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ABSTRACT
In this paper we classify all the finite groups satisfying 7(G/S(G)) = 8 and
B(G) = r(G) — a(G) — 1, where 7(G) is the number of conjugacy classes
of G, B(G) is the number of minimal normal subgroups of G, S(G) the
socle of G and (G the number of conjugacy classes of G out of S(G).
These results are a contribution to the general problem of the classification of
the finite groups according to the number of conjugacy classes.

In this work G will always denote a finite group and we shall follow the notation
given in [4, 5, 6, 7]. Thus, a group satisfying the condition 8(G) = 7(G) — a(G) — 1
will be named a I'-group. The present paper is a continuation of [6] and [7], in which
all finite I'-groups with r(G/S(G))) < 7 are classified.

The condition 8(G) = r(G) — a(G) — 1 is equivalent to say that each conjugacy
class of G contained in S(G) — {1} together with {1} makes up a minimal normal
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subgroup of G. For these groups we have |S(G)| = p®, p being a prime number, and
all the minimal normal subgroups of G have the same cardinal. We shall often use
the auxiliary lemmas of the referred papers [4, 5, 6, 7].

Theorem

Let G be a I'-group such that 7(G/S(G))) = 8. Then G is isomorphic to one of
the following groups:
a) If G/S(G) = Cs then G is one of the following groups:
1) 016 X Cé
2) C3' x5 Cs = ([Tizy(®i) X (i) X (a) with z¢ = yi, y¢ = zigi, i = 1,...,1.
b) If G/S(G) = C4 x Cy then G is one of the following groups:
1) Cs X C4 X Cgt
2) N x C} with N isomorphic to one of the following groups:
Cs X Cz = (a) X (b) with a® = a5,
Cs X Cq = {a) X (b) with a® = a5,
(C2 x Cg) xx C2 = ((a) x (b)) X {c) with a® = a, b° = ab,
Cy xCs = (a} X (b) with a® = a_l,
(C2 x Cg) xx Cy = ({a) X (b)) X (c) with a® = a, b® = ab.
c) If G/S(G) = C3 then G is one of the following groups:
1) N x C} where N is a 2-group isomorphic to one of the following groups:
Cy X Dg,
C4 X QS)
(Cs x C3) xx C2 = ({a) x (b)) X {c) with a® = a, b° = a?b,
C? xx Cy = ({a) x (b)) X» {c) with a® = a, b° = a?b.
2) C3x1C2 = {a1,0a2,0a3,a4) X (b) with a® = a1, @} = a2, @} = aya3, a = aza,.
3) C? x» Cy = ({a) x (b)) xx (c) with a® = a1, b = b1,
4) C} - Cy = (a,b) - (c) with ¢ = a?,a®=a71,b°=b"1.
5) (C% x Cq) x5 Ca = ({a1,az) X (@) x» (b) with a} = a1, a} = aja;, a® = a~ 1.

6) (C2 x Cy) - Cyq = ({a1,a2) x (a)) - (b) with b* = a?, a} = a1, a} = a;a,,

a® =a 1.

7) C? xx C2 = ({a) x (b)) X (c) with a® = a™1, b° = a?b71.
8) (C2 x Cq) x Cy = ({a1,a2) x {a)) X (b) with a} = a1, a} = a’ay, a® = a;a.
9) CZ x Cy = ({a) x (b)) x {c) with a® = b%a~!, b° = a?b.
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10) C? - C4 = {(a,b) - (c) with c* = (ab)?, a® = a1, b° = a?b~1.
11) One cf the following groups:
261“2m1,
26I‘2m2,
26I‘2n,
26F2t,
2°T4g1,
26F492a
26T 4h,
MT4ip, k=1,...,5,
26F4j17
26F4k1,
2°T 4k,
2611,
26I‘9a1,
26]--‘90'2)
26Tgby,
26]--‘9b27
2°Tgby,
26F90,
26F9d27
26F9€.
12) C4 X (C4 X Cz) XA C4 = C4 X ((a) X <Z>) XA (b) with ab =az, 2P = 2.
13) The set of all N such that N € 2'T4 U 2'Ty, Z(N) = C4, and N has no
direct factors isomorphic to C,.
14) (C} x C2) x5 Cy = ({(a1,a2) X {y,2)) X {(a3) with a}®> = a1y, a3> = ayz,
Yy =y, 2% =z
15) (C3 x 1 C4) x A Cq = ({a1,7,y,2) Xx{az2)) Xx(a3) with aj> = a1z, af® = a1y,
ay® =arz, e =z, Y2 =y, 22 =z, =g,y =y, 2 = 2.
16) ((C4 x C3) x» Cy) - Cq = (({a2) x (z,y,2)) X {a3)) - {(a1) with a5> = a2z,
a3 = ayz,ad’ = a3y, z® =z,yR =y, 2% =z, 2% =z, yM =y, 2% = z,a? = d}.
17) ((Cy x C3) X2 C4) - Cy = (({a2) X {z,9,2)) X {a3))-(a;) satisfying the same
relations than the previous group but with a? = a2a} instead of a? = d3.
18) ((Ca X C2)x 2 Ca) XA Ca = (({b1) X {y,2)) X {b2)) X (b3) with the relations
bll’2 = bl_l, yb =y, 2% = 2, b'l’3 = by, bga = bz, 2% =z, y» = y.
19) ((C4 x C3) xx Cy) x5 Cq = (({b1) x (y,2)) X (b2)) X (b3) with b3? = byy,
bll’3 = b2, bga = bzbll’:’, Y =y, 2% =z, g2 =y, 2% = 2.
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20) (((Cy x C3) xx Cq) x C3) xx Cy = ((({a1) x (z)) X1 (az)) x (y,2)) Xx {as)

with a}? = a1z, 2% =z, a]® = a1y, 2 =z, a3 = a2, Y =y, 2% = 2.
d) If G/S(G) = Cy x Dyg then there is no G.
e) If G/S(G) =2 Cs xx Cy4 then there is no G.
f) If G/S(G) = C; x A4 then G is one of the following groups:

1) ((Cz X C%t) Xy C3) X Cz = (((:v,y) X (z;,y; 1= 1,...,t)) Xy (b)) XA (d)
with relations z° = y, y* = 27y, 2? = y;, v = z;y;, ¢ = x4, yd = yi, b2 = b,
z? = 221, y* = yy1.

