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ABSTRACT
We develop some techniques to prove that some well known classes of
Schwartz spaces cannot be generated by a pre-ideal of operators. We also

construct new proofs for Montel spaces and spaces of maximal diametral
dimension.

Iintroduction

Since the appearance of nuclear spaces due to the work of Grothendieck [12] and
the formalization of the term operator ideal by Pietsch [21], many new ideals of
operators have come to light and consequently many new classes of locally convex
spaces generated by an operator ideal, or Grothendieck space ideals (see below for
definitions), have emerged.

In fact, almost all the classes of locally convex spaces which appear in the
literature are Grothendieck space ideals, and only three exceptions seem to be known:
the class of Montel spaces [16, 7.9.3; 21, 29.6.11], the class of An () -nuclear spaces
[20], and Q, the class of Schwarz spaces of maximal diametral dimension [10].

Probably the most remarkable pathology in this topic is that the three corre-
sponding proofs appear to be unrelated.

In part 3 of this paper we shall construct new classes not generated by an ideal
ol operators. This is done by exploiting the results of part 2 (are they a partial
answer to the problem posed by Pietsch in [21, p. 402]: characterize Grothendieck
space ideals by means of certain “inner” properties?).
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0. Notation

'or termos not explained below, see [15,17,18]. Other relevant definitions will be
stated at the apropriate place in the text.

When F is alocally convex space (in short lcs), 4 (F) will denote a fundamental
system of absolutely convex closed neighborhoods of 0. If U € U(F) with gauge prs,
then k) is the space F/Kerpr; endowed with the norm ||¢uz|| = pu(x) where ¢y is
the quotient map; Eu denotes its completion. 1If V € U(E),V Cc U, then Tuy is the
extension 1o the completions of the map Tyyv : Fyv — Fy defined by the equation
r]'{_‘, \r(§v.1: = (.-")(.,-'.1,'.

@ will denote the countable-dimensional space endowed with the strongest lo-
cally convex topology: ¢ = ONK. I (£, F) is a dual pair, u(F, I") denotes the
Mackey topology and o(F, I') the weak toplogy in F.

A Kothe set is a sel P of real valued sequences satisfying:

I.Ya € P,a > 0.

2.¥neN,Jaec l’:a, >0.

3. Va,b € P,3c € P:max{a,b} <ec.

(Inequalities and operations between sequences are understood component-wise).

The space

AP)={zeKN:Vae P za €}

endowed with the topology given by the seminorms p,(2) = ||za||1, @ € P, is called a
Kothe sequence space. When moreover the sequences ¢ of P are monotone increas-
ing, a 2 1 and P satisfies
.Ya € P,3be P:d® < kb for some scalar k > 0,
then l’ is called a power set, and the corresponding A(P), a (o, space.
When E is a Hausdorff les, the diametral dimension of F is defined 1o be the
sel

A(EY={z e KN:VU e U(E)TV €U(E) : 2,6, (V,1))--0}

where 6,(V, /) stands for the nth Kolmogorov diameter of V' with respect to U

LV, U)=inl{e > 0:V C L+ o, diml < n}.
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1. Operator ideals and Grothendieck ideals

I, denotes the class of all operators acting between Banach spaces.

An operator ideal U is a subclass of £ satisfying the following:

1. The finite-dimensional operators belong to 2.

2. 94 A CA

3. LAL C A

When a subclass only satisfies 1 and 3 it is called [20] a pre-ideal; we will see
that 3 = 1 (further of trivial case A = 0); 3 is referred to as the ideal-property.
Thus a class of operators with the ideal property is a pre-ideal.

If X and Y are Banach (normed) spaces then A(X,Y’) denotes all the operators
of A acting between X and Y.

A Hausdorfl 1es F is termed au %-space when for each U € U( L) there cxists
aV eU(F), VvV Ccl, such that ’i'vu' c Ql(l:,'v._[','(‘;). The class lformed by all the
A-spaces is denoted Groth().

A class B ol 1es is called a Grothendieck space ideal (pre-ideal) if B = Groth(9)
for some ideal (pre-ideal) @ of operators.

