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ABSTRACT

A unitary analogue of Pillai’s arithmetical function is introduced, and an
asymptotic formula is proved.

1. Introduction

Pillai’s arithmetical [unction [7] is delined by

n

P(n) = Z(k, n),

k=1

where (k,n) denotes the g. ¢. d. of k and n. It is casy to show that
P(n)= Ztlt,c (B-> ) (1.1)
d/’

where (n) is the Tuler totient function, that is P(n) represents the Dirichlet con-
volution of the multiplicative arithmetical functions L'(n) = n and ¢(n), thus it is
also multiplicative [6, §4.4, problem 6].

Formula (1.1) furnishes the following asymptotic estimate [9]

.

Z P(n) = ;‘7 z?logx + O(z?), (1.2)

-
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and by partial summation we obtain

2 2
Z %'")- = 7:—2 rloga + O(x), (1.3)
n<e
which implies that P(n)/n behaves like 6log n/#? or for k < n the average value of
(k,n)is 6logn/r? [1].

It is well known that a divisor d of an integer n is called unitary if n = de and
(d,€e) = 1, notation d || n. Following Cohen [2], let (k,n). denote the greatest divisor
of k& which is a unitary divisor of n.

In this paper we introduce the function *(n) defined by

n
Pr(n) = (k.n).,
k=1
which is the unitary analogue of the Pillai function P(n). We show that the function
P~(n) is multiplicative (corollary 3.1) and we establish an asymptotic formula for
the summatory function of £7(n) (theorem 3.2).
In the last part of the paper we investigate a slightly more general function,

namely
n

Pi(n) = Z(k', n)e

k=1
and give an asymptotic formula for its summatory function in the case » > | (theo-
rem 4.2).
Our method is purely elementary and is based on lemima 2.1 instead of the usual
[ormula of corollary 2.1. A siilar procedure has been adopted by Cohen [3].

2. Prerequisites

Let o*(n) denote, as usual, the unitary analogue of the Euler function, that is p*(n)
represents 1he number of positive integers k& < n with (k,n), = 1 (ie, k is semiprime
to n [2]). The multiplicative function

pr(n) = (—l)""(").,

where w(n) denotes the namber of distinet prime factors of n, is the unitary analogue
of the Mabius function u(n) and we have

S (d) = {(') " ; (2.1)
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OEDY (%) . (2.2)

d||n

We note that ¢*(n) is multiplicative, being the unitary convolution of two
multiplicative functions [2, lemma 6.1] and for n = p§'p3? - - pi,

¢ (n) = (pi* = D (P = 1)---(pg* = 1). (2.3)

We need the following familiar estimates,

s gt .
) = x? 8> 2./
r;-'n P + O(z*), s> 0, (2.1)
1 ]
> = =0(logx), (2.5)
n< "
1 T1—s v
Y ==0(""), 0<s<1, (2.6)
n<s n
1 I—-s ; -
— =0(z'"*), s> L (2.7)
n>r

Remark 2.1, A trivial consequence of (2.4) is the estimate

L

S < wSte ¢
d on = pores’ +0(x***), (2.8)

n<w

valid for each £, O < e < 1 and s > O, which is a starting point of our trecatment.

Lemma 2.1

Foreache, O <e<land s> 0

s "I:s+l ‘P(I‘) sS4z
; L P T O(z**+ea_.(k)), (2.9)
(n,k)=1
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Proof. By (2.8) we have

Z ns=Zn" Z w(d)

n<z n<z d|(n,k)
(n,k)=1 de=n,
= Z(lsu(d) Z e’
dlk e<z/d
.'L‘5+] A AL
= uld)ys ————+0 | | =
% "(‘){(s+ D ¢ ((d) )}
z*t p(d)
— B io pote Zd—-a
s+ 1 4x d dlk
st ok
= %r_l f%_) +0(2"t*0_(k)). O
Corollary 2.1 (¢ = O)
Fors> O "
s _ Z (k) ol .
n; R T O(z*r(k)), (2.10)
(n.k)=1

where 7(k) denotes the number of divisors of k.
The proof of the subsequent lemma follows casily by (2.6).