2) ((CZ X szt) X C3) X Cz = (((x,y) X (Z,’,yi 1= 1,...,t)) Xy (b)) X <d)
with relations z° = y, y* = 27y, 2? = y;, v} = ziy;, 28 = x4, y¥ = yi, b2 = b,
zd = g1, yd =y 1,

3) ((CZ X szt) Xr Cg) X Cz = (((:v,y) X (a:,-,y,- 1= 1,...,t)) Xy (b)) X (d)
with relations z® = y, y® = 2~ 1y~1, zf = yi, yf = z;¥i, :v;-i = z;, yf = y;,b% = b,
z¢ = zy?, y? = y~ 122,

4) ((022 X C%t)XfC3) X)‘Cg = (((x,y)x (z,-,y,- 1= 1,...,t)) X_f(b))X,\(d) with
relations z° = zy, y* = z, 2} = y;, ¥ = ziyi, €% = 221, ¥ = Yy, 2f = @i, v = i,
b = b.

5) (SL(2,3) - Cy)c, x Cé.
6) SL(2,3) x Cy x C}
g) If G/S(G) = Dyg then there is no G.
h) If G/S(G) = C? x; C5 then G is isomorphic to

(082 X C22t) Xf Cs = (((D,y) X (z,-,y,- 1= 1,...,t>) Xr (b)
with relations z® = y, y® = 271y~ !, 2b = y;, ¥b = iy, i = i,..., 1.
i) IfG/S(G) = C2 x5 C; then G is:

a) Equal to (P x5 C3) X C} = (P X (b)) x C}, where P X (b) is one of the
following groups:

(1) (C3 xaC3) xxCs = (((a1) X (a2) X (w1) X (w2)) X (az,as)) X (b)

with relations af® = ajw;, a§® = aaw ws, ai* = aywz, af* = axwy, a8 = ay,
b o_ b _ b _ b _ b _
Gy = A102, Q3 = A4, Qg4 = A30A4, Wy = Wy, Wy = W2.
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(2) (Cg X Cg)X)\ C3= ((al,az,wl) X (a3,a4)) X (b)

with relations a$® = ajwy, a3® = aq, ai* = aywy, a§* = aywy, @} = az, a} = aja,,

— b _ b _
ag = a4, a4 = a304, Wy = Wj.

(3)  ((Qs x C3) xx C3) xx C3 = (({a1,a2) X (w1) X (w2)) X (a3, as)) X (b)

with relations ai® = ajwi, a3® = awiws, ai* = ajwq, ay* = axw, ab = a,,
b b b _ N - S .
Gy = a103, a3 = G4, A4 = G344, W; = W; = Ww; ,1 = 1,2, 7 = 3,4.

(4) ((Qs x C2) XA C3) xx C3 = (({a1,a2) X (w1)) X1 (as,as)) Xx (b)

with relations a}* = a;w;, a3® = a2wy, a* = a1, a§* = aywy, ad = a2, a} = aja,,
b __ b _ b — oy s
az = a4, a4 = azaq, Wy = wW; = Wy, J = 3,4.

(5) ((@s x C2) 1 CF) xx Cs = (({a1,a2) X (w2)) X (a3, as)) X (b)

with relations a* = al_l, ay® = az—lwz, ar* = ajwy, ay* = az_l, a = az, a} = aja;,

b _ b b_ — a3 s
a3 = a4, G4 = a304, Wy = Wy = Wy’ , Jj = 3,4.

(6) (Qs X C3) xx C3 = ({a1,a2) X» (a3, as)) Xx (b)

1 -1

with relations af® = a1, a3® = a;', a}* = a7, a3* = az, @ = a3, a} = ajay,

— b
ag = a4, 4 = Qa30y4.

(1)  ((Qs X C?) xxQs) x»C3 = (({a1,a2) X {(w1) X (w2)) X {as,as)) X (b)

with relations af® = ajwi, a® = aawiws, ai* = aiws, a3t = awi, a8 = ay,

_ b _ b _ b o .
a} = a1a2, a} = a4, af = azay, W =w; = w’,i=1,2j = 3,4.

(8)  ((QsxC3)-Qs) xrCs = (({ar,a2) X (w1) X (w2)) - (a3, @4)) X (b)

with the same relations than the previous group and a? = a3 = a} = a3.
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(9) ((Qs x C3) - Qs) xx C3 = (({a1,a2) X (w1) X (ws)) - (a3, as)) X x (b)

with the same relations than (7) and a% = w;.

(10) ((Qs x C3) x2 Qs) xx C3 = (({a1,a2) X (w1)) X (a3, as)) Xz (b)

with relations a$® = ajwq, a3® = az, af* = aywy, a3* = aywy, a} = az, a}

b _
ag = a4, @4 = Aa304.

(11) ((Qs x C3) X1 Qs) xx C3 = (({a1,a2) X {w2)) X (as,as)) xx (b)

with relations a}* = a7', a§® = a;'ws, af* = aywy, a3* = a5}, &b = as, a}

b b_ b o o @ s
a3 = a4, Q4 = G304, Wy = Wy = Wy , J = 3,4.

(12) ((Qs x Cy) - Qs) XxC3 = (((al,flz) X (wy)) - (ag,a4)) X (b)

with relations a}® = ajwq, a3® = ay, aj* = aywy, a3* = axwy, @} = ay, a}

b _ b _ b _ — a0 s 2 _ 2
a3 = a4, a4 = 304, Wy = wy = w,’, j = 3,4, a5 = aj.

(13) ((QB X Cy) - Qs) XxC3 = (((al,az) X (wy)) - (a3,a4)) X » (b)

with relations aj® = ayw, a3® = ay, aj* = aywy, a3* = a,wy, a = ay, a}
b b _ b @ s 2 _
a3 = a4, a4 = A304, W] = Wy = w;’, j = 3,4, a5 = w.

(14) ((Qs x C2) xx Qs) xx C3 = (({a1,a2) X (w2)) - (a3, a4)) X (b)

1

with relations a}® = a7 ", a3® = az_lwg, ai* = aqwe, ag* = az_l, at = ay, ad

b o_ b _ 2 _ 2 b _ —
a3 = a4, a; = azay4, a3 = aj, Wy = wy = w,’, j = 3,4.

