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ABSTRACT

Each weakly ¢’-compuct subset of a locally convex space over a spherically
complete non-archimedean ficld with dense valvation is a pure compactoid.
This is an answer to an open problem posed by W. H. Schikhof [4].

0. Introduction and preliminaries

0.1. Unless stated otherwise, i will be a non-archimedean (n.a.), spherically com-
plete valued field with non-trivial valuation | -|. We set

BO.1)={AeK: Al <1}

and

BO17)={AcK:|A

<
<\ }

and denote the residue class field of X by & and its value group by {K*{. If the
valuation of K is discrete. there exists p € B(0,17) such that

<= {lp|" :n € 2}
and B{0.17) = B(0.]p])-
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Unless stated otherwise, £ will be a Banach space (B.S.) with norm || - ||. If K
is discretely valued, we choose || - || such that

g

= {2l XS L} c|K

We denote by F' the topological dual space of E and we assurue that F' +# {0}.
For .5 C F, we denote by co 8 the absolutely convex (a.c.) hull of S, by @5 the
closure of co0.5 and by [§] the linear hull of S.

A subset 3 of IV is called absorbing if for every z € & there exists A € K such
that o € AB. An a.c. subset B of F is called finite dimensional il it is contained

in a finite-dimensional linear subspace of £. Otherwise, it is said to be infinite-
dimensional.

0.2. Introduction

In section 1, we recall some general properties of Banach spaces and a few
definitions which we need in the sequel.

Section 2 is dedicated to Banach spaces over a trivially valued field.

In section 3, some propertics of seminorms and their relation to weakly
¢’-compact sets in locally convex spaces are given.

Sections -t and 5, the main parts of our paper, deal with Krein-Milman like
theorems in L.

Important results arc:

a) If the valuation on K is discrete, each a.c., closed, weakly ¢’-compact subset
of F is an orthogoual sum of one-dimensional a.c. subsets of K.

b) If the valuation on K is dense, each a.c., closed, weakly ¢’-compact subsct of
I is pure compactoid.

1. Two general lemmas about Banach spaces and orthogonality in Banach spaces

[.1. Remark. The trivial valuation is a case which is not excluded throughout
section 1.

1.2, DEFrINITION. For @ € It and a subsel I3 of I7, we denote
dist(x, B) = inf ||z — yl|.
(2, 1) = inf llo =yl

1.3. Lemma

Let D C E, D # I, be a closed, lincar subspace of k. Ior every L € (0,1),
there exists x, € IS\ D such tat ||y — x| > t||=4|| for any y € D.
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Prool. Choose w & E\ D As D is closed. dist{z, D) = r > 0. So, for t € (0.1).
there exists d € D such that |le )b < r/i. Pub 2y = 2 —d. Then

o]l = 0 = d)| < dist(a, D) = dist(ay, D).
Hence forany y € Do ly x> el U

1.4. L.emma

Suppose there exists 1 € (0.1) such that ||E| ¢ {* 10 ¢ ZYU{0}. Let D be a
closed linear subspace ol 1. Then there exists = € E\ D, such that dist(z. D) = I|=]]-

Proofl. Use lemma 1.3 and choose z = ;. =

.5, Remark. For 1.3 and 1.1, the completeness of E is not required.

1.6, DEFINITION.

£) A subset B3 of £\ {0} is called orthogonal if for any n G Ny, by,....b, € I
and A...0 A, € X :
by - 1 Ab, || = !‘nax{!!,\ﬂ)] se s [ A bl }

2) Choose L ¢ (0,1). A subsel B of 17\ {0} is called f-orthogonal if for any
neE Ny by...., by C I and Aj..... As €K

GAD A N > “““-\'{.:/\lbl”7---7||/\n,bu|i}-

1.7. Proposition

Leticiyep be a (1 )orthogonal subset of 15, Then

lr{(:-, - e I}| = {Zz\"(;g Vil A e Xand he| — ()}.

i

Prool. [5. lemma 6.bi. O
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2. Some properties of Banach spaces over a trivially valued field
2.1. Remark. "Throughout this section, X will be a field with trivial valuation.

