Tensor products of almost r-summing maps

CANDIDO PIÑEIRO

Departamento de Análisis Matemático, Universidad de Sevilla, 1160 Sevila, Spain Received 14/NOV/89

Abstract

If T_1 and T_2 are continuous linear maps on locally convex spaces, we prove that $T_1 \otimes T_2$ is almost r-summing if and only T_1 and T_2 so are. We also obtain a sufficient condition under which the unique extension of $T_1 \cap T_2$ to the complete ϵ -tensor product is almost r-summing

1980 Mathematics Subject Classification: Primary 46E40. Secondary 47B10.

Introduction and notation

The purpose of this note is to study tensor products of almost r-summing maps. In 1970, Holub [3] considered tensor product mappings on Banach spaces, obtaining the following result: "Let E_1 , E_2 , F_1 , and F_2 be Banach spaces. If $T_i: E_i \to F_i$ (i=1,2) are continuous linear maps, then $T_1 \oplus T_2: E_1 \otimes_r E_2 \to F_1 \oplus_r F_2$ is r-summing if and only if T_1 and T_2 so are". We prove an analogous statement for almost r summing maps on locally convex spaces, and we obtain a sufficient condition under which the unique extension of $T_1 \oplus T_2$ to the complete ϵ tensor product is almost r-summing.

We use in this paper the notation from [2]. Let E be a Hausdorff locally convex space, following K. Floret and J. Wloka [2]. A sequence (x_n) from E is called weakly r-summable if $(\langle x_n, x' \rangle) \in \ell^r$ whenever $x' \in E'$ $(1 \le r < +\infty)$. We put

$$\epsilon_{r,U}(x_n) = \sup\left\{ \left(\sum \left| \langle x_n, x' \rangle \right|^r \right)^{1/r} : x' \in U^{\circ} \right\}. \tag{1}$$

U running through the family $\mathcal{U}_E(0)$ of absolutely convex and closed neighbourhoods of E. The space of all weakly r-summable sequences from E is denoted by $\ell_w^r(E)$. 68 Piñeiro

The finite section $\hat{x}(P)$ of $\hat{x} = (x_n)$ is the sequence defined by

$$x_n(P) = \begin{cases} x_n, & \text{if } n \in P; \\ 0, & \text{if } n \notin P, \end{cases}$$

where $P \subset \mathbb{N}$ is finite. A sequence $\hat{x} = (x_n)$ is called r-summable if

$$\hat{x} = \epsilon_r - \lim_{D} \hat{x}(P)$$
 in $\ell_w^r(E)$.

The subspace of $\ell_w^r(E)$ formed by all r-summable sequences from E is denoted by $\ell_s^r(E)$.

A sequence (x_n) from E is called absolutely r-summable if $(p_U(x_n)) \in \ell^r$ whenever $U \in \mathcal{U}_E(0)$. The class of all absolutely r summable sequences from E is denoted by $\ell_a^r(E)$. If we put

$$\pi_{r,U}(x_n) = \left[\sum p_U(x_n)^r\right]^{1/r} \quad \text{for all } U \in \mathcal{U}_E(0)$$
 (2)

the system of all seminorms (2) defines a natural topology π_r on $\ell_a^r(E)$.

In [2], a continuous linear map $T: E \to F$ is called almost r-summing $(1 \le r < +\infty)$ if it takes each r-summable sequence (x_n) from E into an absolutely r-summable sequence (Tx_n) from F. If this is the case, it is known that a linear map can be defined by

$$\hat{T}: (x_n) \in \ell^r_w(E) \longrightarrow (Tx_n) \in \ell^r_a(F)$$

mapping bounded subsets of $\ell_w^r(E)$ into bounded subsets of $\ell_u^r(F)$, but it is not necessarily continuous [5, p. 36]. In [2] T is called r-summing when \hat{T} is continuous. If E is a metric or nuclear locally convex space, then almost r-summing maps defined on E are r-summing.