(15) (@8 X @g) Xx C3 = ({a1,a2) X (az,as)) X (b)

with relations a'l’ = aqg, ag = ajas, ag = aqy, ag = azay.

= aaz,

= aiaz,

= aiaz,

= ayaz,

= ajaz,
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(16) (Qs X Q8) Xx C3 = ({a1,a2) X (az,as)) X (b)

with relations af® = a;, a3® = a;', af* = a]', a§* = a3, @} = a3, & = ajay,

b _ b _
a3 = a4, Gy = Q304.

(17) (Q8@8)c, Xx C3 = ({a1,a2){a3,a4)) a2y X (b)

with relations all’ = asq, ag = aiaz, ag = aq4, a"{ = asza4, aia; = aja;, 1 = 1,2, 5 = 3,4,

2 _ g2 — g2 — g2
ai = aj = a3 = aj.

B) Isomorphic to one of the following Frobenious groups:

(18) (((C3 x C3)x2C3) x C3*) x5 Ca

= ((((alaa’Z) X (Z2,Y2)) X (a3,a4)) X (21,w1»---,2t,wt)) X5 (b)

with relations a{® = a1z2, ai* = a1Z2Y2, a3® = a2Z2Y2, a3* = a2y, ;> =
az __ _,a b _ b _ -1 _-1 b _ b _ b b — -1 _-1

Y = Y = Y;t, 0] = az, 6y = ay Gy, Ty = Y2, Yy = T2Y2, Q3 = A4, Q4 = A3 Qg ,

b _ b . 4 —
zj = wj, w; = z;w;, j =1,...,1.

(19) (((C3 x C3) xx C3) x C3*) X Cs

= ((((al,a,g) X (1)2,3/2)) X (a3,a4)) X (zl,wl,.. . ,zt,wt)) Xf (b)

with the same relations than (18).

(20) ((C} x C2)x C3) x5 C5 = (({a1,a2) X (as,as)) X (21, w1, ..., 2z, we)) X5 (D)

1

with relations a{® = a', a{* = a7'a}, a3® = a;'a?, a5* = a7, @ = az, &} =
1, -1

-1 b _ b _ b — b — s
ay , a3 = a4, G4 = A3a4, 2] = Wj, W; = Z;W;.

aj i

(21) (((CE x C3) x2 CE) x C3) x5 Cs

= ((({a1,a2) x (z2,y2)) X {as,a4)) X (zl,wl,...,zt,wt)) X ¢ (b)

with the same relations than 18).
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(22 — 24) ((C2 x C2)-C2 x CH) x; Cs
= ((((111,(12) X (r2,¥2)){as,as)) X (Zl,wl-;---’zt,wt)) X 5 (b)
with the same relations than (18) and a} = a?, a = a2 or a3 = a2alz,, a2 = aly,
or a} = aly,, a2 = d}zays.
(25) (C x C2) x; C3 = ({a1,a2,a3,a4) X {21, W1,..., 2, we)) X 7 (D)

; ; b — b ,=1,-1 b _ b— q=lg=1 b — 0. apb — m.ap.
with relations aj = a3, a3 = ay a; , a3 = a4, a3 = a3 ay , z; = Wj, W; = Z;W;.

(26) ((C",2 XxC3) x C%t) X2C3 = ((((11,(12) X (as,as)) X (21, w1, ..., 2¢,we)) Xz (b)

Witlh r;elations aj® b= al'l,1 a‘f: =baf1a%, a?® = a;'d}, a5* = a7, @} = ay, @} =
-1 - b _ —ag-lg— — - b — 5.
ay a; ,a3 =a4,a; =az ag ,z; = Wj, W} = Z;Wj.

(27)  (((CHCT) x C3*) x5 Cs = (({a1,a2){as, aa)) X (21, w1, .-, 2, we)) X 5 (b)

with relations a® = a7!, a$* = a7'a?, a5 = a;'d?, a§* = a3, @} = a?d}, a? = d},
at =ay, ab = al—laz'l, a} = a4, a} = a;la;l.
j) IfG/S(G) = GL(2,3) then G is Hol(C?%).

k) IfG/S(G) = SL(2,3)Cy then G is:

Hol(C7,5L(2,3)Cs) = {z,y) xx (({@ B) xx (1)){7)),
with 2 = 271y, y* = 27%, 2P = oy™, P = 2%y, 27 = 27, ¥ = 2y,
27 =22y, y7 =27y (@, B) 2 Qs, (1) X C3, 7 = a, o7 = af, o(0) = 4,

o’ = a27 o’ = a_19 ﬁa = aﬂ7 70 = 7_1:Ba—1 = 7_1a:3-

1) If G/S(G) = C3 x s C; then G is one of the following groups:

=1

(1) (CIxCF)x;Cr= ((1‘1»752»33) x [T ((915) x (925) x (y31>> X 5 (b)

: : b _ b b _ 2 b b _ . oab — A s
with relations 7 = z2, T3 = T3, T3 = T1T3T3, Y1; = Y255 Y2; = Y3j» Y3; = Y15¥3;-

(P x C3)x;Cq,
P being a 2-group of order 2° of type §z(8), PC7 = Hol(P,C7) and C3'C7 as above.
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m) If G/S(G) =2 C17 x5 Cy4 then there is no G.
n) If G/S(G) = C13 x ¢ Cs then there is no G.

o) If G/S(G) = C3 x s Cs then G is one of the following groups:
1) Hol(2°T'saz,Cs) x CE.
2) Hol(2°T'5a,,Cs) x CE.
3) Hol(2%T'13a5,Cs) x C&.

p) If G/S(G) = Hol(C3,C? x s C3) then G is one of the following groups:
1) Hol(P,C7 x y C3) with P a 2-group of type Sz(8).
2) C3 x» (Cr x5 C3) = ({z1,22,23)) X ({a) x5 (b)) with relations a® = a?,
¢ = x9, 2% = x3, 2% = T1232%, 28 =71, 2} = 23, 2 = x1x2_1z3_1.
q) If G/S(G) = C? x5 Qs then there is no G.
r) If G/S(G) = C? x; DCj5 then there is no G.
s) If G/S(G) = C? x s SL(2,3) then there is no G.
t) If G/S(G) = PSL(2,11) then G is SL(2,11) x Ci.
u) If G/S(G) = My then G is one of the following groups:
1) Ty{d) x C with Ty = SL(2,9) being the only perfect extension of C3 by Ag
and d an element acting on Ty in such a way that (T1(d))/C2 = M.

