A note on bornivorous barrels of C(X,E)

Cándido Piñeiro

Departamento de Análisis Matemático, Facultad de Matemáticas, Sevilla 41012, Apdo. 1160, Spain

Received 14/DEC/89

Abstract

If X is a compact topological space and E is a locally convex space, we prove that the sets $\{\phi \in C(X,E) : \phi(X) \subset T\}$, T running through the set of bornivorous barrels in E, form a base of bornivorous barrels in C(X,E) if and only if E'_3 has prtoperty (P) of Pietsch.

In this note X is a completely regular and Hausdorff topological space and E is a Hausdorff locally convex space. We denote by C(X, E) the space of all continuous functions on X with values in E, endowed with the compact-open topology.

If X is compact and $T \subset E$ is a bornivorous barrel, the set

$$C(X,T) := \{ \phi \in C(X,E) : \phi(X) \subset T \}$$

is obviously a bornivorous barrel of C(X, E). Schmets [4, Proposition I.6.5] proves that the sets C(X, T). Trunning through the set of bornivorous barrels in E, form a base of bornivorous barrels in C(X, E) if E has a fundamental sequence of bounded subsets. Here we prove that the sets C(X, T) form a base of bornivorous barrels if and only if E'_3 has property (B) of Pietsch.

For terminology and notations used in this note we refer to [2] and [3].

1. The compact case

Throughout this section X is a compact and Hausdorff topological space. We say that C(X, E) has the bornivorous barrel property (b.b. property), if the sets C(X, T) form a base of bornivorous barrels in C(X, E).

Proposition 1

The following are equivalent:

- i) There exists an infinite and compact space X_0 such that $C(X_0, E)$ has the b.b. property.
 - ii) C(X, E) has the b.b. property for every compact space X.

Proof. i) \Rightarrow ii) Let us suppose that there exists an infinite and compact space X_0 such that $C(X_0, E)$ has the b.b. property. Let X be a compact space and let T be a bornivorous barrel in C(X, E). Let \mathcal{H} be the family of the absolutely convex subsets D of E so that $C(X, D) \subset \mathcal{T}$. We define:

$$\mathcal{T}_0:=\bigcup_{D\in\mathcal{H}}C(X_0,D).$$

In [2,Proposition 2.5(i) \Rightarrow (ii)] is proved that \mathcal{T}_0 is a bornivorous barrel in $C(X_0, E)$. Hence there exists a bornivorous barrel T in E satisfying $C(X_0, T) \subset \mathcal{T}_0$. Now, following Mendoza's proof, it can be proved that $C(X, T) \subset \mathcal{T}$. \square

The preceding result allow us to study the space $C_0(E)$ formed of all sequences (x_n) in E convergent to zero, endowed with the uniform convergence topology (it is well known that there exists a topological isomorphism from $C_0(E)$ onto $C(\mathbb{N}^*, E)$, where $\mathbb{N}^* = \mathbb{N} \cup \{\infty\}$ is the Alexandroff compactification of \mathbb{N}). If $C_0(E)'_{\beta}$ denotes the dual space of $C_0(E)$ endowed with the topology $\beta[C_0(E)', C_0(E)]$, following [1, Proposition 1.6] we shall identify $C_0(E)'_{\beta}$ with a suspace of $\ell^1_{\pi}\{E'_{\beta}\}$.

If $C_0(T)$ denotes the set $\{(x_n) \in C_0(E) : x_n \in T \ (\forall n)\}$, we have the following

Proposition 2

The following statements are equivalent:

- i) For every bornivorous barrel T of $C_0(E)$, there exists a bornivorous barrel T of E such that $C_0(T) \subset T$.
 - ii) E'_{β} has property (B).

Proof. ii) \Rightarrow i) Let T be a bornivorous barrel of $C_0(E)$. If * denotes the polar in $\langle C_0(E), C_0(E)' \rangle$, then T^* is a strongly bounded subset of $\ell^1_{\pi} \{ E'_{\beta} \}$. By hypothesis, there is a strongly bounded set $B \subset E'$, which can be chosen absolutely convex and $\sigma(E', E)$ -closed, such that

$$\sum_{n=1}^{\infty} p_B(x_n') \le 1 \qquad \text{for all } (x_n') \in \mathcal{T}^*$$
 (1)

Thus, for each $(x'_n) \in \mathcal{T}^*$ and $(x_n) \in C_0(B^\circ)$, from (1) we obtain

$$\left| \left\langle (x_n), (x'_n) \right\rangle \right| \le \sum_{n=1}^{\infty} \left| \left\langle x_n, x'_n \right\rangle \right| \le \sum_{n=1}^{\infty} p_B(x'_n) \le 1$$

Hence, $C_0(B^{\circ}) \subset \mathcal{T}^{*} = \mathcal{T}$.

i) \Rightarrow ii) Let \mathcal{A} be a bounded subset of $\ell_{\pi}^{1}\{E_{\beta}^{\prime}\}$. If we put

$$A_0 = \{\hat{x}'(p) : p \in \mathbb{N}, \hat{x}' \in A\},$$

then $A_0 \subset C_0(E)'$ and it is also a bounded subset of $\ell^1_{\pi}\{E'_{\beta}\}$ (here, $\hat{x}'(p)$ denotes the sequence $(x'_1,\ldots,x'_p,0,0,\ldots)$). Therefore, it is enough to carry out the proof supposing that A is a bounded subset of $\ell^1_{\pi}\{E'_{\beta}\}$ contained in $C_0(E)'$. By (i), there exists a bornivorous barrel T of E such that $C_0(T) \subset A^*$. Then $A \subset C_0(T)^*$. Hence, given $(x_n) \in T^{\mathbb{N}}$, $(x'_n) \in C_0(T)^*$ and $p \in \mathbb{N}$, we have (for suitable complex numbers α_n , $|\alpha_n| = 1$)