1. Tensor products of almost r-summing maps

Let E_1 , E_2 , F_1 , and F_2 be locally convex spaces. If $T_i : E_i - F_i$ (i = 1, 2) are continuous linear maps such that $T_1 \otimes T_2$ from $E_1 \otimes E_2$ into $F_1 \otimes F_2$ is almost r-summing and $T_i \neq 0$ (i = 1, 2), then simple modifications of the proof of [3, Proposition 3.1] show that T_1 and T_2 are almost r summing, because the class of all almost r-summing maps on locally convex spaces is an operator ideal [2]. For the converse

Theorem 1

If $T_1: E_1 \to F_1$ and $T_2: E_2 \to F_2$ are two almost r-summing maps, then $T_1 \otimes T_2: E_1 \otimes_{\epsilon} E_2 \to F_1 \otimes_{\epsilon} F_2$ is almost r-summing.

Proof. If (z_n) belongs to $\ell_s^r(E_1 \otimes_{\epsilon} E_2)$ we must prove that

$$\sum_{n=1}^{+\infty} \left(p_{V_1} \otimes_{\epsilon} p_{V_2} [(T_1 \otimes T_2) z_n] \right)^r < +\infty.$$
 (3)

where V_1 , resp. V_2 , run through 0-neighbourhoods of F_1 , resp. F_2 . If $z_n = \sum_i x_{in} \otimes y_{in}$ for each $n \in \mathbb{N}$, the inequality (3) is equivalent to prove that there exists a constant M > 0 such that

$$\sum_{n=1}^{+\infty} \left| \sum_{i} \langle T_1 x_{in}, x_n \rangle \langle T_2 y_{in}, y_n \rangle \right|^r \le M \quad \text{for } x_n' \in V_1^{\circ} \ y_n' \in V_2^{\circ}. \tag{4}$$

Since

$$\sum_{i} \langle T_{1}x_{in}, x'_{n} \rangle \langle T_{2}y_{in}, y'_{n} \rangle = \left\langle \sum_{i} \langle y_{in}, {}^{t}T_{2}y'_{n} \rangle x_{in}, {}^{t}T_{1}x'_{n} \right\rangle$$

$$= \left\langle T_{1} \left(\sum_{i} \langle y_{in}, {}^{t}T_{2}y'_{n} \rangle x_{in} \right), x'_{n} \right\rangle,$$

(4) is equivalent to the following

$$\sum_{n=1}^{+\infty} \left(p_{V_1} [(T_1 \circ A({}^t T_2 y_n^t)) z_n] \right)^r \le M \qquad \text{for } y_n^t \in V_2^{\circ}. \tag{5}$$

where, for each $u \in E'_2$, A(u) is the continuous linear map defined by

$$\sum_{i=1}^{m} x_i \otimes y_i \in E_1 \otimes_{\epsilon} E_2 \longmapsto \sum_{i=1}^{m} \langle y_i, u \rangle x_i \in E_1.$$

Now we shall prove that the set

70 Piñeiro

is bounded in $\ell_s^r(E_1)$. Indeed, if r^* is the conjugate exponent of r, for each $x' \in E_1'$, $P \in \mathcal{F}(\mathbb{N})$ and (α_n) in the unit ball of $\ell^r(\mathbb{N})$, we have

$$\left| \left\langle \sum_{n \in P} \alpha_n A(^t T_2 y'_n) z_n, x' \right\rangle \right| = \left| \sum_{n \in P} \alpha_n \left\langle T_2 \left(\sum_i \langle x_{in}, x' \rangle y_{in} \right), y'_n \right\rangle \right|. \tag{6}$$

So if B(x') denotes the linear map defined by

$$\sum_{i} x_{i} \otimes y_{i} \in E_{1} \otimes_{\epsilon} E_{2} \longmapsto \sum \langle x_{i}, x' \rangle y_{i} \in E_{2}.$$

from (6) we obtain the following estimate:

$$\left| \left\langle \sum_{n \in P} \alpha_n A(^t T_2 y_n') z_n, x' \right\rangle \right| \leq \left(\sum_{n \in P} |\alpha_n|^{r'} \right)^{1/r''} \left(\sum_{n \in P} |\langle (T_2 \circ B(x')) z_n, y_n' \rangle|^r \right)^{1/r'}$$

$$\leq \left(\sum_{n=1}^{+\infty} \left(p_{V_2} ((T_2 \circ B(x')) z_n) \right)^r \right)^{1/r''}$$

$$< +\infty,$$

because $T_2: E_2 \to F_2$ is almost r-summing and $(B(x')z_n)$ belongs to $\ell_s^r(E_2)$. This proves that H is bounded in $\ell_s^r(E_1)$. Hence, as the map T_1 is almost r-summing, there exists M > 0 so that (5) is valid. \square

2. Almost r-summing maps on dense subspaces

Let E, F and G be locally convex spaces such that E is a dense subspace of F and G is complete. If $T: F \to G$ is a continuous linear map so that its restriction to E is almost r-summing, it seems to be unknown if T is always almost r summing. We have obtained the following results.