2) (T2 x C%)(d) with T, being the only perfect central extension of C3 by As
and d acting on T; in such a way that (Tz(d))/C3 & My and z¢ = z~! for all z € C}.

Proof. Let G be a I'-group such that r(G/S(G)) = 8. Then G = G/S(G) is
isomorphic to one of the following groups:

CS’

Cy x Cy,

C3,

C2 X Do,

Cs xxCy = (a) X (b), with ab = a'l,
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GL(2,3),
SL(2,3)Cs,

Cg Xy C7,

Cé Xf Cs,
HOI(C23,07 Xy C3),
C? x5 Qs,

052 Xy DCj,

C? x; SL(2,3),
PSL(2,11),

Ms.

In this proof L will always denote a minimal normal subgroup of G. Set |S(G)| =
p™, p a prime number. The cases: Cs to Cy3 X 5 Cg were already studied in [5].

A) Suppose G = Cz X As. Then B(G) = 2. There exists C2<G so, if p # 2,
Ca acts f.p.f. on S(G). Let M/S(G) be the other minimal normal subgroup of G.
Since Cy x Cy does not act f.p.f on S(G), there exist be C3* and = € L* such that
z% = z, s0 B(G) = 1 (in any other case b € Cc(S(G)) and

1# Co(S(6))/5(G)<G,

so M < Cs(S(G)) and M = S(G) x C:. C2<dG because C? char MG, then
C? < 5(G), impossible) and p™ — 1 = |Clg(z)| divides 24 so S(G) = C? or C2.

If $(G) = C? then C; x A4 acts f.p.f. on S(G) which is impossible. Therefore,
S(G) = C%.Let ¢ : G — Aut(L) be the homomorphism induced by conjugation. We
have SDy¢ € Syl,(GL(2,3)) and S D6 has no subgroups of type C3. So, necessarily
2|| ker(¢)|. Again, as B(G) = 2 and the central minimal normal subgroups act
f.p.f. on S(G) it follows that M < ker(%), so M < Cg(S(G)) and M = C} x C3,
impossible. Thus, p = 2 and L 2 C; or C? for each minimal normal subgroup L of
G. Set E/S(G) = A4<G and G = P x,,C3. We have 5(G) < Z(P) so S(G) < Z(E)
and S(G) < S(E). We distinguish two cases:

1) S(G) = S(E). Then, E/S(E) = A4 and E is a T-group. From [6] we get the
following cases:

li) E = (C} x C2}) x5 C3 = ({x,y) X {T1,Y1,---,T¢,¥z)) X5 (b), with z® = y,
Y=ty L2t =y, b =miy, i = 1,0t
1ii) E = SL(2,3) x C.
2) S(G) < S(E). In this case there exists ¢ € S(E) — S(G) such that o(c) = 2.
Clearly M = S(E) = C?! and

FE = (022 X C22t) Xr C3 = ((%y) X <$17y17"'a$t7yt>) Xf (b>7

with 2° =y, y* = zy, 22 = y;, 0 = 2y
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We analize these two cases depending on L = C; or L = C3.
Suppose L = C? and let

Cy = N/S(G) = (d)<G.

We have d&® = d, so d® = dz for some z € §(G). If o(d) = 4 then (d2)b = d2
and d® € 5(G) which is impossible as C3 acts f.p.f. on $(G). So, o(d) = 2 and
G = E x) (d). We have b = b, so b® = bz; for some 2; € §(G). Assuming that

E verifies the relations of (1i) we have z¢ = # so z¢ = zz, for some z € S(G).
Therefore

(@) = (e2,)" = yz}

implies y¢ = y25. We have (bd)* = b2! and (bd)® = 22d, so o(bd) = 6. Let by = (bd)*
and dy = (bd)3. Then

b =by,  ob))=3, o(dy) =2
and

by b by b _

=z =y, ] :y_z"ly d

-1 d d d b b
, T =z =12, Y =y =yzy =y2z'.

Besides we can choose generators z;,y; such that

b b
=Y, Y =Tl
so we can suppose the following relations are satisfied:

b _ b_ .—-1,-1 d _ d _ b
T =1, y =y, z =zw, y =yw,

b b d d d
z; =y, Y = T;Yi, T =z, Yi = Yi, b*=1>

for some w € S(G)*.
Now we shall consider two cases:

a) w ¢ (z%,y?). Let
L ={1}uClg(w) = (z1,91)

with w = z;. Then we get the group listed as (1).

b) w € (z?,y%). If w = z? we get the group (2). If w = z2y? we exchange
(z,y,b,d) for (z,(zy)~!,b?,d) and we obtain again the relations of the
group (2). If w = y2 we get the group (3). If w = 1, then d € Z(G) which
is impossible.
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Assume now that

E= ((z$y> X <$lay1a'° *7zt7yt>) Xy (b)
with
=y, Y=oy, el=u, ¥ =z

We reason as above observing that (z%,y%) = 1. If w ¢ (z,y) the group (4) appears.
If w € (z,y), then (z,y) is a minimal normal subgroup of G which is impossible.

Suppose now that L = C, for all L. Then E = SL(2,3) x C;. E' = Qs
char E4G implies Qg & E'AG. Let N/S(G) = C2<G and H = SL(2,3)(d) with
d€ N —-S(G). Then G=H xC; and H4G,s0if G=P x,C3, HNP = DAH
and H = D x, C3 with |D| = 16 or 32. The only non-abelian groups of order 16
which admit automorphisms of order 3 are Cy X Qg and

(C4 X Cg) X Cz = ((a) X <b>) XA (C), a® = a, b¢ = azb.
We have
IAut(Cz X Q3)| = 26 . 3,
so there exists a unique action of C3 on C3 X Qg which corresponds to
(Cz X Qg)C3 = (Cy X SL(2,3).
For this group G/S(G) 2 C, x A4 which is impossible. If
HNP==(CyxCy)xyCy,
then
|Aut(H N P)|=2°-6

and there is a unique action of C3 on this group. We also notice that

(C4 X Cz) XA Cz & (Qg . 04)(;2 = (a,ﬂ)(ﬁ)

This group admits the following automorphism of order 3:

a—f

B—op

60— 6.
So we get H = (5L(2,3)C4)c, and the group (5) appears.