Woell-known ideals of operators are: the ideal §F of finite rank operators (1 € §
if and only if the range of T has finite dimension), the ideal N of nuclear operators
(T € M(X,Y) il and only if T'is representable as

Tz = Z(‘hm T) Yn Vee X,

n=1

with (a,) C X'. (y,) CY and

(> 4]
> llawl llyall < +90),

n=1

the ideal £ of compact operators (1' € A(X,Y) if and only il the image of the
unit ball of X is relatively compact in V). If we require the image to be relatively
a(Y.Y') compact we obtain the ideal W of weakly compact operators.

These operator ideals generate the classes Groth(F) = les endowed with the

weak topology, Groth() = nuclear spaces, Groth(R) = Schwarlz spaces, and
Groth(20) = les having a fundamental system of zero neighborhoods such that

the associated Banach spaces are reflexive [13.15].
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2. Necessary conditions

We are now interested in the question: how is the presence of an operator ideal felt
in the topological structure of a locally convex space?

it is clear that if I is a dense subspace of F¥ then F is an A space if and only
if Fis an A-space. We will refer to this property as stability under the formation
of dense subspaces and completious.

Tt is also well-known that if A is an operator idcal then Groth(®21) is stable
under the formation of arbitrary products. This property is not necessarily true for
pre-ideals, and we will see counterexamples later.

Complemented subspaces of % spaces are A-spaces; a direct proof runs as fol-
lows: it is easy to see that I € Groth(A) if and only if each operator T' € £(F,G)
belongs to A when it is interpreted as an operator £(Ey,Gyr) for all U € U(G) and
adequate V € U(F). Let T' € £(L,G) and I’ : I' — E be a continuous projection.
Then TP € £(F,G) and TP € A(Fv,Gy). It may be checked that TP acting from
Evar — Gu coincides with T interpreted through Evar.

Note that this proof only uses the ideal property of A. If Groth(Q), A a pre-
ideal, contains an infinite dimensional space then, since finite dimensional spaces are
complemented in each lcs, it follows that the operator Idgs belongs to A for all =,
and therefore any class A with the ideal property contains §.

The class Groth(§,) §. being the pre-ideal of operators of rank < n, shows
that nothing more can be said in general.

In [25, p. 24] there is a diflerent proof of the above for ideals. Another proof of
the stability of Groth(F, A1) by complemented subspaces can be scen in [21].

In [6] the author introduced the notion of local complementation:

DErFINITION. A subspace F is said to be locally complemented in a Hausdorll lcs
I" when a fundamental system of zero neighborhoods U (1) can be found in I such
that, for all U € U(I), the Banach space lz’tml-; is complemented in the Banach
space IT'U.

Proposition 1

Let A be a pre-ideal of operators. If F is a locally complemented subspace of
some F € Groth(A). then E € Groth(®).
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Proof. Given U € U(I") find W e U(F'), W C U, such that Fwear is complemented
in Iy, and then a V. C W such that Tyw : Fv — Iw belongs to U, That
IZ € Groth(9) follows from the commutative diagram

Lvar, — Fwar — Lunw

! |

~ ~ ~

v — Fw — Fy
(]

DeriNiTioN. We will say that a class of les M possesses enough metrizables when
for each F € M there exists a collection I, i € T, of metrizable spaces in M such
that I is locally complemented in [, /.

Proposition 2

If A is an operator pre-ideal, then Groth(2) possesses cnough metrizables.

Proof. Let FE € Groth(2). Let U(L) be a fundamental system of zero neighborhoods
in k. Take U € U(F) and find a U, € U(F) such that the linking map Ty, belongs
to A, then a Uy € U(L) with Ty, also in 94, and so on. The projective spectrum

— EU;; — I;J‘U,z — l’/‘ljl — Ly

defines a metrizable A space that we call EU.

Start again with another V € U(F) and construct EV. Procced until the
system U( L) is exhausted. lollowing [17, 18.3(7)] it is not difficult to see that I
is a subspace (locally complemented by construction) of the product HUEU(F.') kY.

Thus we have:

Theorem 1
Let M be a class of Hausdorll lcs. Necessary conditions for M to be generated
by an ideal of operators are:
1. To contain the product spaces K1, I any set.
. To be stable under the formation of dense subspaces and completions.

. To be stable by local complementation.

2
3. To be stable under the formation of arbitrary products.
1
5. To have enough metrizables.
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Remarks.