DEFINITION 2. A subspace F of a space E is said to be large if every bounded set in E is contained in the closure in E of a bounded set in F [1].

Proposition 3

Let E, F and G be locally convex spaces such that $\ell_s^r(E)$ is a large subspace of $\ell_s^r(F)$ and G is complete. If $T: F \to G$ is a continuous linear map, then its

Proof. If T is almost r-summing, it is clear that T_E is almost r-summing. Assume then that T_E is almost r-summing. If $\hat{x} = (x_n)$ belongs to $\ell_s^r(F)$, the set $A = \{\hat{x}(n) : n \in \mathbb{N}\}$ is bounded in $\ell_s^r(F)$ (here $\hat{x}(n)$ denotes the finite section $(x_1, x_2, \ldots, x_n, 0, 0, \ldots)$). By assumption there exists a bounded subset B of $\ell_s^r(E)$ such that A is contained in the closure in $\ell_s^r(F)$ of B. Since $T_E : E \to G$ is almost r-summing, for each continuous seminorm q(x) on G, there exists a constant M > 0 so that

$$\sum_{n=1}^{+\infty} q(z_n)^r \le M^r \quad \text{for } (z_n) \in B.$$

On the other hand, there is a continuous seminorm p(x) on F such that $q(Tx) \leq p(x)$ for all $x \in F$. Now we shall see that

$$\sum_{n=1}^{m} q(Tx_n)^r \le (1+M)^r \quad \text{for } m \in \mathbb{N}.$$

Indeed, given $m \in \mathbb{N}$, we can choose $\hat{z} = (z_n) \in B$ so that

$$\epsilon_{r,V_n}(\hat{x}(m) - \hat{z}) < m^{-1/r}$$
.

Hence we have $p(x_n - z_n) < m^{-1/r}$ for all $n \le m$. Thus we can obtain

$$\left(\sum_{n=1}^{m} q(Tx_n)^r\right)^{1/r} \le \left(\sum_{n=1}^{m} (q(Tx_n - Tz_n) + q(Tz_n))^r\right)^{1/r}$$

$$\le \left(\sum_{n=1}^{m} q(Tx_n - Tz_n)^r\right)^{1/r} + \left(\sum_{n=1}^{m} q(Tz_n)^r\right)^{1/r}$$

$$\le \left(\sum_{n=1}^{m} p(x_n - z_n)^r\right)^{1/r} + \left(\sum_{n=1}^{\infty} q(Tz_n)^r\right)^{1/r}$$

$$\le 1 + M$$

for all $m \in \mathbb{N}$. This proves that $\sum_{n=1}^{\infty} q(Tx_n)^r < +\infty$ and the proof is complete because q(x) is an arbitrary continuous seminorm on G.

Obviously, if $\ell_s^r(E)$ is a large subspace of $\ell_s^r(F)$, then E is a large subspace of

72 Piñeiro

DEFINITION 4. Let E be a subspace of F. We say that E has the property (P) if there exists an equicontinuous net $(T_{\alpha})_{\alpha \in A}$ from $\mathcal{L}(F, E)$ so that

$$\lim_{\alpha} T_{\alpha}(x) = x \qquad \text{for } x \in F. \tag{7}$$

Proposition 5

If E is a subspace of F which has the property (P), then $\ell_s^r(E)$ is a large subspace of $\ell_s^r(F)$.

Proof. Let A be a bounded subset of $\ell_s^r(F)$. If we put

$$A_0 = \{\hat{x}(n) : n \in \mathbb{N}, \ \hat{x} \in A\},\$$

then A_0 is bounded in $\ell_s^r(F)$. By the property (P), there is an equicontinuous net $(T_\alpha)_{\alpha \in \Lambda} \subset \mathcal{L}(F, E)$ such that (7) is valid.