2.2. Lemmma

For every L€ (0.1), there exists a norm p on F such that:
Ll < pla) < ||, forz ¢ I\ {0},

and
p(E) = {pla) 12 e L b {thine 7} {0}.

Proof. Tirst we establish the definition of p. Choose ( € (0.1).
‘I\ Il — 0, weset p(a) — 0.

H 1 # 0, then there exists n & Z L.ll(h that 7%F1 < 2|l < ¢*. We deline
pla ) '-l The inequalities ¢ jiz|| < < Malls for 2 € 1\ {0}, follow casily from
the (l('hn.lu)n of p. 1t is casy 1o sce lh.1| [)(l) = 0ifand only if = 0, and that

pla+y) < :‘nnx{p(:z:),p(y)}. foraz,yc .
For A € K™ and @ € 17\ {0}, we have that |[Az| = 1A} IL]] = |||, because the
valuation on Xis trivial, and thus: p(Az) = p(2) = [Alp(z). O

2.3. Theorem

Suppose that {|E)  {t" :n ¢ £} U {0}, for some (€ (0.1). Then (L] - 1) has
an orthogonal base,

Prool. Let P he the set of all the orthogonal subsets W of & such that 0 ¢ W. By
a standard application of Zorn’s lemma. P has some maximal clement S = (%:)ies-

Put

) - {Z Aigit A CKVYIiCT: A\js; —- ()} .
i€l

D) is a complete linear subspace of E, hence D is closed. Now DD = |/

Indeed, suppo%o D # L. According to lemma 1.4, we can find z € I\ D such
that dist(z. D)) : - ||z}}. Hence SU{z} is an orthogonal subset of E, which contradicts
the maximality ul 5. (The uniqueness of the expansion of an clement z of ' in terms
of (si)ier- follows from the orthogonality of S). O
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2.1 Remark. In [1j, a theorem analogous (but stronger) o 2.3 is formulated. For
details we refer 1o 111
2.5. Corollary

For every 1€ (0,1), (I,|l-]]) has a t-orthogonal base.

Proof. Let t € (0,1). Choose a norm p as in lemma 2.2. According to iheo-
rem 2.3, ([, p) has an orthogonal base (s;)ier. Then, for any n € Ny.i1,....1, € I.

/\,jl,...,/\;', e K:
| 1
”L’\Lkbu > [) (Z ALL'SIA)

k=1

= max p(A; s, )
k=l..n '
>t max ||/\ik3iki|7
k=1,..,n
hence (E.{f - ]!) has a t-orthogonal base (s;);¢;. O

6. Proposition

Lvery a.c. subset of I is a lincar subspace of 1 and con versely.

3. On seminorms and weakly ¢'-compact subsets in a locally convex space
3.1. Remark. Throughout section 3, F is a llausdorfT locally convex space.

3.2, DEriNrrion [2]. Tf 4 is an a.c. closed subset of 1, we put

At = U bW

AGH(0,17)
and 94 = A\ AT where A is the closure of Af in [, (Note that 94 may be empty).

3.3. Construction. With the notations of the preceding definition, we denote by

7oA —— A[AT

and by
T B(O,1) — &
A —r A

the canonical surjections. Then A/A? is a k-vecror space.
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3.4. Lemma

Let A C I be a.c. and closed and let p be a continnous seminorm on F. (If K

is discretely valued, we assume that p(FE) C |K|). Then the following are equivalent:
i)p<lond;
i) p<1on A
iii) p <1 on AL

Prool. 1) == ii) Tor every y € A? there is some z € A and some A € B3(0,17) such
that y = Az and thus p(y) < I. Tor y € A7 with p(y) # 0, we can find a net (2,)ycn
in Af such that z, -~ + y. There is some vy C N such that

p(‘y) cplzy) < 1 v > .

ii) == iii) Obvious.

iii) ==> i) Choose ¥ € A. Then Ay € A* for all A € B(0, | ).

