Collect. Math. 4, 1 (1989), 67-73
@ 1990 Universitat de Barcelona

Tensor products of almost r-summing maps
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Apgrracy
If 15 and T are continuous tincar maps on locally convex spaces, we prove
that 17 & 15 is almost r-summing il and only /3 and 15 so are. We also
obtain a sufficient condition under which the unique extension of 77 7)) 10
the complete ¢-tensor product is almost r-summing
1980 Mathematics Subject Classification: Primary 461240, Sccondary 47B10.

0. Introduction and notation

The purpose of this note is to study tensor products of almost r-stimming maps. In
1970, Holub [3] considered tensor product mappings on Banach spaces. obtaining the
following result: “Let Fy. Foo Iy, and Fy be Banach spaces, 16750 1, — 15 (i = 1.2)
arce continuous lincar maps. then Ty & Ty Fys by - By by s e-summing il and
only if Ty and T4 so are™. We prove an analogous statement for almost » summing
maps on locally convex spaces, and we obtain a suflicient condition under which the
unique extension of Ty & T3 1o the complete ¢ tensor produet is almost r-summing,.

We use in this paper the notation from [2]. Let £ be a Hausdorff locally convex
space, following K. Floret and J. Wloka [2]. A sequence (@) rom Fis called weakly
r-summable if({xy.2')) € (" whenever 2" € E' (1 < r <+ x ). We pul

Gax) = sup { (X i(.r,,..r:)l,-)llr cr'e (:0} ) (n

L running through the family (,:(0) of absolutelyconvex and closed neighbourhoods
of k. The space of all weakly » summable sequences from Eis denoted by €.(F).
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The finite section &(1?) of & = (x,) is the sequence defined by

TS ETY ifnel:
.I::l(l ) = {0. “ n ¢ I)’

where P C N is finite. A sequence & = () is called r-summable if
P = - Iill_‘,n & P) in (1)

The subspace of (7,(F) formed by all r-summable sequences from F is denoted by
g e
o (F).

A sequence (@) from Fis called absolutely r-summable il (py (,)) € (7 when-
ever U € U (0). The class of all absolutely » summable sequences from E is denoted
by €.(F). Il we put

. 1/r
Teu(a) = [Z pl,-(:z.‘.,,)'] for all " ¢ U.(0) (2)

the system of all seminorms (2) defines a natural topology m,. on (( ).

In [2], a continuous lincar map 1" : F — 7 is called almost r-summing
(1 € r < 42) il it takes cach r-swmmable sequence (@) from F into an abso-
lutely r-summable sequence (T, ) from o If this is the case. it is known that a
lincar map can bhe defined by

T (wn) € OL(E) = (Tay) € ((F)

mapping bounded subsets of ¢,(F) into bounded subsets of (5(F). but it is not
necessarily continuous [5, p. 36]. In [2] T is called r-summing when 7' is continnous.
Il I is a.metric or nuclear locally convex space, then almost r-siumming maps defined
on Iv are r-summing,.

1. Tensor products of almost r-summing maps

Let Fy, Fy. Iy, and Iy be locally convex spaces. 10T, @ F, — I (i = 1.2) are
continuous lincar maps such that Ty & Ty from Fy 7. Fy into Iy 2, Iy is almost
r-summing and T; £ 0 (i = 1.2). then simple mnodifications of the proof of {3, Propo-
sition 3.1] show that 73 and Ty are almost # summing. because the elass of all alimost
r-summing maps on locally convex spaces is an operator ideal [2]. Lor the converse
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Theorem 1

If'Ty : by — Fy and Ty : Ky — [y are two almost r-summing maps, then
N"T;:Ey 8 By — Iy R, Iy is almost r-summing.

Proof. If (z,,) belongs to (J(Fy & Ly) we must prove that
+ o0

Y (pv Sepnl(Ty © T)z]) < 4. (3)

n=1

where Y, resp. Vg, run through 0-neighbourlioods of Fy, resp. Fy. Il z, = Z Tin&
i

yin for each n € N. the inequality (3) is equivalent to prove that there exists a
constant A > 0 such that

+¢ r
Z Z(.’ﬂ Cins Ca{ToYin-yn)| <M for 2! e V% ), € V2. (1)
n=1 i

Since

i i

(l‘l (Z(U:'I’I:)U:n)'lr) ":)

Z ('1'1-"!‘-i-n.$-"7;,,)(7'2'!/:';,.?/f-,) = <Z (y,'-,,.,t,lillz,)i"i,..""1-1'2,>

1
(1) is equivalent to the following
T
S (pwllio Ay =) < M foryl €17 (5)
n=1
where, for cach v € Fj. A(u) is the continuous linear map delined by
n 1

Yowiwy € Ev e, Ey— Y (giou)r, € By
izl i1

Now we shall prove that the set
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is bounded in ({( 7). Indeed. if r= is the conjugate exponent of r. for each 2’ € Ey,

P € F(N) and (a,) in the unit ball of (" (N). we have

I<Z 0'11,-’1(1’1‘2.1/;;)3neml>l = Z (y <l2 (Z(-rin-”',).’/in) -yfp>|' (6)
nepP i

TI.EI)
So il BB(2') denotes the linear map defined by

Z ViR ER R Fy— Z (vi.x")yi € Fa.

from (6) we obtain the following estimate:

1/r" 1/r
<Z anA(tTﬂ/Q)zn,w'> < (Zlanl"') (Z {(Ta 0 I?(-'v’))zn.yil)lr)
n€EP nel nepl
420 1/»
< (Z (P((Ty 0 n(.r’nz,.))")
n=1
< +9o¢,

because Ty : Ey — F; is almost r-summing and (B(a')z,) belongs to £5(E,). This
proves that H is bounded in £5(Ey). Mence. as the map T; is almost r-summing,
there exists M > 0 so that (5) is valid. O

3

2. Almost r-summing maps on dense subspaces

Let E. F and G be locally convex spaces such that Eis a dense subspace ol I and
G is complete. If T': F'— (' is a continnous linear map so that its restriction to [
is almost. r-summing, it seems to be unknown if T is alwavs almost - summing. We
have obtained the following results.

