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The differential equation y' = fy in the algebras H(D)
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ARBSTRACT

Let 1) be an a clopen bounded infraconnected set in an algebraically closed
complete uitrametric valued field, and /(1)) the Banach algebra of the ana-
lytic elements in /) [10,11,3]. Let f be an element of 1/(D); we show that if
the differential equation y' = fy has a solution g invertible in //( 1)), then
the space of the solutions in //( 1)) has dimension 1. We prove that a solution
¢ has no zero isolated in D and that if ¢ is not invertible, it is strictly annulled
by a T-filter [6]. At last we prove that if /I(])) has no divisor of zero the
space has dimension 0 or 1.

Introduction and theorems

Lot K be an algebraically closed field of characteristic 0 provided with an ultrametric
absolute value | - | for which it is complete. Tor any set D in K we will denote by
R(D) the K--algebra of the rational functions h(z) € K(2) with no pole in D.
When D is closed and bounded, the algebra R(D) is provided with the norm of the
nniform convergence on D denoted by || -{|p [3] that makes it a normed K- algebra.
Its completion for that norm is then a K-Banach algebra denoted by /(D). the
clements of which are called the analytic elements on D [1.341,11].
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A set D is said to be infraconnected if for all @ € D, the adherence of the set
{lz —a| : z € D} in R is an interval. In a previous article [8] we saw that a clopen
bounded set D is infraconnected if and only if the only analytic elements on D whose
derivative is identically null are the constants.

Here we take a clopen bounded infraconnected set D, an f in H (D), we consider
the differential equation (£) y' = fy with y € H(D), and we denote by S the space
of the solutions g € /(D) of (£).

By classical results, we know that S may be reduced to {0}. (For example, if
D is the disk |z| < 1, it is easily seen that the equation 4’ = y has no solution in
H(D)). Here we will give sufficient conditions on the algebra H(D) to have S of
dimension 1 or 0. In another article we will see that the dimension of S sometimes
may be greater than | when H(D) has divisors of zero.

In the three theorems that follow, D is a clopen bounded infraconnected set, f
belongs to (D), (€) denotes the differential equation 4’ = fy and S is the lincar
space of the solutions of (£) in H(D).

The notions of T-filter and strictly annulled element involved in Theorem 2 will
be recalled below.

Theorem 1

If (£) has at least one solution g invertible in I1(DD) then S has dimension 1.

Theorem 2

We assume that (€) has at least one solution g non identically null. ‘['hen g has
no isolated zeros in D. Besides

a) cither g is invertible in H(D), or
b) g is strictly annulled by a ‘I-filter on D.
Theorem 3

If I1( D) has no divisor of zero, then S has dimension 0 or 1.
The proof of Theorem 1 is casily obtained.

Proofl of Theorem 1. Let g be a solution of (€) invertible in I (D), and let A be
another solution. We verify that h/g is a constant in H (D). Indeed, by hypothesis,
h/g does belong to H(D). Then '

h,)' _hg—hg'  fhg—hfg
9/ & ¢

0,

and then by [8, Theorem 5] we know that Ii/g is a constant in D. O
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Now we have to recall the definitions linked to the monotonous filters.

Technical definitions and proof of Theorem 2

The technique used in the proofs of the Theorems requires a lot of classical definitions
previously given [1,5,6,7,9].

We will denote by “log” a real logarithm function of base w > 1 and by v the
valuation defined on K by »(z) = log|z|.

Now we have to define the monotonous filters. Henceforth, D will denote a
closed bounded infraconnected set we will specify when it is supposed to be open;
J will denote an element of H(D) and (&) is the equation y' = fy with y € H(D).

For all a € K, r € Ry, d(a,r) denotes the disk {z e K: |z —a| < 7}, d7(a, 1) is
the disk {z € K: |z —a| < 7}, and C(a,r) is the circle {z € K: |z — a] = r}.

lora € K, 7',r" € Ry with 0 < 7' < r", we will denote by I'(a, ', r") the set
{zeK:r<|z—a|l <}

Let @ € D, let r be the diameter of D, let D be the disk d(a,r). Then D\ D
admits a partition into a unique family (T;);er where each 1} is a disk d~(a;,r;) and
r; is maximal. The 7} are called the holes of D.

We call an increasing filter (vesp. a decreasing filter) of center @ € D and
diameter r the filter on D that admits as a base the family of sets T(a,s,r)N D with
0 < s < r(resp. I'(a,r,s) N D with r < 8).