a) If the valuation of K is discrete, A* = pA and p(Ay) < | Tor all A e 50,17,
so p(py) < 1 and thus p(y) < 1/|p| which means that p(y) < 1.

b) Il the valuation of X is dense, we have p(Ay) < 1 for all X € B(0,17), so

(y) < inf ! 1.4
Dl —_ T 1.
Py = AEB(0,17) |A]
3.5. Proposition (W. II. Schikof)

Let A C K be a.c. and closed, let x € 15\ A. Then there exists a continuous
seminorm p with p(a) < 1 fora € A and p(z) = 1. If the valuation ol K is discrete,
p can be chosen such that p(z) € K| for any z € . As K is spherically complete,
we can choose p = |f| with f ¢ I,

Proof. [3, Proposition 4.2]. O]

3.6. Proposition (\W. 1l. Schikof)

Let A C F be a.c. Iorx € A, the following are equivalent:
i) there exists a continuous seminorm p with p # 0 on A and

r) = max p(y);
p(x) Iylejw(./)

ii) z € OA.
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Proof. i) = ii) Suppose 2 € A7 and sct

U={2€ek:p(z)< p(z)}.
a4+ meets A sox = uf- v where u € U and v € A% As ¢ € A and p < p(x) on
A, we have that p(v) < p(2). So
p(a) < wax{p(w),p(v)} < p(z),
which is a contradiction.

ii) = i) According Lo proposition 3.5, there is a continuous seminorm p with
p<lonAtand p(a) = 1. From lemma 3.4 we deduce that p<lon Aso

ple) = 1 = max r(y). O
3.7. DEviNiTION. For A C I, absorbing, we define
pae) =inf{|A|: A eK, 2 ¢ A}
Note that py4 is a seminorm on F. (p4 is the so called Minkowski function al).

3.8. DEFINITION. A C I a.c.is called weakly ¢’-compact, if for cach f € E' there is
some 2 € /A such that

1f(z)] = max /().

3.9. Corollary

Let A C I be a.c., closed and weakly ¢-compact. Then &A # 0 and as a
consequence A/ A6 is not trivial.

3.10. Proposition

Let the valuation on K be discreie and let A C I be a.c. Then the following
are equivalent:
i) /Ais weakly ¢’-compact;
ii) 4 is bounded.

Proof. [1, proposition 1.2]. Ol

3.11. Corollary

If the valuation on K is dense and if A C I is a.c. and weakly ¢’-com pact, then
A is bounded.

Proof. [4. proposition 41.2]. O
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4. Krein-Milman like theorems in Banach spaces

4.1. Remark. Vhroughout sections 4 and 5, A # {0} will be an a.c., closed and
weakly ¢’-compact subset of E.

4.2. Construction. With the notations of 3.2 and 3.3, we put V = A/AL. V is a
k-vector space and the formula

I=(2)I| = inf |l —1}| (= dist(x, A7)
LeAr

for z € A, defines a norm on V. This norm induces a topology on V' which we will
use in the sequel. On 1 we establish the topology induced by the norm on /. As a
consequence, @ is continuous and ||x(z)|| < i|z|| for all 2 € A.

4.3. Proposition

(VA= 11 is complete.

41.4. Proposition

(Vil - 1) has a t-orthogonal base for any & G (0,1).
Prool. Corollary 2.5. O

4.5. Proposition
IfA:-TX, then [x(X)] =V,

Proof. As @ is continuous

V- z(@X) Cm(coX) =[x(X)] C V. 1T

4.6. DEFINITION. Let B C F be a.c. and closed. X is called a generating subset of
BiftoX = B. It is called a minimal generating subset of B if it is a generating
subset of /3 and if for every Y C X with@wVY = B,Y = X.