1. To be gencrated by a pre-ideal condition (3) is not necessary.

2. The idea of local complementation was inspired by [19], where it is proved
that complementation implies local complementation. It is plain that subspaces of
Hilbertizable spaces (i.c. spaces having a fundamental system of zero neighborhoods
whose associated Banach spaces are lilbert spaces) are locally complemented.

3. The idea of “enough metrizables™ was inspired by [2].

In [4] the author gave an elementary proof of the fact that the class of Schwartz
spaces of maximal diametral dimension (A(F) = KN), Q, cannot be ideal generated.
The proof was bascd upon proving that Q does not possess enough metrizables: the
only metrizable spaces in Q are the subspaces of KN, and ¢ is not, a subspace of any
product of copies of K.

Concerning Montel spaces the classical proofl runs through proving that quo-
tients of Hlilbertizable A spaces are A spaces and recalling that there are Fréchet-
Montel-Hilbertizable sequence spaces such that some quotient is isomorphic to
£y [16]. "I'his proof is constructed as a violation of a, in some sense, dual of (4).
Let us turn it to the right: we only need to find a non-Montel subspace ol a Montel
Hilbertizable space; choose A(F’) a Fréchet nuclear (Foo—space satislying

YVae PAbe P :a, <kb,

for some k > 0.

Following [27,4.2] A(P) @ A(P) = A(l’). By Saxon’s theorem [24, 14] ¢
is a subspace of A(P)!, cardT > 2%, Thercfore v % A(P) is a subspace of
A(P) & A(P), in turn isomorphic to A(P)!, which is both Montel and Hilberti-
zable. But @6 A(F), not being barrelled [3], cannot be Montel.

3. New classes not ideal-generated

If a class Groth(A) contains all Banach spaces then clearly it contains all locally
convex spaces. This is the reason why we will restrict ourselves in what follows Lo
Schwartz spaces. Without a restriction excluding the Banach spaces, the results
become more obvious.

The preceding argumentation actually proves:

Proposition 3

The class of barrelled Schwartz spaces is not a Grothendieck space pre-ideal.
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We extend proposition 3 to other kind of barrelledness. Recall from [15, Chap-
ter 12] that a Hausdor(T lcs F is said to be €4 -barrelled (resp. ¢y barrelled) il every
bounded sequence (resp. null sequence) in (E',a(E', IY)) is equicontinuous. It is
said to be Ro—barrclled if every o(E', K) bounded set in £’ which is the countable
union of equicontinuous sets is itself equicontinuous. It is clear that ¥y barrclledness
implies €, -barrelledness and this implies co—barrellednoss.

We have:

Proposition 4

The class of Rg—barrelled—resp. €—barrelled, co barrelled- -Schwartz spaces is
not a Grothendieck space pre-ideal.

Proof. First note that, for a pre-ideal generated class, the necessity of having enough
metrizables implies that when a class B of les contains all Fréchet spaces, then
B N Groth(2A) cannot be pre-ideal generated unless Groth(2) C B. Therefore in
these cases we only need to find a Schwartz space not Ry -, €, or co--barrelled.

For Ny- and £, barrelledness we only need to see that the universal Schwartz
space (loo, i(€oo, 1)) [15, 10.5] is not €, barrelled {11, Example 3.5].

Difficulties increase for ¢- barrelledness in accordance with the close interplay
existent between this property and the Schwartz character of a space [14]. We shall
denote by m the Schwartz topology in €; given by (£1,¢0) [11, 10.4], and by n(f1,¢0)
the topology of the uniform convergence on all the a(co,€1) null sequences of co.
Since

n(lr,c0) < 10(fr,¢0) < p(ly,e0),

it. follows from [11, Corollary 1.2] that (£1,70(€1,¢0)) is co—barrelled.

On the other hand this space does not have a weakly sequentially complete dual
[11, p. 71). Then applying [11, 3.4], (€1, 70(¢1,¢0)) contains a dense hyperplane not
co barrelled. Recalling property (2) of Grothedieck space ideals, the proof ends. O

A Hausdorfl Ics I/ is said to possess the Approximation Property (AP) when
for each precompact set, ' and each zcro neighborhood U there exists a finite rank
operator T € §(L/, F) such that (I — T)(K) C U, where [ is the identity map of F.

v is said to have the Bounded Approximation Property (BAP) when the set of
operators defining the AP is equicontinuous.