Finally, if |[H N P| = 32, then d* ¢ SL(2,3), so
G = (SL(2,3) X C4) X C;

Let o(b) = 3 d® = dz for some z € §(G), so, d” = dz? = d implies d® = d. Let
Qs = {a1,a2) with ab = ay, a} = aja,; @ = @, implies af = a;2' with 2’ € Z(Qs).
Conjugating this last relation by b we get a4 = ayz’. If we conjugate again by b we
obtain (a1a2)’ = a1a22', so a12'az2’ = ajayz’ and 2’ = 1. Thus we get the group

(6)-
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B) Suppose G = C? x; C3. If p # 2, since C? does not act f.p.f. on L it follows
that z° = z for some z € L* and b € C?*. If B(G) > 1, then b € Cx(S(G)) so

1# Ce(S(G)/S(G)2G.

B(G) = 1 implies that if M/S(G) = C2<4G, then M = §(G) x C? and C? char
M <G. This implies C2<G and C? < S(G) which is impossible. Therefore 8(G) =
1 and (p"™ — 1)|16 - 3. Besides 2} |Cc(S(G))/S(G)|, so, Cs(S(G)) = S(G) and
G < Aut(S(G)). From these conditions we deduce n = 2 and p? € {32%,5%,7%}.
Since G does not act f.p.f. on S(G), p* # 72. GL(2,5) has no subgroups isomorphic
to C? x; C3 so it follows that p? = 32. The Sylow 2-subgroups of GL(2,3) are
isomorphic to §Djg so the case p* = 32 is also excluded. We conclude that p = 2
and L & C; or L = C? for each minimal normal subgroup L of G.

Suppose L & C2. Then G = P x5 C3 and S(G) < Z(P). If a; € P — S(G),
[a1,a}] = 1. Let az = a}, then a} = aj'a; " and (a1, az) is abelian. P = (a1,a2)S(G)
and S(G) < Z(P) so (a1,a2)<G and P = (a1,a3) X T. If o(a;) = 4, then

(a,03) = C} < 5(G)
which is impossible because o(a;) = 4. So
o(a;) =8 and (a})® = a} # o}

This implies
(al , (12) o 082

getting the desired group.
If L & (C,, we have

S(G)=2(G) and G/Z(G)=C} x;Cs.
Let G = P X, C3,a; € P~ S(G) and a3 = a8. Then
P = {a1,a2)5(G) and  P'< S(G)< Z(P).
Let a} = aj'a;'2z; with 2z € S(G). We have
[a1, 4] = [a1,a2)* = 1

(since exp(S(G)) = 2) and
(a1, a%] =1
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50 a%’ag € Z(P), (a%)b = a%,

b -1_-1
(a3)" = (a7 a3 ")’
= a7 (a7") ez

1 -1 2

2

_ =2, =2

so (a?z)® = a2, and
(a321)" = ay”ay” 2]
= ay2a;?
= (aiz1) 7 (ag21) 7"
Therefore
D = {a}z,a3%)<G

and necessarily o(az;) = 4, so o(a?) = 4, and D is an abelian group of order at
most 16. We have

ai € Z(G) = 5(G) and (a})® = ai.

So a} = a} and |D| < 8. As D has elements of order 4 and has no elements of order
8, we have

D = (d) x (w) 2 Cy x Cs
with d = a?2, so o(d®) = 4 and d® € D implies d* = d°w with e = 1 or —1. So
& = (dw)'w=d"w? =d

and b% € Cg(d), so b € Cg(d) which is impossible.

C) Assume G = Cf x; C;3. If p # 2, then we consider N = C2<G a minimal
normal subgroup of G. For each minimal normal subgroup L of G there exist z € L*
and b € N* such that z° = z. If 3(G) > 1, b € Ca(S(G)), so

Ca(S(G)/S(G)#1 and  be Cg(S(G))/S(G)N N.

This implies
N < Cs(5(G))/8(G)

(6]

N <Cs(S(G)) and N =C2xS(G).
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So, C? < §(G) which is impossible. Thus 8(G) = 1 and p™ — 1| 16.3. Besides

2 J1Cs(5(G))/S(G)l,

SO

C} < Aut(S(G)).

Studying all the possible cases for p and n it is easily proved that this condition
cannot hold. So p = 2. Let

P/S(G) = C3<G.
Then
S(G)<Z(P) and L=C,orC}

for each minimal normal subgroup L of G. Suppose L = (C; for all L. Then
S(G) < Z(G) but Z(G) =1 so

S(G)=2(G) and  G/Z(G) X Cix;Cs.

Let a; € P — S(G) and a3 = o} with o(b) = 3. Condition @} = a; implies @} = @, a2
so

ag =a1ay92 and a; = a'{3 = agz = (alazz)b = 9010222 = G2a105.
Therefore [a1,az] = a%. Besides (@1,a2)<G so
M, = {(a1,a2)S(G)<G.
Also,
(alz)b = ayz, (agz)b = @122z = a1a2 = (a1z)(azz) and (@1%,a22) = (a1, a2).
We can choose a;,a; so that
a = as, as = aja, and [a1,a;] = d2.

As a? € Z(G),

af = (a})’ = aj.

We can also choose a3,as € P — S(G) so that

M; = (a3,a4)5(G)<G, ag = ay, ai’ =azay and [a3,a4] = a} = dl.
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Then
P = M1 M, and M, N M, = S(G) = Z(G).

Let

[a1,a3] = w1 € S(G).
Then

[az,a4] = wd = w;.

If

[a1, a4] = wy € S(G),
then

las,azaq] = wg = wy and (a2, as][az, a4] = wo

(because P' < Z(P)) and
a2, @3] = wiw,.