4.7. Corollary
Y C V is a gencrating subset of V if and only if[Y] = V.

4.8. Proposition

If'Y C V is a generating subset of V and if T is a subset of A such that
a(T):==Y, then A=7Tol.
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Proof. Suppose A # 7T, Choose x € A\T 7. There exists a continuous seminorm
p (we may even choose p = if|, for some f € 1), because X is spherically complete)
such that p(a) = 1 and p(T67T) < 1. As A is weakly ¢*-compact, there exists o > 1
and z € A such that
\
p(z) == a = max p(y).
) maxp(y)

Hence, p (T) <aand p(@T) < w. But as [‘;T(T)] =V, we have that

A=A+l
Indeed, for y € A and « > 0, there is some t € T such that
1=(y) - 7Ol = =y — O <
hence there is some a € A7 such that
lly - (t4 @)l < c.

Hence

max p( 2 o,
nas p(z) < a,

which is a contradiction. ]

4.9. Corollary
Let X (A, such that ©© X = A and such that m|x Is injective. Then X is a

minimal generating subset of A il and only if #(X) is a minimal generating subset

of V.

LProol. “only if": Suppose that there eixsts a proper subset Y of 7(X) such that
[YJ = V. Then there is a proper subset 1" of X such that (1) = Y. According
to 4.8, 61" . A, which is a contradiction with the minimality of X.

“il": Suppose that there exists Y € X,V # X, such thal @Y = A. Then
[x(Y)] = V. But obviously, (¥) C =(X) and 7(Y) # =(X). and this contradicts
the fact that #(X) is a minimal generating subset of V. L3

4.10. Corollary

For t € (0.1). let (s:)ies be a t-orthogonal base of (V.|| - ||). Lor cach i € I,
choose ¢; € A such that 7(e;) = s;. Then A=t {c;:i€ 1} and {¢;:i¢ 1} isa
minimal generating subset of A. Note that {¢; :i € 1} C 9.
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1.11. Corollary

If the topology on V' is discrete and il S is a minimal generating subset of A,
then =(5) is an algebraic base of V.
Prool. As €65 = .1 and as the topology on V is discrete, it follows thad

[7(5)] = [x(9)] = V.
which means that 7(.5) contains an algebraic base of V. Hence, as 7(.$) is a minimal

generating subsel of V', #(.5) is an algebraic base of V. O

4.12. Remark. 'The topology on ¥ can be discrete. Indeed, consider the following
example: Tet the valuation of K be discrete, and set 4 = {z ¢ I : [lz]] < 1}. Nole
that A is closed and weakly ¢ compact (corollary 3.11). Then

Atz e Ex| < |pl}-
[t follows that ||x(x)ij = 1 for 2 € @A, and ||x(x)|| = 0 {for z € A%, s0 the topology

on V induced by || - | is discrete. O

4.13. Remark. lere we give an example of a situation where the topology on V
induced by || - || is not discrete. Let the valuation of K be discrete. Put
¢y = {()- 2 () neNg ¢ On € K Vi € Ny, ,1“",; a, = ()} .
For o € ¢g, we put
lexl] == max ¥, .

Lot (ay)neny be the canonical base of ¢g and set

A= m{/)"'_1a.,,, :n €Ny }
Note that A is weakly ¢’-compact (corollary 3.11). Then

Al = pA =70 {pb,,, :n € Ny }

where b, = p" 'a,.
For k € Ny and ¢ pA we have

Wk — 1] = max {lta| (n # k). |p*7" = t]}.

0% = dll = max {{a] (n # k). |p el}

Since we have jt,§ < |p|* for n > k., it follows that [p*=" — 14| = |p|*-! and thus:
- — k=1
I7(58) ~ 4] = max{ltal, ol ).

So, for cach 1 € A%, we have that [|by — t]| > |p|*~" and thus x(by)|| = |p|*~1. It
follows that

vl ={im(@)ll sz € 4} = {[p|*~" : k € No} U {0},
and hence the topology on ¥ is not discrete.
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4.14. Remark. Tater on (5.1.6 and 5.2.11), we will sce that for infinite dimensional A,
the topology on V induced by ||| can be discrete only if the valuation of K is discrete.

1.15. Remark. Looking at 1.9, it would be nice to know wether for some minimal
generaling subset X of A, 7(X) is a base of V. HTowever, this is not true in general.
although V" itsell has a basc.