We call a decreasing filter with no center on D a filler that admits as a base a
sequence D, in the form D, = d(an,r,)N D with

o0
d(aygy,Tner) Cd(ay,ry), lim r, > 0, ﬂ dlap,ry) =0,
n=—+00 n=l
and the limit of (ry) is called the diameter of the filter.

We call a monotonous filter a filter that is either increasing or decreasing.

We know that il F is a monotonous filter on D and if f € (D), then the
function defined on D by |f(x)| has a limit along the filter F and the mapping
[+ limg|f(z)| is a multiplicative semi-norm on II(D) continuous with respect to
the norm || - ||p [3,9].

Il F is a monotonous filter of center a and diameter r, we also have

lim|f(z)] = |,.-lii?_.r |/ ().

|z—al#»
€D
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For convenience we introduce the valnation function v,(f, ;) defined by

vo(f,~logr) = lim wo(f(x)) if lim |f(z)| #0

|r—al—=r |x—al—r
le—al#r le—al#r
el z€D
and
ve(f,—logr) = +o0 if lim f(z)=0.

i |z—a]—r

le—a|#r

z€D

Let R be the diameter of D). Then for all a € 1, the function p — v, (f, )
is continuous and piecewise linear on its interval of definition 7. If a does not
belong to a hole of D, I'is [—log R, +oc[. If a belougs to a hole T' = d~(a, p), then

= [~ log R, —log p].

When a = 0 we will only write v(f,u) for vo(f, ).

For p < v(a — b) we have vo(f,pt) = v([f, 1) for all f € H(D) [4,5].

By the definition of v,(f,p) it is casily scen that —log||fllp < vu(f,p) for all
a € D, and p > —log R. In particular, if f and g are such that —log||f — ¢llp <
Ga( Sy 1), then v, (f, 1) = vu(g, p).

Let f belong to IT(D). f is said to be strictly annulled by an increasing filter
(resp. a decreasing filter) of center a and diameter v, if there exists A < — log r (resp.
A > —logr) such that v,(f, ;) < 400 whenever p €] — logr, A] (resp. whenever
p € [N —logr[) and if limg f(z) = 0.

f is said to be strictly annulled by a decreasing filter F with no center, of
diameter r, of base (D,) with D, = d(a,,r,) N D, if there exists A > —logr
such that v, (f,p4) < 400 whenever g € [A,—logry], whenever n € N, and if
limg f(x) = 0.

Now recall that a monotonous filter is called a'I-filter if the holes of the elements
of its bases form a sequence that satisfies a condition given in [6] (we won’t explicitly
need it in the present work). Then we know that given a monotonous filter F, there
exist elements [ € (D) strictly annulled by F if and only if F is a T-filter [6].

An element f € (D) is said to be quasi-invertible if it factorizes in the form
P(z)g(z) with I’ a polynomial the zeros of which are in the interior of IJ, and g an
invertible clement in (D).

Then if D is a clopen bounded infraconnected set. an element [ € (D) is not
quasi-invertible if and only if it is annulled by a T-filter on D [6].

»
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Proof of Theorem 2. Let us assume that g has an isolated zero a in 1. Since D
is open we know that g factorizes in the form (z — a)?h(2) with b € H(D) and
h(a) # 0 [3,], hence
9'=(z—a)? ' (qgh + (z — a)h’),
hence
gh = (z —a)(f - 1),

which contradicts the hypothesis h(a) # 0, (since ¢ # 0). Thus g has no isolated
zero in D.

Now suppose that ¢ is not invertible; since it has no isolated zero, il is not
quasi-invertible, and since D is open, that implies that g is strictly annulled by a
T-filter on D [5,6]. O

Beaches, integrity and proof of Theorem 3

Let F be an increasing (resp. a decreasing) filter of center a and diameter r > 0.
The set of the 2 € D such that |z — a| > r (resp. |z — a| < r) is called the beach
of F, denoted by P(F). The beach P(F) of a decreasing filter F with no center is
the empty set . We denote by C(F) the set D\ P(F), by J(F) the ideal of the
f € I (D) such that limx f(z) = 0 and by Jo(F) the ideal of the f € J(F) such
that f(x) = 0 whenever z € P(F). Then J(F) and Jo(F) are closed prime ideals
[5,6,7].

Two monotonous filters 7 and G on D are said to be complementary if
P(FYUPG)=D.

The Banach algebra H(D) has no divisors of zero if and only if D is infracon-
nected with no couple of complementary T-filters [7).