$$\left| \sum_{n=1}^{p} \left| \langle x_n, x'_n \rangle \right| = \left| \sum_{n=1}^{p} \left\langle \alpha_n x_n, x'_n \right\rangle \right| = \left| \left\langle (\alpha_1 x_1, \dots, \alpha_p x_p, 0, 0, \dots), (x'_n) \right\rangle \right| \le 1$$

because $(\alpha_1 x_1, \ldots, \alpha_p x_p, 0, 0, \ldots) \in C_0(T)$. Thus, we have the inequality

$$\sum_{n=1}^{\infty} \left| \langle x_n, x_n' \rangle \right| \le 1 \quad \text{for all } (x_n) \in T^{\bowtie} \text{ and } (x_n') \in C_0(T)^*.$$

This proves that $\sum_{n=1}^{\infty} p_{T^{\circ}}(x'_n) \leq 1$ for all $(x'_n) \in \mathcal{A}$. \square

106 PIÑEIRO

2. The completely regular case

Now we consider the completely regular case. If X is completely regular and Hausdorff, we denote by $C_0(X, E)$ the space of all continuous functions $\phi: X \to E$ such that $\phi(X)$ is relatively compact, endowed with the uniform convergence topology. Again, if $T \subset E$ is absolutely convex, we put $C_0(X,T) := \{\phi \in C_0(X,E) : \phi(X) \subset T\}$. We say that C(X,E) has the b.b. property if, for every bornivorous barrel T of C(X,E), there exists a bornivorous barrel $T \subset E$ such that $C_0(X,T) \subset T$.

Proposition 3

If E'_{β} has property (B), then C(X, E) has the b.b. property

Proof. As the canonical linear map $C_0(X, E) \to C(X, E)$ is continuous, $\mathcal{T} \cap C_0(X, E)$ is a bornivorous barrel in $C_0(X, E)$ for every bornivorous barrel \mathcal{T} of C(X, E). Since the spaces $C_0(X, E)$ and $C(\mathcal{I}X, E)$ are isomorphic, the conclusion follows from section 1. \square

Proposition 4

If X is a completely regular space such that C(X, E) has the b.b. property, then C(K, E) has the b.b. property for every compact subset K of X.

Proof. Let us denote by $R: C(X,E) \to C(K,E)$ the restriction map. If \mathcal{T} is a bornivorous barrel of C(K,E), then $R^{-1}(\mathcal{T})$ so is in C(X,E). Hence, there exists a bornivorous barrel $T \subset E$ such that $C_0(X,T) \subset R^{-1}(\mathcal{T})$, i.e.,

$$R(C_0(X,T)) \subset \mathcal{T}.$$
 (2)

Now we shall prove that $C(K,T) \subset \mathcal{T}$. For this, by [2, 2.3(i)], it is enough to prove that $\mathcal{P}(K,T) \subset \mathcal{T}$, where $\mathcal{P}(K,T)$ denotes the set of all functions $\phi = \sum_{i=1}^n \varphi_i x_i$, with $\varphi_i \in C(K)$, $x_i \in \mathcal{T}$, and $\sum |\varphi_i(t)| \leq 1$ for all $t \in K$. Let $\phi = \sum_{i=1}^n \varphi_i x_i$ be such a function. For each $i = 1, \ldots, n$, we choose a continuous extension $\bar{\varphi}_i : X \to K$ of φ_i (here K denotes the scalar field). It is easy to check that each function $\psi_i : X \to K$ defined by

$$\psi_i(t) = \left\{ \begin{array}{ll} \varphi_i(t), & \text{if } \sum_{i=1}^n |\bar{\varphi}_i(t)| \leq 1; \\ \bar{\varphi}_i(t) \left(\sum_{i=1}^n |\bar{\varphi}_i(t)| \right)^{-1}, & \text{otherwise,} \end{array} \right.$$

is a continuous extension of φ_i and the inequality $\sum_{i=1}^n |\psi_i(t)| \leq 1$ holds for all $t \in \mathcal{X}$. Then $\psi = \sum_{i=1}^n \psi_i x_i$ belongs to $C_0(X,T)$ and it follows from (2) that $R(\psi) = \phi$ is an element of T. \square

In view of the above Propositions, we may state the following

Theorem

If X is a completely regular and Hausdorff topological space containing a compact and infinite subset, then the following are equivalent:

- i) C(X, E) has the b.b. property.
- ii) E'_{β} has property (B).

Remark. a) It is obvious that C(X,E) has the b.b. property if it is quasibarrelled.

b) if every compact subset of X is finite, there are spaces C(X, E) which have the b.b. property but E'_{β} has not property (B). Indeed, if we take $X = \mathbb{N}$ and $E = \Phi$, then C(X, E) is quasibarrelled [2, Theorem 2.10] and $E'_{\beta} = \Omega$ has not property (B) [3, p. 31].

References

- 1. A. Marquina and J. M. Sanz Serna, Barrelledness conditions on $C_0(E)$, Archiv Math. 31 (1978), 589-596.
- 2. J. Mendoza, Necessary and sufficient conditions for C(X, E) to be barrelled or infrabarrelled, Simon Stevin J. of Pure and Applied Math. 57 (1983), 103-123.
- 3. A. Pietsch, Nuclear Locally Convex Spaces, Springer, Berlin-Heidelberg, 1972.
- 4. J. Schmets, Spaces of Vector-Valued Continuous Functions, Lecture Notes in Mathematics 1003, Springer, Berlin-Heidelberg, 1983.