Lemma 2.2
Foreach s ande, s> 0,e>0,s+:z< 1

Z a;.i?) =0(z'="7°). (2.11)

n<z

Let J(n) denote the Jordan totient function of second order defined by

J(n)=n"]] (1 - z%) [4, p. 147].

pin
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Lemma 2.3 [2, lemma 5.1]

z p(n)  6k?
= n? w2 J(k)
(n,k)=1

3. The function P=(n)
First of all we establish the unitary analogue of formula (1.1).

Theorem 3.1

P*(n) = Z(l-',a" (%) .

I

23

(2.12)

(3.1)

Proof. Write the set A = {1,2,...,n} as A = Ud"n Ag, where k£ € Ay if and only
if (k,n)s = d, d||n, dlk and the subsets Ay are mutually disjoint. llence k = jd,
1 < j < nfdand (j,n/d). = 1, that is the subset Ay contains exactly ¢o*(n/d)

elements and we obtain (3.1). O

Corollary 3.1

The function P*(n) is multiplicative.

Proof. Using the above theorem, P*(n) is the unitary convolution ol two multiplica-

tive functions and it is multiplicative [2, lemma 6.1]. O

In order to obtain an asywptotic forinula for the summatory function of J>~(n)

we need the following lemmas too. Tet

cn=all (1+2)

pln

8 [P | YO I s P R A e I at L 16001
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Lemma 3.1

The series

Z 71 /I
e n? 1;

is absolutely convergent and ils sum is given by

=1 - Gry):

r

the product being extended over all primes p.
Proof. 'The absolute convergence of the series follows by

PN

pln
<

e(m)u* ()
n2(n)

pln

SI(+s) "

(3.2)

The general term is a multiplicative function of n, thus the series can be expanded

into an infinite product of Euler type [1, § 17.4].

HKZAMMP)

P plivs (p

p=1  pp=1 pPr-1

P+ P+ Pt )

“Tlh--= i+ L1y
_EI(J P”p+l)(l+p2+P4+ ))

_)
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Lemma 3.2.

- e y
Z niz(n) - T + O (2% log z7(k)). (3.3)
(nbet

Proof. By (2.10) for s = 2 we have

Z n(n) = Z 77.2/1((1)(_-:

n<y nlz de=n
(n,k)=1 (n,k)=1
= Z p(d)de?
de=n<z

(n,k)=1

= Z p(d)d Z e?

d<z e<xfd
(d.k)=1 (e,k)=1
_ w(h) a3 T\ _
= ”'(d)d{ 3% (7) +O((}I) r(k)
d<x .
(d,k)=1

d<r d<z
(d.k)=1
_ (k) j(d) 3 1 2 1
e el D 22 B8 EX A B OD DS
d=1 d>z d<m
(d,k)=1
Now (3.3) follows by relations (2.12), (2.7) and (2.5). O
The following formula is interesting by itsell.
Lemma 3.3
- 20 4 2.3 .
Z w(n)™(n) = o) &>+ O(z? log z), (3.1)

n<y

where o is given by (3 2)
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Prool. Using (2.2) we deduce

2(n)e™(n) = 2(n) Z (e = Z ()= (d)e(e)e,
de=n de=n

(de)=1 (1l() I

and by lemma 3.2

D ey (n) =Y w(dptd) >

n<zr d<» e<z/d
(e.d)=1
- 2d 23 z\?2 z
= ; @(d)p™(d) {——_772 oD (ﬁ) +0 ((ﬁ) log ¥l 'r((l)) }
29— wld)p(d) #(d)r(d)
== Y T 4 0 | et loge Y T
w2 < A2 (d) = 02
22° O o(d)p”(d) 3 1 : 25 7(d)
_-W—,ZC;W+O X d;’l_z +0 a:loh.:.g;—d- ,

where the main term is (20/72)2® by Lemma 3.1, the first O-term is O(2?) by (2.7)
and using that

by (2.5), the second O -term is O (z* log® ) which completes the proofl. O
By partial summation we immediately have

Lemma 3.4

E n)’: = ()i log« + O(1), (3.5)
"
n<r

where o is defined by (3.2).