In all the following lemmas D will denote a closed bounded infraconnected set
and we will specify when it is open.

T.emma A

Let a € D and let r € Ry. Assume f(z) = 0 whenever 2 € d(a,7)ND. Assume
that there exists b € D such that [(b) # 0. Then there exists a T-filter F on D) such
that b € C(F) and d(a,r) C P(F) [7].

Lemma B

Let F be a 'I-filter on D with no complementary ‘I-filter. Then J(F) = Jo(F).
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Proof of Lemma B. The equality J(F) = Jo(F) is trivial when P(F) = @; hence
we will assume that F has center a. Let r be its diameter and let 6 = —logr. Let
S € J(F) and let us show f € Jy(F). For this, let us assume f ¢ Jo(F) and let
b C P(F) be such that f(b) £ 0.

Let A = w»(a - b).

1) Assume that F is increasing.

1)a) Assume first »,(f,A) < +0.

By hypothesis since [ € J(F), we know v,(f,0) = +x. llence there exists
7 € 10.A] such that vo(f.7) = +2c and v,(f, 1) < +0c whenever p € [y,A]. Then f
is strictly annulled by the decreasing filter G of center a and diameter s = w™. This
lilter ¢ is then a T-filter complementary to F which contradicts the hypothesis.

1).3) Assume now v, (f,A) = +3c. We know vy(f,A) = v (f,A) since A =
v(a—b) and therefore vy (f.A) = 40, while v,(f, 1) < + when i approaches +4-oc
because f(b) # 0.

Then it exists 7 > A such that v,(f.p) < +00 whenever g > v and w(f,7) =
+20. llence fis strictly annulled by the increasing filter of center b and diameter
s =w™". This filleris then a 'I-filter G. Since max(r,s) < |a—b|. G is complementary
to F, which contradicts the hypothesis.

2) Now, let us assume that F is decreasing. Then a and b belong to P(F) =
d(a,r)n D; therefore Ja — b] < 7, hence vy (f,0) = +20. Then it exists v > @ such
that vy(f,7) = +2c¢ and vp(f, ) < +2c for all p > v, hence the increasing filter of
cenler b and diameter s = w™7 < r is a T-filter complementary to F, which ends
the proof of Lemma 3. O

Corollary C
If 1(D) has no divisor of zero then for every ‘I-filter F on D, J(F) = Jo(F).

Lemma 1D

We assume that D has a family of T-lilters (F;)ieq such that

(\P(F) # 0.

iel

Letje I andlet f € T(F;). Then

fz):= 0 whenever xrC ﬂ P(F;).
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Proof of Lemma D. Let

A= (ﬂ P(J-'.-)) U C(F;).
i€l

It is easily scen that F; is a T-filter on A with no complementary T-filter and, by

Lemma B, f € Jo(F;); hence f(x) = 0 whenever z € P(F;)N A, hence

f(z)=0  whenever =z € n P(Fi). O
i€l

DFEFINITION. Let g € H(D). We call support of g the set ¥ of the 2 € D such that
g(z) #0, and ¥ will be reinforced if for every a,b € I, the funclion p — v, ([, p) is
bounded on the interval [v(a — b), +o0l.

Proposition E

Assume that H(D) has no divisor of zero. Then every [ € H(D)\ {0} has a
reinforced support.

Proof. Let f € H(D), let £ be the support of f, and a,b € X. Lel us show
that v,(f,p) is bounded when p € [v(a — b),4+oc[. Indeed assume that it is not.
Since a € X, f(a) # 0, hence there exists v € R such that v, (f,p) = v(f(a))
whenever g > 7. Since v(f,+) is a continuous function, if it is not bounded on
[v(a — b),4o00[, there exists A > v(a — b) such that v,(f,p) < 400 whenever p > A
and v,(f,A) = 400, so that D has an increasing I-filter F of center a and diameter
r=w

Assume first v, (f,v(a — b)) < 40o. Then there exists @ €]v(a — b), ] such
that vo(f, ) < 400 whenever p € Jv(a — b),a[, and v,(f, @) = +00, which means
that D has a decrcasing T-filter G of center @ and diameter w=™% > r. Then G
is complementary to F, which contradicts the hypothesis “//(D) has no divisor of
zero”. By then we have proven v,,,(f,v(a, - b)) = 400, and m,(f, v(a — b)) = +00.
Reasoning as above, one can show the existence of an increasing T-filter G of center b
and diameter s < w™%?~ hence G is complementary to F, which contradicts again
the hypothesis “f1(D) has no divisor of zero”. Thus v,(f,n) is finally bounded on
[v(a — b),+oc] and that ends the proof of Proposition I. O