DEFINITION 2. A subspace Fof a space E is said 1o be large if every bounded set
in I is contained in the closure in I of a bounded cet in F[1].

Proposition 3
Let I/ I and (7 be locally convex spaces sucl that (U(F) is a large subspace
of (;(}) and ¢/ is complete. I 2 I -+ (/ is a continnous lincar map. then its
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Proof. I 1 is alinost r-summing, it is clear that 13 is almost r-summing.  As-
sume then that Ty is almost r-summing. Il & = (x,) belongs to (£(F), the set
A = {&(n) : n € N} is bounded in (1) (here #(n) denotes the finite section
(r1,09,....2,.0,0....)). By assumption there exists a bounded subset B of (4(F)
such ihat /A is contained in the closure in (5(F) of 3. Since Ty o E - (7 is almost
r-summing, for cach continuous seminorm q(r) on G. there exists a constant M > 0

$0 ihat
+ X

Z g(z,)" < A" for (2,)€ 1.

n=1

On the other hand, there is a continuous seminorm p(r) on Fsuch that ¢(Ta) < p(a)
for all 2 € I'. Now we shall see that

z q(Tae )" < (L4 A1) for i € N.

n=1

Indeed. given m € N, we can choose £ = (:,) € B so that
e, (E(m)=3) < m~r,
Hence we have p(a, — zp) < m=1" for all n < m. Thus we can obiain

m 1/r ni 1/r
('Z'_j q("l‘.r,;.)r) < (Z(q(’l'.r,, —-'1'.:,..)+q('l':,.))")

n=1 n=1

m 1/r m L
< (Z q(l'x, .-"I‘.:,..)'.) f (Z (I(-I.:")r)

n=1 n=1

m 1/r 5 1/
(Z I)(:I.I‘l - -:'n)") + (Z (/(-Ilsu )')

n=1 n-1

1+ M

IA

IN

X

o all m € N. This proves that E g(Tr,) < tx and the proof is complete
n=1 ‘ ]

because g(x) is an arbitrary continuous seminorm on ¢/ ']

Ghviously, if (5( 1) is a large subspace of (5(F). then I is a large subspace of
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DEFINITION 4. Let E be a subspace of I'. We say that E has the property (P) if
there exists an equicontinuous net (T, )aes from L(F, E) so that

lign To(z)==x forz € F. (7

Proposition 5

If E is a subspace of F which has the property (P), then ¢5(E) is a large subspace
of 3(F).

Proof. Let A be a bounded subset of £,(F). If we put

Ag = {&(n):nemN, &€ i),
then Ag is bounded in £5(F). By the propertv (P). there is an equicontinuous net
(Te)wea € L(F, E) such that (7) is valid.

Ilence the set

B = UTO(,\U)

is bounded in £5(E). We shall sce that A is contained in the closure in €5(1") of B.
In fact, if & = (z,) € A and p(2) is a continuous seminorm on F. given ¢ > 0 we
can choose ng € N such that

&y, (2 —2(n)) < €27 for n > ny.
By (7), there exists a € \ so that
Pl () —xn) < (209 y~L/r for n < ny.
Then, if 2" € V)7, we have

ny o ¢

5 " oo NS S R TN TS ( " o
L l(-l'n_ Iﬁr("ﬂ.)“" )l + 5_‘! I(-’u--' )l < 7'*‘7 = .

n=1 n>ne

Henee ¢, v (& — Ta(d(ng))) < ¢. This proves that # belongs to I3, 11

Remark 6. a) If I is a dense subspace of F which has the bounded approximation
property [4]. then  has property (P). Indeed.if (7,,),, € N is an equiicontinuous net
from F(F, L) which is pointwise convergent to the identity mapping, then for cach
«a € \ the continuous linear map @ € £ - T, (2) € T, (L) has a unique extension to
I which is denoted also by T,,. Fasy arguments prove that {7, : a0 ¢ A} C L(F. )
is equicontinuous and “(]"Il‘l To(x)=xforall x € I.

b) It is well known that the identity mapping from (* into (2 is I-summing. We
can generalize this result Lo spaces of sequences whose terms are elements of a locally
convex space: “The identity mapping from (1(£) into (3(1) is alinost 1-summing if
and only if the identity mapping on Fsois™. (Note that (1, E is a dense subspace
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Now we turn our attention to the complete c-tensor product EZ 1. Simple
modifications of the proof of [1, Proposition 4] prove the following

Proposition 7

Let F and F he locally couvex spaces such that I has the bounded a. p. and
F is complete. Then 1%, F is a dense subspace of 1%, F which has property (P).

Finally, by combining the above results we obtain

Theorem 8

Let Ey, E,, Fy and F, be locally convex spaces such that Ey has the bounded
a. p. and Iy is complete. If Ty @ E;y — F; (i = 1.2) are almost » summing, then
T&Ty : Fy& Ly — Fy®J5 50 is.
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