Consider
E= <a1’a25w1’w2)SG-
We have
E n S(G) = (a%,wl,wg) S Cg
and

E/(EN S(G)) = ES(G)/S(G) = (a1) x (az) = Cz.
Further, {(as,a4)/(a2) = C? so |{a3,a4)| = 4 or 8 and |E||2°. Let

S(G) = (a%,a%,wl,wg) X Cé
Then
G = ((E(ag,a4)) X Ca) X Czt = (((al,ag,wl,wg)(ag,a.;)) XA (b)) X C;

and the following relations hold:

al® = aywy, ai* = ajws, a3’ = aawiwsy,
a b b
ay* = asws, a; = az, a, = aiaz,
al = a4, ab = azay, w=w; =w]’ i=1,2Vj,
2 _ 2 _ 2 _ 2 _
ai = a; = [a1,a2], a3 = aj = [a3,a4].

We now distinguish two cases:
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i) P—S(G) has an element of order 2. We can suppose a3 is one of these elements
so that (a3,a4) = C%.
ii) Every element of P — S(G) has order 4 (in particular, (a1, a;) = (a3, a4) = Qs).
We will study first the case (i).
i1) If a? = 1 then every element in E* has order 2 so, E = Cj or C3 (if |E| = 4,
E < S(G) which is impossible). If E = C3 we get the group (1). If E = C3,
|[ENnS(G)| =2,
ENS(G) = (a2, w1, w;) = (w1, w,)

$0
[(wy,w2)| =2 and E = (a1,a2) x (w1, ws).

There are three possibilities:
J) W2 = wy 7£ 1,
.].]) wy =1 76 w2,

i) w1 # 1= ws.

If we assume case j) we get the group (2). Exchanging (ai,as,w;) for
(az,@1a2,w2) and (aiaz,a1,w1) we get the groups corresponding to cases jj) and
jij) so these cases need not to be considered.

i2) If a? # 1, then {(a;,a2) = Qs and we have the following possibilities:

i2a) |E| = 2%. Then

E = (a1,a2) X (w1) X (w2) = Qs x Cy x Cs.

i2b) |E| = 2. Then
(w1, w2) N Qg| =2

1
or

(w1, w2) N Qs = {1}

and
E = Qg x (w1, ws)

with [(wy,w2)| = 2.
i2c) |E| = 23. Then

E = (a1,a2) 2 Qs and (w1, wsz) < (a%).

In the case i2a) we get the group (3). In the case i2b) there are the following
possibilities:
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bl) w1y ;é 1= wo,

b2) wy = 1 7é way,

b3) wp = W # l,

b4) a? = w,

b5) CL% = wsp,

b6) a% = wi1wWas.

In the case bl) we get the group (4). Reasoning as in the cases j), jj) and jjj) we
conclude that relations bl), b2) and b3) originate isomorphic groups. If we assume
case b4) we get the group (5). Suppose now that relation b3) holds. Exchanging
(a1,as,w;) for (az,a1as,a3w;) we obtain a group isomorphic to (5).

In the case i2¢) (wy,w;) # 1 as in any other case (az,as) < S(G), which is
impossible. So, we have the following three possibilities:

cl) w1 = 1, wy = a?,

c2) wy = 1, wy = a?

c3) w1 = wp = a?.

In the case c1) we get the group (6). If we exchange (a3, a4) for (as,azay) in
the case c2) we obtain the group (6) again. This group also appears in the case c3)
if we exchange (a1,a2) for (az,a1a2).

Consider now the cases ii), that is, every element in P — S(G) has order 4.
There are three possibilities:

ii1) |E| = 2%,s0 E =~ Qg x C2,

ii2) |E| = 2%, 50 E = Qg x Cs,

ii3) |E| = 23,50 E = Qs.

Assume case iil). If (a3, as)NE = {1}, we get the group (7). If (a3, as)NE # {1}
then a} € (a2, w;,wy)*. Since every element of P — S(G) has order 4, it follows that

((11(13)2 = a%a%'wl #1

so the cases a% € {1,a%w;,adw,,aw,w,} are excluded. Therefore,

a3 = a? or  a} € (wy,wy)*.
In the first case we obtain the group (8). Suppose a} € (wy,w;)*. If a} = w,
we obtain the group (9). If we exchange (a1, a2, w1, w?) for (az,a1a2, wiws,w;y) or
(a1a2,a;,ws, w;wy) we conclude that this group is isomorphic to the ones originated
by the relations a3 = wyws or a = w, respectively.
Suppose case ii2) holds. If (a3,as) N E = {1} then we have the following
possibilities:
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dl) a? € (wy,ws)*,

d2) Wy = 1 7’: w1y,

d3) wo 75 1= wi,

d4) w; = Wy ;é 1.

The group (10) appears in cases d2), d3) and d4).

If a? = w; we obtain the group (11). This group also appears if a? = wiws
or if a? = wy: we only have to exchange (a;, a2, w;,ws) for (az,ajas,w;wy,w;) or
(ayaz,a;,ws,wyws) respectively. If (a3,a4) N E # 1 then a} € (a?,w;,w7)*. As
every element of P — S(G) has order 4, it follows that a? = a? or a2 € (wy,ws)*.
Besides, one of the cases d1) to d4) is verified.

Assume wy; = wy. Then

a =a? or ai=w; =w
and we obtain the groups (12) and (13). If w; = 1,
al = a? or a3 = wy # 1.

If wy = 1, then af = a? or a} = w; # 1. Finally, if a? € (wy,w;)* as

a2 ¢ a?{wy,wqy, wywy} U {1}

it follows that necessarily

ag = a% € (wl,’LU2>*.

If a2 = a? and wy = 1 or wy = 1, we have

(a1a3)? =1 or (a1a4)* =1
which is impossible.
The cases
a2 =wy # 1, wy =1
and
a3 = w; # 1, wy =1

originate the group (13).
The group (14) appears if a3 = a? = w;. It is obvious that cases a = a? = w;,
and a3 = a? = wyw; also originate the group (14).
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Finally, we study the case ii3). Then (w;,w;) < (a?). Set
(as,as) N E = {1}.
If wy = wy = 1 we get the group (15) and if w; = 1, wy = a? the group (16) appears.
If
(as,aq) N E # {1}
then

a% € (a1,az2)

so a3 = a?. If w; = wy = 1 we get the group (17). If wy = 1 and wy = a? then

(a1a3)* = diadw; = 1

which is impossible. Similarly, if w, = 1 and w; = a? we get the contradiction

(a1a4)* = a3a2w, = 1
: _ _ 2
and if w; = wy = aj,

(aza3)? = alaiwiw, = 1.