Proposition 5

The class S+ BAP of Schwartz spaces with the Bounded Approximation Prop-
erly is not a Grothendieck space pre-ideal.
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Proof. Should not be the case, any subspace of a Hilbertizable space with BAP
would have BAP. But Dubinsky [8] constructed a nuclear Fréchet space without the
BAP which, by the Komura-Komura’s theorem, is a subspace of ()N, which has the

BAP. O

Remarks.

I. The above proof shows that local complementation does not imply comple-
mentation since the BAP is stable under complementation.

2. The class S + BAP has propertics (1), (2) and (3) of thecorem 1. That it
also has enough metrizables follows from the main result of [6].

3. The class § + BAP is stable under local complementation, but we do not
know wether it has enough metrizables. It is an open question posed by Ramanujan
and treated in [19] if S + BAP = Groth(®). Sce also [6] for additional information.

In [5] the class of Schwartz A-stable spaces is introduced; that is, Schwartz
spaces such that A(F x E) = A(F). We shall prove that this class cannot be ideal
generated:

Proposition 6

The class of all Schwartz A-stable spaces is not a Grothendieck space pre-ideal.

Proof. Let us call this class A,, and assume A; = Groth(2). In [5, Proposition and
Remark] it is proven that a G, -Schwartz space A(P) is A-stable if and only if

Ya€ P3be P:(am/bn) € ¢ (*)

(for convenience of the reader we sketch the “only if”: Ramanujan and "Terzioglu
proved [23] that (+) characterizes stable Go, -Schwartz spaces A(P). We show that
stable and A-stable arc equivalent for A(P): A(P) x A(P) is isomorphic to the
G Schwartz space A(P + P), being

P*xP={axb=(a,b,a3,bs,...):0,b € P}.
The proof is a modification of [23]. Next
A(A(P)) = A(A(P)) x A(P) = A(A(P * P)),

and it is well known that two G —Schwartz spaces are isomorphic if tey have equal
diametral dimension, thus

A(P) = A(P* P) = A(P) x A(P).
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Recall that a monotone increasing sequence (ky) is said to be stable when

sup I;:—n < +00.
n n
L.et then = € ¢y be a monotone decreasing sequence, x, # 0 for each n € N, and be
such that 271 is stable, the G, Schwartz space A(F,) with P, = {z=% : k € N}
helongs to Ag; thus a power 2" of x makes the diagonal map Dz € A(£),£;).
From this it follows that any diagonal operator D, : €, — £;, with 2 € ¢y such
that z, # 0 for cach n € N, must belong to 4; given such a 2z, find y € ¢ such that
z < y* for all £ and large n, and then a stable sequence z=! monotone increasing
such that y < .
FFrom the Tactorization:

b L, 2
D N\, / Dz/l.k
f

taking into account thatl z/z* € €, for each k € N and that D,x € A(ly, ) for
some k, it follows that D, € A({y,41).

Therefore, any Kéthe Schwartz space with continuous norm should be in A,
which is false by the above mentioned result for ¢/, Schwartz spaces. O

Remarks. Tt is obvious that A-stable spaces satisly (1) and (2). They do not satis{y
(1): we need a

Lemma
If E is locally complemented in F' then A(F) C A(E).
Proof. Let U,V € U(F) be such that V C L + rU, dim L < n. Looking at the
diagram . .
bvar, —  Euor

L

Fv -y
wa see that
Vnll="P(Vol)C Pe(V)c Pu+ L+ r(UN L),
and thus
VN EUNE)<8(V,U).

which gives

A(FY<A(E). O
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Now let (£2)o be the universal Schwartz-ITilbert space [I, Th. 4.2]. Regard-
ing this lemma and the fact that there are Fréchet-Schwartz-Hilbert spaces with
arbitrarily “slow” diametral dimension

A((6)]) = e

and thus it is A stable. But not all the Fréchet-Schwartz-lilbert spaces are
A stable. O

Corollary

The class of I'réchet-Schwartz-Hilbert A-stable spaces is not a Grothendieck
space pre-ideal.

Analogously to Q we introduce the class 2y of Schwartz spaces of minimal
diametral dimension (A(£) = €x). In [5] we gave a characterization of those peculiar
Schwartlz spaces.