Hence the set

$$B = \bigcup_{\alpha} \hat{T}_{\alpha}(A_0)$$

is bounded in $\ell_s^r(E)$. We shall see that A is contained in the closure in $\ell_s^r(F)$ of B. In fact, if $\hat{x} = (x_n) \in A$ and p(x) is a continuous seminorm on F, given $\epsilon > 0$ we can choose $n_0 \in \mathbb{N}$ such that

$$\epsilon_{r,V_p}(\hat{x} - \hat{x}(n)) < \epsilon 2^{-1/r}$$
 for $n \ge n_0$.

By (7), there exists $\alpha \in \Lambda$ so that

$$p(T_{\alpha}(x_n) - x_n) \le \epsilon (2n_0)^{-1/r}$$
 for $n \le n_0$.

Then, if $x' \in V_p^{\circ}$, we have

$$\sum_{n=1}^{n_0} |\langle x_n - T_\alpha(x_n), x' \rangle|^r + \sum_{n > n_0} |\langle x_n, x' \rangle|^r < \frac{\epsilon^r}{2} + \frac{\epsilon^r}{2} = \epsilon^r.$$

Hence $\epsilon_{r,V_p}(\hat{x} - T_{\alpha}(\hat{x}(n_0))) \leq \epsilon$. This proves that \hat{x} belongs to \hat{B} .

Remark 6. a) If E is a dense subspace of F which has the bounded approximation property [4], then E has property (P). Indeed, if $(T_{\alpha})_{\alpha} \in \Lambda$ is an equicontinuous net from $\mathcal{F}(E,E)$ which is pointwise convergent to the identity mapping, then for each $\alpha \in \Lambda$ the continuous linear map $x \in E \to T_{\alpha}(x) \in T_{\alpha}(E)$ has a unique extension to F which is denoted also by T_{α} . Easy arguments prove that $\{T_{\alpha}: \alpha \in \Lambda\} \subset \mathcal{L}(F,E)$ is equicontinuous and $\lim_{\alpha} T_{\alpha}(x) = x$ for all $x \in F$.

b) It is well known that the identity mapping from ℓ^1 into ℓ^2 is 1-summing. We can generalize this result to spaces of sequences whose terms are elements of a locally convex space: "The identity mapping from $\ell^1_s(E)$ into $\ell^2_s(E)$ is almost 1-summing if and only if the identity mapping on E so is". (Note that $\ell^1 \geq E$ is a dense subspace

Now we turn our attention to the complete ϵ -tensor product $E \tilde{\otimes}_{\epsilon} F$. Simple modifications of the proof of [1, Proposition 4] prove the following

Proposition 7

Let E and F be locally convex spaces such that E has the bounded a. p. and F is complete. Then $E \otimes_{\epsilon} F$ is a dense subspace of $E \tilde{\otimes}_{\epsilon} F$ which has property (P).

Finally, by combining the above results we obtain

Theorem 8

Let E_1 , E_2 , F_1 and F_2 be locally convex spaces such that E_1 has the bounded a. p. and E_2 is complete. If $T_i: E_i \to F_i$ (i = 1, 2) are almost r summing, then $T_1 \tilde{\otimes} T_2: E_1 \tilde{\otimes}_r E_2 \to F_1 \tilde{\otimes}_r F_2$ so is.

References

- 1. A. Defant and W. Govaerts, Tensor produts and spaces of vector-valued continuous functions, *Manuscripta Math.* 55 (1986), 433–449.
- 2. K. Floret and J. Wloka, Einfuhrung in die Theorie der Lokalkonvexen Räumen, Lecture Notes in Mathematics 56, Springer, Berlin-Heidelberg, 1968.
- 3. J. R. Holub, Tensor product mappings, *Math. Ann.* 188 (1970), 1–12.
- 4. P. Pérez Carreras and J. Bonet, *Barrelled Locally Convex Spaces*, North-Holland Mathematics Studies 131, North-Hland, Amsterdam, 1987.
- 5. A. Pietsch, Nuclear Locally Convex Spaces, Springer, Berlin-Heidelberg, 1972.