Suppose now that I = C? for each minimal normal subgroup L of G. Then
G = P x5 C3 and acording to [1, p.336], [z,2°] = 1 for all z € P and o(b) = 3.
Let a; € P — S(G) and a; = a%. Then [a;,a;] = 1 and @} = @;@,. This implies
a} = ayazz; for some z; € S(G). Let y; = 25. We have
_ b0 _ b b
ay = a; =ay, = (a1a221)° = azaq1a221Y1,
so

-1_-1 2
1=[ay,a2] = ay @y aja; = azz1y
and a3 = z1y;. This implies

2 2
a% = (ai)” = (171y1)b = (ylﬂflyl)b =-

Let

G = ((C_Ll,(_lz> X ((_13,5,4)) Xy (E)
with af = ay,
afi = a3a4%4,
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with z4 € S(G),
(a1,a3] = z2 € S(G), [a1,a4] = 23 € S(G).

Then
[0}, 03] = 23 = v
that is
[az, a4] =12
and

[a},a] = [a2,a3a4] = 25 = y5.
As P' < Z(P),
[az,a3a4] = [azaas][az,a‘;]

so [az,as] = y2y3. We have

b _ b _ _ 2 2 _ _-1,-1
a,; = ay, ay = @1G2T1 = Q1020709 = Gy "Gy,
b _ b _ b _ b _
Ty = Y2, Y2 = T2Y2, T3 = Y3, Y3 = Z3Y3,
a a a
ay® = a1zy, ay* = a;z3, a,® = axy2ys,
a ~a —_ S a a —_— — a
a2§=a2?/27 .‘,is—:r,—zf, y,-‘—yi—yis-

Reasoning as with z1,y1,a1,a; we conclude a3 = a§, a} = a;la‘;l. Besides,

byal

a3 __ -1 _—-1\ay _ -1 -1 _ -1
(a3)* = (a7 a3 )™ = ay z3a; " y2 = a]

1 -1
Ay T2Y273Y3.

This implies z2y3 = 1 so z3 = y3 and y; = xg = y§ = 2393, that is, 23 = Zoy, and
y3 = x9. The other relations

-1 bbb~
Ay T3Y2 = Q2Y2Y3 = @4

bab_ as __ _ b b
(a1)* = a3* = azy2 = ajz,,

(a?)a: = axy3 = alfmg
and
(a})™ = a7 a7 v2y2 = ady}
are satisfied.
So we have
D = (ay,a3,2,y2)4G

and the following relations are satisfied:

a a a a
a;’ = a1y, a* = a122y2, ay® = axx2ys, ay*asys,
a3 _ __ 04 a3 __ — .04 b _ b _ -1 _-1
Ty =22 =Ty, Yo" =Y2 =Y, a; = az, a; =a, a, -,
ag:ab ag:a:?la;la xé’:yz, y3=z2y2.

We consider now two cases:
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a) P — S(G) has an element of order 2. We can suppose o(a3) = 2,
b) Every element of P — S(G) is of order 4.

Consider the case a). We have G = ((D x» C?) x C%?) x ; C3 with:
D x, C'22 = (a1, a2,%2,Y2) X (as,aq).
|D|| 42 -4 as
D/(DnS(G))=C? and DN S(G) = (a%,a%, z2,7,).

If |D| = 4% - 4 we get the group (18) and if |[D| = 42 then we have the following
posibilities:

If a? = 1 we get the group (19).

If a2 # 1 and z2 = y2 = 1 then (a3,a4) < S(G) which is impossible. So, z, # 1
and

(ai,a) = (z2,92) = C3.
If a? = z, we get the group (20). If we change (a1,a2,z2,y2) for
(az,a7'a; , z2y2,22)  or  (a1a2,a7",y2,2242),

we conclude that the groups originated by the relations a? = z,y; and a? = y, are
isomorphic to the group (20).
Suppose now that every element of P — S(G) has order 4. Then

(a1a3)? = a3alzy # 1, (a1a4)® = aalzayn # 1, (a2a3)? = ajajzays # 1,
(‘12€l4)2 = ai“%?h #1, (a1a2a3)2 = afa%a%yz # 1.
So
a% ¢ {1,a§z2,a§zgyg,a§a§y2}.
If |D| = 43 there are two possible cases:

(as,as) N D =1 or (as,as) N D # 1.
In the first case we get the group (21) whereas in the second one we have
(a3, a3) < (af,a3) x (z2) X (y2).
Assume (a2,a2) = (a?,a2). If a3 = a?, then

aj = ()’ = (a})’ = ¢} and (aza4)® = .
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Let

ay = azay and @} = (aza4)® = a7 as asta].
We have

1
a® = aP*™ = aj* = a1z2y2 = a12h

with z§ = z2y2;

Ay _ Q304 _ — ! 7 _ — o

a,* = ay*"™ = a2z = agy, and a3 = Y2 = TyYs.

So, relations @3 = z,y; and a3 = a? originate isomorphic groups. Suppose again
that a = a? originate isomorphic groups. Suppose again that a = a? and let

! ! b -1_-1
as = 244, ay = (a1a4)” = azaz ay .

Then

1
a a ]
a;’® = ay* = a1T2Y2 = a1 Ty

with z§ = z2y2;

ay _ _ 1,1
;" = 01Y2 = 1Ty,
with y} = zo;
2 2 2 2 2 1
(a1a4)® = ajaizeys = ajaszy,
s0

2 __ 2.2 2.2, 1

We conclude that relations

)
a} =dl, a3 = oy, and a3 = aladiz,

originate isomorphic groups. Supposse a3 = a? and let

1 1 1

! ! - - - r __ 1 __
a3 = ajaxay, (l4 = al a3 a4 5 w2 = .’Ezyz, y2 = T3.

