if the quantities [ # 0 and
J # 0, then for an infinite set of values of the number k the difference

{;lk(az, Be) — pi(a1,B1)}

has the same sign as the quantities ] and J.

Using Theorem 2 we easily prove the following Theorems:

Theorem 3

Let the three pairs of fuactions (01(Q), 72(Q)), (a1(Q), 81(Q)), (a2(Q), 81 (Q))

and the quantity I # 0 be the same as in (3.3). Furthermore, on the half-axis
[a,+00) let a function f(X) of constant sign be given which is absolutely continuous
on cach interval [a,b], b < oo; further we assume that the expression AFI(A)F(A) is
bounded almost everywhere and

/a+°° F(A)dA = co.

Then as A — o0

0<[.l.k((71,0'2)$A

A
S F(ulor,02)) (@, B2) — palen, B)} = {2%+o(1)} / f(t) .
(3.5)
Theorem 4

Let the three pairs of fuctions (01(Q),a2(Q)), (a1(Q), 5:1(Q)), (22(Q), 52(Q))
and the quantity J # 0 be the same as in (3.4). Furthermore, on the half-axis

[a,+oc) let a function f()) of constant sign be given which is absolutely continuous
on each interval [a,b], b < oo; further we assume that the expression Af'(N)/F(X) is
bounded almost everywhere and

+o00
/ M2 F(A)dA = .
Ja
Then as A — oo

Z J(1e(01,02)) {pr(az, B2) — pr(ar,81)} =

0<pk(a1,02)<A

- {%+o(])}/ﬂl\|t|'/"’f(t)dl.. (3.6)
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Proof. On setting
Z(A\) = Z {1r(az,B2) — pr(en, 1)},

0<px(og,02)<A

we deduce for any a < pi(0y,03) that

+x
> f(nk(al,az)){uk(az,ﬂz)—uk(al,ﬁl)}=/ f(X)dz(x). (3.7)

0<puk(o1,02) <A .

On inserting (2.3) and (2.4) into (3.7), we get casily the formula (3.5) and (3.6)

respectively. O

Using Theorems 3 and 4 we obtain :

Corollary 2
Assuming that the function f(A) of Theoremn 3 has the form

f(A) =A™, m > —1

we find as A — oo that

> w(on,0){pk(e, Br) — pr(e, 1)} =

0<pur(o1,02)<A
!
/\'m+1 ,\m+1 if —
— 27['('"1 + 1) + 0( ) vm > 1’ (38)
‘—I—IIIA-{-()“[I/\) ifm=—1.
27

Corollary 3
Assuming that the function f(A) of Theorem 4 has the form

3
f(A) =A™, m > ~3
we find as A — oo that

Z ltzt(al,az){/-lk(ﬂ'z,ﬁz) —llk(’-l'l,ﬁl)} =

0 pp(o1,02)<A

J . r _

S m 3y AT it > -
J

;2?.2' ln /\ + 0(]1’) /\)

(3.9)

3]

ifm=-
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Remark 3. Formulae (3.5) (3.9) can be considered as a generalisation of those ob-
tained in [4, Section 3].

I'rom Corollaries 2 and 3 we casily derive the following propositions:

Proposition 1
If g (g, 1) # 0, then in the case n = 2

252237 ey =Nt an (@) vo(u(my) oo

as N — oo, while in the case n = 3

/3
ne(ae,32) ( 6 )] 173 /3 .
E =N+ J|— N2 o N 3.11

/lk(m 1) 1y ( ) ( )

as N — oo.

Proposition 2

IT (e, 1) > 0 and py(ay,82) > 0 then as N — oc, we deduce that in the
casen =2

hY
> {nk (02, 8) = pit(on, B1)} =
k=1

I' 41[' m,
—— - A_! m j\,’ ™m r ,
2rm (|Q|) +of ) ifm >0,

Do) oo onmn ™

while in the case n = 3

Z{l! (a2..32) — pi' (1. 31)} =

] 6 (2m+1)/3 ( ,
— = A (2md 1) /3 A (2m+1)/3 Yy Y
(2m -+ 1)x? ( v ) A +o(A ) if m>—1/2,

-
3% In (6"/‘ ) +o0 (ln (%\)) ifm=—-1/2.

(3.13)
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