ISXAMPLE. Let the valuation on K be discrete and let IS = ¢y with the max norm.
Put (a4)nen, the canonical base of £ and for n € Ny, putl 2y = a7 4 p"a 4.

Sct

A=to {p"“'u..,, tn € No}.
Then
A= ("6{1,, n e N(,}.

(D is obvious and for C, observe that a; = lim,_o 25)-

After some calculation, we find thatl, for any n € Ny:

dist (:n,,,,m{a‘;m sm# n.}) = |p|™ > 0.
s0 {zn 11 € Ng} is a minimal generating subset of A, hence {7(z,) : n € No} is a
lincarly independent subset of V.

At=pA =70 {p”a,,, tm € I\Io}.
FFor 1 € pA, we have that

o0
1= Z Apta,

n=1

and, for any » € Ny, that [AL] < 1.
So, for any n ¢ Ny:

2y, — || = max {|l — Al -meié?{]ﬁwﬂ } |AL ™ o™ )1 = /\f,,“/’l} > 1= |izalj,

hence la(a, [l = 1.
But {7(z,) : n € Ng} is not a base of V. Indeed, suppose that {#(z,):n € Ny}
is a base of V. Then, for each v € V there exists A, € k such that

V= Z /_\-,‘;F(”fn.)
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and A,7(x,) —= 0.

But as [[7(z,)i] = L for all n ¢ Ny, there is some ny ¢ Ny such that X, = 0 for
n > ng, hence {w(z,): n € Ny} is an algebraic base of V.

But then there exist N € Ny, 71,...,in € N such that

U] E AL1|7,

n=1

with A;, Z0forn e {1,....N}).
Tence,

T(ay) L)\," (ay) L/\,"T a,-”_H).
n=1 n=1

But {m(p"~'a,) : n € Ny} is a lincarly independent subsel of V (because

(p™ Lay)nen, 18 @ minimal generating subset of 4), hence Ai. =0forne{1,....N
\ CiNg = 5 ) n ) ’
and

N

E A, =1,

n=1

which is a contradiction. In the same way one can prove that a; does not have a
unique expansion in terms of the (Tn)neNg-

5. A connection between A and V
I. The valuation on K is discrete
3.1.1. Remark. Throughout 5.1, the valuation on K is discrete.

5.1.2. Construction. In 5.1.2, we will determine some notations and definitions
which are valid throughout 5.1.

1) As |j2]! C |K] and as the valuation on K is discrete, it
Tence, (V.|| - i) has an orthogonal base (s;)icy.

2) Thoughout 3.1, the choice of (s;)ie; will not be altered.

5.1.3. Lemrma

With the notations of "3 1.2, we have that lor every i € 1 there exists e; € A
such that ||eil| = |[s:f and =(e;) = s;.
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Proof. Tor cevery i € I. there exists u; € A such that m(u;) = s;. Then
dist(ui pA) = ||s:]]. So, there exists v, € pA, such that

e — oot < il
[ — vil] < T

For each @ G 1, put ¢; = u; — vy, It is easy to see that, for every ¢ € [, ¢; has the
required properties. Ol
5.1.4. Proposition

Let (¢i)ier be a family in A with the propertics mentioned in lemma 5.1.3.

Then (¢;)icr is an orthogonal subset of L.

Prool. For .J C I, finite, pul

©=) A

J€J
with A; ¢ K for j € J. We will assume that z # 0. Put,

L= {5 €7 el = mag e = 5}

and choose jy € I such that
Aio| = max |A;
| .l()l lC—.l.: | ‘I

(Aj, # 0 as x # 0).