Lemma F

Let A and B be infraconnected closed bounded sets such that A = B. Then
A U B is infraconnected.
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Proof. Let d(a,R) = A = B. Let a € A. Since AUB = d(a, R) = d(a,R) the
set [(a) = {lz —a| : * € AU B} is included in [0, R]. Since A is infraconnected, of
diameter R, the set {|x —a| : 2 € A} is dense in [0, R), hence /(a) is dense in [0, R].
In the same way, when a € 3, I(a) is still dense in [0, R], and that finishes proving
Lemma 1. O

Proposition G
Assume that D is open. Let f € II(D) and assume that the support ¥ of f
is reinforced. Then for every couple (a,b) € ¥ x ¥, there exists a clopen bounded

infraconnected set Q8 C ¥ with a,b € Q8 and a number 6§ > 0 such that |f(z)| > 6
whenever © € Q2.

Proof. Let r = |a — b|. By hypothesis there exists M € Ry such that v, (f,p) < M
and vy(f, 1) < M for all g > v(a — b). Then the equality

v(f(x)) = va(f, v(x — a)) (resp. v(f(z)) = vo(f,v(z —b)))

is true in all DNd(a,r) (resp. DNd(b,r)), except maybe in a finite number of circles
ol center a (resp. b) and radii p < r. [3].

Let C(a,pi)i<i<cm (resp. C(b,0;)1<;
that contain points 2 € D) such that l(

vy (f.v(z — b)) ) and let

be the circles of center a (resp. b)

)
) # vo(fiv(z = ) (resp. v(f(2)) #

<n
(=

Ab = (d(a,r)yn D)\ (U C’(a..,p,-))

(,.os,,_ ¢ = (d(b,r)N D) (U (b,0;) ))

Then A% (resp. A¢) is clearly infraconnected and clopen.
Morcover by hypothesis we have

v(f(x)) = vo([ie(x —a)) < M

on all A? and
l(f(l)) = l:;,(f, v(x - b)) < M
on all A7 Let us put Q% = A U A2, Then ©(f(z)) < M whenever ¢ € Q) hence
we can take 6 = w™ Y (o obtain the relation |f(2)| > 6 in QF.
Now Q¢ is clearly clopen. At last by Lemma T, Q2 is infraconnected because
Ab and A¢ are infraconnected sets such that .&3 = ./S,j = d(a,r). Proposition G is
then proven. O
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Proposition I1

Let D be clopen, let f € H(D) and let (£) be the diflerential equation y' = fy.
We assume that (£) has a solution g whose support is reinforced. Let h be another
solution of (£) Then there exists A € K such that h(z) = Ag(xy whenever z € X.

Proof. Since D) is open, ¥ is clearly open in K, hence for every a € ¥ there exists
a disk A(a) included in X. Let (£,) be the equation y' = [(x)y for 2 € A(a); then
(€.) has non null solutions (like the restriction of g to A(a)), hence the space of the
solutions has dimension one by classical results (and by T'hecorem 1). It only remains
to show that A(a) is constant when a runs in X.

Let us fix @ and b in X. By Proposition G, there exists a clopen bounded
infraconnected set Q8 C I, with a,b € 98, and & > 0 such that |g(z)| > & whenever
z €N,

The restriction § of g to Q2 is then invertible in f/(92%). llence the restriction
h7q of h/g to QL is a locally constant element of H(Q%). Since Q) is clopen and
infraconected, by [8, Theorem 5] we know that h/g is a constant in I7(€22), hence
(/g)(b) = (h/g)(a) and then Proposition H is proved. [

Proof of Theorem 3. Assume that (£) has a non identically null solution g. By
Proposition F, the support ¥ of ¢ is reinforced. Tet h be another non identically
null solution. Since /(D) has no divisor of zero, the support X' of h does have
common points with Y. By Proposition H there exists A € K such that h(z) = Ag(x)
whenever x € X. Since ENY' #£ @, A can’t be zero. Hence h(z) # 0 whenever x € &,
therefore £/ O . By the same reasoning we just have T’ C ¥, hence I = X, The
relation h(z) = Ag(z) is then true on X, and it is trivially true on D\ ¥ where
h(z) = g(x) = 0. Theorem 3 is then proved. O
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