AT 1 s o ~ 11
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Theorem 3.2

Z P (n) = _%‘ 2? log x4 O(x?). (3.6)
< "

where o is given by (3.2).

Proofl. Using (3.1) and lemma 2.2 for s = 1 and O < ¢ < |

ZI"‘(N)-:- X £ (d)e

n<ur de=n<ur

d<z
2
S 2(d)z(d) g T—e(d)
T2 2 © 2 de
d<r d<ux

Now by lemma 3.1 and (2.11) for s = 0 we obtain

Z P*(n) = % (?_—(;— log.x -+ O( \) + Ozt )

n<x

= % ¥ logx + O(x?).

and the prool is complete. O

Remark 3.1. By partial summation, theorem 3.2 gives
P=(n 6o
Z "L = — r logx + O(x). (3.7)
n<r n m
Hence P=(n)/n behaves like 6alog n/z* or for k < n the average value of (k.n). is

talogn /=2,

Remark 3.2. Using formula (2.10) instead of (2.9) the remaining term of (3.6) be-
comes O(x? log ) and we obtain only the almost trivial 37, . P*(n) = O(a?logx).
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4. The function Pr(n)

Using the same arguments as in the proofs of theorem 3.1 and corollary 3.1 we have

for the function .
(3

P(n)= Zuc,ﬁ):,

where ris an arbitrary real or complex number, the following results.

Thecorem 4.1

Pr(n) =3 drg (%) . (1.1)

An
Corollary 4.1
The function P;(n) is multiplicative.

Remark 4.1. Let f(n) be an arbitrary arithmetical function and P7(n) be defined
hy

Pf(n) = Z S((k,n).).
k=1

Then, similarly to (4.1), we have

Prm) =Y f(@d)e* (3,

dfln

representing the unitary analogue of Cesaro’s formula [4, p. 127]. If f(n) is multi-
plicative, then the function Pf(n) is also multiplicative.

Lemma 4.1

For r > 1 the series N
5 el ()

”/+2

n=

is absolutely convergent and its sum is given by

3 1 1
ey = C('")C("‘ }’ I)H (1 — p’+l 'i' 7)1+2 + 77-2,_‘_1) L) (4'2)
D

wwrharva Y feo tha MDineanne vatn faeaila.
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Proof. ( (n)
A
wln)s (n 1
L < — r>1,
nrt? — ’
thus the series is absolutely convergent and its sum can be evaluated by expanding

it into an infinite product of Euler type, similarly to the proof of lemma 3.1. O

Theorem 4.2
Forr > | o
> Pr(n) = —= 2™ + 0(A(1)), (4.3)
n<T
where o, is given by (4.2) and A.(x) = ", x* log? z
orr < 2.

22 according as v > 2,1 = 2

Proof. Using (4.1) and (2.9) we get

Yorim)y = > e

n<x de=n<x
(d,e).-1
=D td) Y e
d<x eLrfd
(d,e:)=1
w ‘ w(d) AL z\"+e
= ot (d)d ——— (= ol y_(d
%.Y ((){(r—{-l)d (d> +0 ((l) 7-c(d)
gt o(d)e*(d) re X P (d)o-c(d)
D R el LD D I'+E
d<x d<xr
e Sl (@) |y [ e e Toe(d)
Tor 4 drt? +0 2’ dr 0\ Jr-1+e
d=1 d>x d<z

where the main term is (a,/r + 1)a™! by lemma 4.1, the first remaining term is
O(2?) by (2.7) and for the second remaining term we ha\.e. for > 2 choose € = ()
and obtain

: - 7(d) Nl
O|ax Z el i ()(:1: );

d<e

for r =2 and € = 0 again it is

0O (:1:2 Z #—\ = O(a? log® z):



30 Torn

for I <r < 2chooses >0.r—14¢< | and get O(e"tea!=mH1=¢) = O(a?) by
lemma 2.2 (s =- r - 1) and the proofis complete. U

Remark 1.2, An asymptotic formula for the sum Y, o P(n). where
T
P.n)— L(‘/«. n)’. r>
=1

has been obrained by Alladi TI[. see also [9].
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