I'hen

|
8> i!Z Aze;
i

el

= |’\.f()l Z ;\_l Cil

ier, "o |

Ai
>l [ (52) s

iel, Jo I

P max S;
Ao {iel,:|,\,|=|,\,-0|}” g

= max N | lles
-[‘iEl,:|}\.‘|:_:=)\1_u|} I’Jol ” 1”

= max [ Aie;i!
{ielgnil=1N, 1}

—= 3.
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aud therefore

||<i] = Z Aie; + Z Aie;

icl i¢L i

Z ’\if"i

= f3 = max ||A;eq|.
: [ 1CJ
i€l |

Itence, (¢)ies is an orthogonal family of E. O

5.1.5. Theorem

There exists an orthogonal family (e;)ie; in IS such that A = t{c; 1 i € 1}
Hence, there oxists a family (1), of one-dimensional a.c. subsels of I such that
: . i1)i¢l

1
A= @ Ti-
i€l
5.1.6. Corollary

The following arc equivalent:
i) Ais open in [A];
ii) The topology induced by || - || on V is discrete.

Proof. i) == ii) We have pa(z) = 1 for z € A and pa(z) < 1forz e Al Als
open in [A], so there is some ¢ > 0 such that

B={xe[A]:|z]|<c}C A

As a consequence py < pp. lence, there exists ¢ > 0 such that pa(z) < c||z|| for

x € [A]
As pa is continuous on [A], it follows that

inf pa(z—1t)=1, T €JA,
[EA'

hence
edist (.’L‘, /1‘5) > 1, x € JA,

so the topology induced by || - || on V is discrete.
ii) =% i) Let (e:)ier be an orthogonal family in [A] with the propertics men-
tioned in lemma 5.1.3. As A == €{e; : i € T} it follows that

] = [{e;: i€ 1}].
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Now. the topology on V is discrete, hence there exists @ > 0 such that
||(,|| = ils,” > O, rel.
S0

B:{xclA]l:llz]| <a}C A

g= Aie;

iel

Indeed. for y € I3, put

with |A,, - » 0. Then
Iyl = max [[Aieitl > max | Al

Tlence,
max il <1 = ye A O
i€

5.2, The valuation on K is dense

5.2.1. Remark. Throughout 3.2, the valuation on K is dense. We will also assume -
that A s infinite-dimensional.

5.2.2. Construction. Tn 3.2.2 we will determine some notations and definitions which
will be valid throughout 5.2.

1) Choose t € (0, 1). In the sequel, ¢ will remain unchanged.

2) On (V.|| - ) we establish a norm p which has the propertics mentioned in
lemma 2.2, ie,

tlvj| < p(e) < |l v € V\ {0}
and
p(Vyc {t":nez}u{o}.

In the sequel, the choice of p will not be altered.

3) Let (s:),er be an orthogonal base of (V,p). In the sequel., the choice of ($)ict
will not be altered.

Of course, there exists for every ¢ € [ an n; € Z such that:

(< plsi) < sl < 1™

5.2.3. LLemina

With the notations of 5.2.2, we have that, for every i € 1, there exists ¢; € A
such that

8

| < leift < 2™, w(eq) = 8.
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Proof. For every i € 1, there exists u; € A such that 7(u;) = ;. Then

dist (ui,m) = |[s:ll,
so there exists ¢; € A% such that
Jui — wi]| < £

For i € 1, put e; = u; -- v;. 11 is easy Lo sce that e; has the properties required. O

3.2.4. Remark. One could ask the question of wether a family (¢;);er which has the
properties mentioned in 5.2.3 (and for which we know that it is a minimal generating
subset of A). is a '-orthogonal subset of (E, || - ) for some ¢’ € (0,1).

I haven’t been able (yet) to prove lhat the family (¢;)ics is a "-orthogonal

subset of I5, nor have I been able (vet) to find a counterexample for the fact that it
is not.

Still, we have the following:

5.2.5. Proposition

Lot ( ¢i)ier be a family in A such that, for all i ¢ I, 18
w(e;) = The family (¢;)ier has the follcmmﬂ propertics:

i) (¢ )lu is a lincarly independent subset of I,

i) For all 1 € I: (Ilst((,,((){f*- J#i}) >t el

iii) For all i, j € I withi # j, e; and e; are t-orthogonal.

| < |lei]l < t™ and

Proof. i) First note that for all i € 1, ||e; sill > 0. (($i)ies is a base of V).
Now, for J C I, finite, consider Eie.l Aiei with A; 0 forall i€ J. Put

Ml=max Xl #0,  Jy={ied:|nl=|A)

Then

Z Ait;

i€J

> |,\| max f
'l
= tmax |\ P(si)
i€.J) !

