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On rosettes and antipodal rosettes
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AgsrTrace

In this paper we introduce the notion of an antipodal set of a rosetie, which is
a natural generalization of an antipodal pair of an oval. We give a counterpart
of the Blaschke-Siiss thcorem. Morcover, we consider anlipodal rosclles.

1. Introduction

In this paper we will consider the family of positively oriented vosettes, i.c., C? plane
closed curves with positive curvature [3, 2. A rosette (* can be written in the
following form

4
(1) z(t) = / r(u)e™ du for 0 <t < 2nj,
Jo

where 1/r is the curvature and j is the index [1. 5].
The Fourier coefficients of »
1 2mj n
= r(1) cos = 1dl,
J Jo J

2y
—I-/ r(!) sinll.(ll
I Jo J

for n = 1,2...., will be called the Fourier coefficients of (. We note that the
conditions

a, =
(2)

b,
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(4) a; =b; = 0.

are equivalent (for j = 1 see [1]).

1. Antipodal sets
Let us fix a rosette C and a positive integer n.

DEFINITION 1. A set of points

5 s (14 4% A, @20 =7

(5) {4!).., (H n)“"**('+ . )}
n—1 Slim . .

(6) [r (/ + i’L) _ (, L (20 + l).}"’)] 0
=0 n n

Remark. We note that a T-antipodal set is an antipodal pair [1. 2. 1],

Theorem 1

Il the Fourier coeflicient b, of (7 is equal to 0. then there exists at least three
n-antipodal sets of C.

Proof. Let us consider the function
n—1 . Ny e
_ (214 1)ym Ajx
= Pl ——] —
(7) (1) IZ; [r( i - {1+ =
for 0 <1 < 2575.

We have

(8) g (I + %) = —g(1) for 0 <1 < 2mj.
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We may assume that t; = 0. Then we have

jm/n n n=1l cjm/n (21 + 1)j
. jT\ ., n
g(0) sin = 6df = E / 1'(0+—) sin — 0 dé
/u ) J =0 /0 n J

n-1 ir/n .
—Z/ r(0+2—lﬂ)si1120r10
0 n J

=0

n-1 /(21+2)j1r/n

r(t) sin (2 t— (2 + 1)7r) dt
=0 YQI+1)jn/n J

n=1 (2l41)jr/n n
—Z/ r(l)sin (7l—~ 2/7.') dt

I=p J2Liz/n

n—l (20410 n
= _ / (1) sin = 1di
i=p Y2l /n J

2rj n
= —/ r(t) sin =t di
0 J

= —jb, = 0.

The same considerations as in the proof of Blaschke-Siiss Theorem [1] guarantee
the existence of two further zeros of g. It completes our proof. [7]

From Theorem 1 we immediately obtain

Theorem 2

Fach rosette of the index j has at least three j-antipodal sets.

Remark. I j = 1, the Theorem 2 reduces to Blasehke-Siiss Theorem [, 2].

2. A geometric meaning of antipodal sets

The length of the arc contained between two points z(«a), z(b) for a < b of a rosette C
is given by the formula [3, 1]

b
NN [ fax Ta
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The function g is a derivative of the function f delined by the formula

n—1 Li4(2041)j7/n
(10) fay = Z/ r(u)du.

t+2ljr/n

f(t) is a sum of lengths of disjoint arcs determined by any set of points

{z(t),z(t+j77r) ,...,z(t+@)}

of C. The extremum value of f is attained at a point t5 such that

{ 2(to), 2 (fn+j—ﬁ> ~(IU+M>}
" n

is an n-antipodal set.

3. Antipodal rosettes
et us fix a rosette C and a positive integer n.

DerinNrrion 2. A rosette ¢ is said to be an n-antipodal rosette if and ouly if for

cach ¢ the set ] ) |
jw 20— 1)jn
{z([),,z (I + I—-) seeea? (I + !—)l)}
n n
is n-antipodal.

We note that € is an n-antipodal rosette if and only if
(11) g=0.

Making use of the Fourier series expansion of r» we got

5 oo (04 21T g (1 LT
' J i

0 v=1

— aucosz (f + M) — b, sin — (I + 2—111)]
Jj J n

='Y‘ ((1,, [(os— t+ 2l+l);7r\_ ‘,__(2“”_4_/“

-

n—

{
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+b [sinz <t+———(2l+1)jﬂ) (H—M)
v j n ] n

n—1 oc

233 [_au o (_ L l)wr)
2n
=0 v=1
+b, cos( M)] siuﬂ
j 2n 2n

o] n—1
_ N ) (41 + 1wr
=2 UZ:I sin 5 [—(1,, ,Z_; sin (-J—i + T)

n—1

1+ N
+b Z(O (—f-]—T):l

If 2n|v, then sin(rm/2n) = 0. Moreover if n fv. then

n-1 n—1 .
. (A4l 4+ Nwr . vm i2luw
xp 1| =t + ——— = e , =
E exp [1 (] + 7 exp |1 I + — 5 E oxp " 0

=0 1=0
n-—1 .
Rlvw
oxp =n
n
=0

and if n|v, then

Thus we have

f) = 2 Z ‘clll : N [—(lusi" (-—t+ ’/T) +_b"(.()s (_I+ %)]

v=1
nlv

2n v

If n|v and 20 Jv, then v = n(2m + 1).m = 0.1,2,..., and we have

(](1 = Z ( 2m+1

m=
. t ‘ l
(12) x [a,,,(g,,,,ﬂ)('()s n(2m + l); + byamprysinn(2m J)—,] .
J
The formula (12) implies that the conditions (11) and

(13) Apiam+1) = Dycamery = 0 for m=0.1,2....
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Thecrem &

A rosette C is n-antipodal if and only if the Fourier coeflicients of C, apiame1y,
briam+1y, form = 0,1,2,..., vanish.

Corcliary

Let ny,ny,... be an arbitrary increasing sequence of positive integers. There
exists an nr-antipodal rosette for each r = 1,2,..

A rosette C' with the index 1 is an oval. Let n > 3 he a fixed integer. By
n-polygon we mean a polygon with = sides.

i

Theorem 4

if all the n-polygons described on an oval (' have the same perimieter, then ¢
is an n-antipodal oval.

Proof. All the n-polygons described on an oval ¢’ have the same perimeter if and
only if ax = be = 0 for n|k [1]. In particular we have a,5,m4,) = byamsry = 0 for
m =1,2,.... Thus Cis an n-antipodal oval. O

References

W, Cic§lak and S. Gé#dZ, On curves which bound special convex sets, Preprint.

W. Cic§lak and W. iMozgawa, On rosclics and almost rosettes, Ceom. Dedicata, 10 appear.

W, Cie§lak and J. Zajag, The roscties, Math. Scand. 58 (1989), 114--118.

D. Laugwitz, Differential and Riemannian Geometry, Academic Press, New York-London,
1965.

R. L. Tennison, Smooth curves of constant width, Math. Gaz. 53¢ (1976), 270-272.

:5‘5-“-"5":"'

(%]