It is clear that €y cannot be ideal generated since it excludes finite dimensional
spaces. We see that its “complement™ cannot be ideal generated either:

Proposition 7

The class of Schwartz spaces E such that A(E) # €y is not a Grothendieck
space pre-ideal.
Proof. Tet us call this class . In [5, Th. 1] it was proved that all G4, Schwartz
spaces are in Qq. Thus following the proof of Proposition 5, Qy = Groth(2) would

imply that all Kéthe Schwartz spaces would be in g, which is not the case since
A(Aleg]) = €oe [3, Remark 1]. O

Obviously Qg satisfies (1) and (2). 1t also satisfies (1) due to the lemma. In
[5, Th. 2] it is proved that if I is a metrizable space then A(F) = €o; Groth( &) has
enough metrizables and hence §2y has enough metrizables and satisfies (5). However
it fails in (3): let 2 € g and Fy = A(P,). We know that A(F,) # €4,. It is not hard

to check that
A (H I“J.') = Lo
r€co

The class of Schwartz-llilbert spaces I such that A(E) # €y is not a
Grothendieck space pre-ideal.

Corollary
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Proof. Analogous to proposition 6 but using [9, p. 21]

A(A%(leo))) = Loo- O

Remark. We have just encountered a curious phenomenon: a Grothendieck space
ideal split into two non idcal-genecrated classes

Groth(.ﬁ') = Q() U Qo

There are more ways of obtaining such decompositions: let us call S, the class
of Schwarlz spaces containing ¢, and S, the class of those which do not. Clearly
Sy is not ideal generated (it fails (1)). Recalling Saxon’s theorem S, is not ideal
generated since it fails (3) (it plainly satisfies (1), (2) and (4); and (5) because all
metrizable Schwartz spaces are in S¢). A proof valid for pre-ideals needs then a
reasoning we used before: if S, = Groth(Q), since all Fréchet spaces are in S,, all
Schwartz spaces should also be. This is an absurd since ¢ is a Schwartz space.

[s a decomposition of a Grothendieck space ideal into two Grothendicck space
ideals possible then? The answer is no:

Proposition 8

Groth(2) U Groth(®B) = Groth(€) if and only if Groth(2) C Groth(‘B) or
Groth(*B) C Groth(%).

Proof. 'The if part is clear. We prove the only if part. Suppose not and find
A € Groth(9), A € Groth(®B) and B € Groth(B), B ¢ Groth(2). Both A and BB
belong to Groth(€), and so does A x B. If A x B € Groth(2) then B € Groth(2)
which is a contradiction. Analogously if A x I# € Groth(8). O

4. Counterexamples and further results

The five conditions of theorem 1 are not sufficient to eusure that a class of lcs is
ideal generated; to sce this, note that if (Ax) is a sequence of operator ideals then
the class

n Groth(Ay)

keM
satisfies the conditions of theorem 1. The only not evident one is (3): if E €
(N Groth(2x) then given U € U(E) find Uy € U(F) with Ty € Ay, then Uy € U(E)
with Ty € A; N Ay, and in general Tiy) € Ay N...N A The limit space

WU = lim ’f‘k+1 ( Ek.)
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belongs to [y Groth), and with the standard argument we see that this class
possesses enough metrizables. Tlowever a class of this kind might not be pre-ideal
generated. We quote the main result of [20]: let o be a nuclear exponent; i.e.

Zk“’" <+x VE>I.

n

Let & be a natural number. According to [22] we define the power series space Ag(a)
of finite type as

Arla) = {:1: ekN: Z|:1:,,|R."" <+ VR< k} .

1

When k = oc we obtain the power-series space A(e) of infinite type, which is
in fact the G space constructed over the Kothe set {e™ : 7 € N}.

Recall from [22] that an operator T € L(X,Y) is said to be Ag(a) nuclear,
k € N and a a monotone iucreasing nuclear exponent, when 7'z = Y {an, )y, for
every x € I; with (a,) C X', (yn) CY and (Jlag|| |lyxll) € Ax(e).

A Hausdorfl les & is said to be Ag(a) nuclear when it is a Ar(er) space, and
An(a) nuclear when it is Ag(a)-nuclear for all £ € N.

Therefore:

Ak(o)-nuclear spaces = Groth(Ag(«) ‘nuclear operators)
and
An(a) nuclear spaces = n Groth(Ak(a) nuclear operators).
kEN

Theorem [20]

Let o be as before with iminf a4y fa,, > 1. Then the class of An(a) nuclear
spaces cannol be pre-ideal generated.