2 frax | Al flesll,
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hence

1) Al > 0.

1€

This implies that (¢;)ieq is a linearly independent family of 2.

i) Choose i € £. Tor J C I\ {}, finite, and for (A;)jcs € B(0,1)7, we have
that | .
N |

8 - E /\J'S_-,'

JE€J

Y 'Cl
’ l“ ) _\'l.'."‘
= { max P(s) . 7——)(/ i51)
icJ { 4
> L’)(fi)

> el

iii) Let 4,5 € I and i £ j. Choose At € . We only have to consider the case
that [Alllei]| = lpl|le;l. We may assume that [A| > |pl. Then

| Aci 4 pe;|| = | |

LK
¢; - X cj

$; +

TN

> [A] |

> (] —”(f"')

mas{[jne;

Mgl L

v

5.2.6. Remark. All the preceding resulls are also valid if the valuation on K is
discrete. but as we have seen, even stronger results hold for a discretely valued field,
so we decided to mention them for a densely valued field.

5.2.7. Construction. 1) To liglten the prool of proposition 3.2.8., and as A is
hounded (corollary 3.11), we may assume that sup e, ||2]l < 1. As a consequence
sup.cy vl < 1.

2) l'or n € Ny, put

L= {i€l:p(s) =1},
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and
3, = {s,- tE D, }
Then U, en, #n is an orthogonal base of (V,p).
3) Let (¢i)ics be a family in A with the properties mentioned in lemma 5.2.3.
lor n € Ny. put
S = {eili€e 1}

A :m( U I;’,,,) ;
I‘I.ENU

1) Throughout the rest of 5.2, we only use the family (ei)ier constructed above.

O

Then

5.2.8. Proposition

With the notations and assumptions of 5.2.7, we have #1, < oc for all n € N,.

Proof. Suppose that there exists ng € Ny such that #1,, is not finite. We are going
to split up our prool in seven parts.

1) Put

no

J=J I
k=1

Then (ei)ies is a t"-orthogonal subset of (£,]| - ||).

First. note that p(s;) > 1™ for all 5 € J. Let J* C J be finite and consider
(Aicor € K77, Put

- J1 = {iEJ”:|)\,;|:r_na.)_c|/\,.-!}
Jjes -

and choose A € K such that
|Al = max [A;].
Jear e

We may assume that A # 0.
Then

1D Niesl = 1A

iGJ"

-

Mod

i€d

2 1A

>,|>~




Weakly ¢’-compact subsets 49

M (Z @)

|A] max p(s:)

V.

> 1" |\l
max Al
2 17 max A fle;ll-

2) Put D) = {{c;ji € J}]. Then {e;]i € J} is a t"-orthogonal base of (D - 1D-

See 1.7 for a proof.
3) Define g: D — 31 by

€r = Z A (/\,j — ()) I A ledl\ YA
oy

Then g is a norm on D. equivalent to || -]
It is casy to sce that ¢ is a norm on /).
Now. put & = ;. Aje; with A; —» 0 and put,

Jy = gi e ] = maxid] .
/| {l&/ | Al 1}1(_1‘}(,/\_”}

We will assume that o # 0. Choose A € K such that [A] = max,c s [A;].

Then
‘ |
l|f] - ‘ D A+ ) eyl
i\ i€, I

> Alp Z (%)9, b X (%)“

ieJ\Jy i

le.ll
. — [ A;
|Aip (L <-\—>Sz>
i€J, ’

= |} max pls;)

v

1 max 'A]
ied

-q(r)

"o max [Ait Hed|

v

(A

17 L,
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4) We can extend ¢ to a norm § on F, cquivalent to ||-1| and such that §;p = q.
For y € . put

(y) = inf maxql|ly —d|[,q(d)}.
9(y) = inf max{|ly - d|l, q(d)}
Sce also [5. lemma 6.14].
5) Now, let (ix)ken, be a subset of I,,. Choose (7x)ren, in K such that

O<iml<|ml< <1, lim |ng| = 1.
k—oc

We define f: D — X by

Z A€ v— Z Aiy Nk-

icJ kN
Clearly, [ is lincar and well-defined. [ is also continuous.
For ¢ =. Zz‘c./ Aiep with Ay ¢ X and A; —» 0, we have that:

![(Z/\(’>i ‘ (L ’\u lk)
! i€J k€N
Z ’\ik i

keNg
{2&); [Ai, | |77k|

IA

I/\

max | —— | [Aig e, ||

Teall kl
1. |
< s Il

6) Yorxz e D, [f(x)} < t="0g(x). Mence, |f(2)] < t7™0¢(a ) for z € .
We can extend f e D to feFE such that fD = [ and |f(z)| < 17™¢(z) for
r€eD.

7) Pinally, we arrive at our contradiction:
f((.i;)Z_f((Ei):() V?:E./\{Z'k:kEN()},
|/ (ﬁik)l =lew)l = iml <1 Vi€ {ix:k €N}
1 1 .
| fed)l < ,T,‘l(‘ ) S pphieill < mggp(s) <1 Vie T\
Uence. |f(e;)| < 1 for i € I, but

sup | f(@)] = sup|f(er)] = 1,
rEA icl

which is a contradiction. O
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5.2.9. Proposition

]im;Gl ”(,” = 0.

Prool. limie; p(s;) = 0. Indeed, for every ¢ > 0, there exists N, € N such that
(" < ¢ forall n> N.. Then

hence
N,
el <. el I,
k-1

and therelore

l!_lé[’l lles]| = 0. O

[S44

.2.10. Corollary

inf p(si) = inf flsi]

5.2.11. Corollary

The topology induced by || - || on V' is nol discrete.

5.2.12. DEFINITION. B C E a.c. s called a (pure) compactoid if for each zero
neighbourhood U of F, there exists a finite set # ¢ F (I ¢ B) such that

BCU-+col,

5.2.13. Theorem

A s a pure compactoid.
Proof. A =% {e¢; 14 C 1} and limjie;]| = 0. O
5.2.14. Remark. This theorem answers a question asked by .1l Schikhof [1],

namely the question if cach weakly ¢’-compact, a.c. subset of a B.S. over a spherically
complete field X is a pure compactoid.
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5.2.15. Corollary

Il I is a locally convex space over a spherically complete field K with dense
valuation, and if B is an a.c., weakly ¢’-compact subset of I, then I3 is a pure
compactoid.

Prool. L.et U7 ¢ I be a neighbourhood of 0. There is a continuous seminorm g such
that {x € IV : q(z) <1} C U. Let ITJ,, be the completion of £,. The canonical map
R VA PP ﬁ?,, Is continuous, hence mg(f3) is weakly ¢’-compact in I;',,. From
5.2.13 we deduce that m,(83) is a pure compactoid in £y, hence in E,. Since 7,(U)
is open in ITZ',,, there exists a finite st /' C 3. such that:

mq($3) Cwy(U) + 7y (F),

so wo have:

BCcU+col+KergC U +col [

2.3, A s finite-dimensional,

5.3.1. Remark. Throughout 3.3 A is finite-dimensional and there is no assum plion
on the valuation of K.

5.3.2. Proposition
Without any assumption on the valuation of K, the following are cquivalent:
i) A is n-dimensional;
i)V is n-dimensional.

Prool. Choose { @ (0,1) and let p be a norm on V such that for all v € V \ {0}
el < p(e) < |[v|| and
p(V)C {i":neZ}u{o).
Let {s; : 4 € T} he an orthogonal base of (V, p). For i€ I, choose ¢; € A such
that #(¢;) = ;. Then

A=t{e;:i€l}=cofe;:icl}

and {ei)ier i a lincarly independent family in [A].
i) = ii) 16 #1 # n, it follows that A is not n-dimensional.
i) = 1) M 40 — n.it follows that A is n dimensional.
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