Let us try a different approach to this result. Given a monotone increasing
sequence ¢ converging to infinity, define the sequence space:

Ao = {.z.' eERN:z, < k(,‘");' for some k > ()}
and then the pre-ideal of operators:
I(;‘J = {II € g(Xfy) : (570(]‘))", € /\4‘)}

where 6,(1) means é,(T(Ux).Uy).
When o is stable we have:
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Proposition 9

Groth(Ts) = {F les: 9 € A(L)}.

Proof. We only prove the inclusion C. From [3] recall that when ¢ is stable then
¢ € A(L) if and only if ¢ € A(F) for all (some) p > 0. From £ € Groth(%,),
é'/% € A(E) follows and also ¢ € A(F). O

Appealing again to the aforementioned result of [5):

Corollary
I- € Groth(%y) if and only if ¢,¢%,¢3%,... € A(E).

On the other hand by putting ¢ = e“ it is casy to sce thal:
I3 is An(a)-nuclear if and only if ¢, ¢%,¢3%,... € A(F)
and the same proof provides
An(a)-nuclear spaces = n Groth(T )

N
and thus:

Proposition 10

Let o be a nuclear exponent such that liminfl a4/, > 1 and ¢ = ¢®*. Then
the class

[ Groth(Tye)
N

is not a Grothendieck space pre-ideal.

Therefore, when ¢ is not stable the situation is entirely different to that of the
stable case, and the class of those lcs for which ¢,¢%,6%,... € A(E) may not be
pre-ideal generated.

If we turn to the relations between Ty and ‘3,' we see that Tye C T" but the
other inclusion does not hold: since Groth(d) = (-loi h(ak), ‘I" C Ty \\ould imply

ﬂ(.ml h(T e ) nGrof}l(‘I4,) = Groth(%y).

But this is not the case, and then, when ¢ is not stable a k£ € N must exist (and
from the prool in [20] we know that if ¢ = liminf a,1/a, > 1, then & > ¢/(c = 1)
serves) such that for all n > k, X7 is not contained in Tyes1. Therelore a Mausdorl
les, constructed (in [20]) as a countable projective limit of diagonal maps acting on
{4, exists such that ¢ € A(E) but oF+! ¢ A(F).

We get
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Proposition 11

There exists a Fréchet space K such that, for some sequence a € A(F).
2 ¢ A1) (clearly a is a power of @ = ¢ and E is the Jjust mentioned space).

This is apparently the first counterexample to [26]: “Characterize the locally
convex spaces 7 with the following property: for each 6§ € A(L). v € A( L). there
exists 3 € A(L) with 3, < §,7,. All spaces with regular bases (Dragilev) have this
property™

There we used the same notation as in [3):

A(l) = {x € RN :VU €U(E) IV € U(E) 2 27" 6,(V. 17)-"=0}.

The equivalence of the different definitions of diametral dimension d])])(‘dllll"
in the literature was treated in [5]. The equivalence hetween A(E)Y and A(F) is
roughly. inversion.

Therefore the above question is to characterize those les such that

Vé.v € A(K)3B e A(E): 6y < 3.
We see that this is equivalent to the property
a € A(E) = a* € A(E).
One implication is clear. Take a = max{é,7} for the other.
In [5] we treated this problem from the positive side and obtained that if has

an aflirmative answer when ¥ is A-stable or a G, space.
Since Ag(a) nuclear operators are contained in Tt we have

Proposition 12
If E is A-stable or a G- space then E is AN(o)-nuclear if and oulv il I is
Ak(a) nuclear (for some k € N), and if and only if E € Grot h(%yp), & = e“.

By combining proposition 11 and the fact [23] that A(E x E) = A(E) « A(F).
that is

(xn) € A(F X F) il (z2.) € A(E) and (z24-1) € A(E),

we see that the same proof of proposition 10 (preferably in terms of diametral
dimension) serves to show that when ¢ = € and liminf Qng1/an > 1 then the class
Groth(%4) is not stable under Cartesian products: indeed, if ¥ is the constructed
counterexample with, suppose for te sake of simplicity, ¢ € A(E) but ¢? ¢ A(L).
then ¢ ¢ A(L x E).
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