Then

so we can add relation a% = a2y, to the previous ones.
2 N
Assume a3 = z2y2. Then

2
ay = Y2T2Y2 = T2.
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Let
ay = azay, ay = a3, a = Alal = y,.
If 2, = y, and y) = 22y, we have
ay _ o ay _ o 2 _
a;® = a1z}, ai* = a1zhyy, ay = ys.

So relations a3 = x5 and a? = y; can be added to the four previous ones.

Let a3 = a}. Taking (azas,a3") instead of (a3,as) we have

and taking (as,a;'a;?),

So the group (22) is originated by the relations a3 = a2 and a% = a?a?.
We know that

ag ¢ {a%zg,agxgyz,ﬁa%yz}.

If a = a?alz,, then af = aly,. Let a} = azay and a} = a3 '. Then

N2 2.2 _ 2 2.
(a3)® = azay = a3z2y2 = a3y,

H !
with y; = 2293,
ay? = a1z}

with zf, = y,, and

Qg — 1!
If we take now
" o_ n_ —-1_-1 " o_ no_
as = aq4, ay =az a,°, Ty = Z2Y2, Y = T2,
we have
nm o _ 2 _ 2 2 . n

a3” = 04 = 01Y2 = A1T3Ys,

so the three relations
2 _ 2.2 2 2

originate the group (24).
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Finally, suppose |D| = 4%. If (as,a4) N D = 1 and z9 = 3 = 1 we get the
group (25). If zo # 1 then (a?,a2) = (z3,y2) and we can suppose a? = z, (so,

a% = y,) getting the group (26). If {a3,as) N D # 1, we have

((13,11 ) <a%aa37$25y2)'

If 3 = y» = 1, {(@1a2,a3,a4) is an abelian group and if a% = a%la;J, o(azaial) = 2
which is impossible. So, z3 # 1 and

(a%,ai) <z2’y2> <a17a2>

If a? = z,, as

2 2 2 2 2
a3 ¢ {01562 = 1,a3%2y2 = 22 = a3,a; = yz}

we have a2 = z2y2 = a?a} and the group (27) appears. The cases a? = y, and

a? = z,y, originate isomorphic groups to the last one.

D) Assume G = GL(2,3). In this case 3(G) = 1 and S(G) = C,. If p # 2,
then S(G) = C; acts f.p.f. on §(G). Besides, Qs char SL(2,3)<G so, Qs<G and
Qs acts f.p.f. on each minimal normal subgroup L of G. So |L| — 1 = 8k divides 48.
As Aut(L) has no subgroups isomorphic to Qg, L ¥ C,, for every prime number p.
The only possible cases are |L| = 32,52 or 72. If |L| = 7% then GL(2,3) acts f.p.f.
on L and

C? < SDy6 < GL(2,3)

which is impossible. If |L| = 5% = 1 4 24, the each subgroup of GL(2,3) of type
C3 acts f.pf. on L, so SL(2,3) also acts f.p.f. on each L. Then there exists
d € G — S(G) such that o(d) = 2% and z% = z for some = € L*. If B(G) > 1, [5]
implies d € Cg(S(G)), so 2| |Ca(S(G))| and

Ce(S(G)=8S(G)xT

being T a 2-group contained in a minimal normal subgroup L, impossible. Thus,
B(G) =1 and S(G) = C%. We have

G = C? x SL(2,3)(d)

and
GL(2,3) < GL(2,5),

impossible. Assume now L = C? and let

H/S(G) = QsIGL(2,3).
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H is a T—group such that H/S(H) = Qg so 3(H) = 1 and S(G) = C%. Let

N/S(G) = SL(273)7 QS € Syl2(N, HSN

Then
N = HNn(Qs) = S(G)NN(Qs)
and
S(G)N Nn(Qs) = S(G)N Qs = {1}.
So,

Nn(Qs) = SL(2,3) and N =[C3]SL(2,3).

Therefore, G — S(G) has elements of order 3 and the Sylow 3-subgroup splits on
S(G) = C2%. We conclude from the Sylow’s theorems of Gaschtz that G splits on

S(G) and G = Hol(C2).
If p=2 then L = C, or C} for each minimal subgroup L of G. Let
H/S(G) = Qs<G,  S(G) < 2(H).
If S(G)=Z(H), H/Z(H) = Qg which is impossible and if S(G)(Z(H),
H/Z(H) = C?

so H' =2 C3<G implies H' < S(G) and H/S(G) is abelian, impossible.
E) Assume G = SL(2,3).Cy. In this case we reason as in D). The cases

C? x» (SL(2,3).C4) and  C? x, (SL(2,3).C4)

are excluded because GL(2,3) and GL(2,5) have no subgroups of type SL(2,3).Cs.
For §(G) = C? we get the group:

C2? x5 (SL(2,3).C4) = (z,3) xx (({, B) xx (7)),

with
e =27l yr=2%, P =ay
y’ =2ty V=270, ¢ =gy,
z? =$2y_17 y° =z7? _27 (a7ﬁ>gQ8’
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o(o) =4, o? = a?, a’ =a!

B°=aB, 47 =1"'Bat=7""ap.

F) Suppose G = C3 x C7. Then, B(G) = 1. If p # 2 as C} does not act {.p.f.
on S(G), there exist € L*, b € C3* such that 2® = z. So, necessarily 8(G) =1 as,
if B(G) > 1 then b € C(S(G)). This would imply C3 < Cg(S(G)). But, C3<G, so
C3 < S(G) which is impossible.

Thus S(G) = L and p" — 1 divides 7.8. Further, n > 1 because C3 < Aut(L)
(if 2| |Ca(S(G))| we would reason as above). So, p = 3 and n = 2. Then

bl

S(G) = {1} U Clg(z)

and

|IClg(z)| = 8 Vz € S(G)".
This implies C3 acts {.p.f. on S(G), impossible. Thus p = 2. If
P/S(G) = C34G

then
S(G) <L Z(P) and L=C;orCs.

If P — S(G) has an element z of order 2, as P* = Clz(%), it follows that every
element of P — S(G) has order 2, that is P =2 C7*. Then

5(G)9P  and  7[|G/Cs(S(G))|
so P = N x S(G) for some N<JG and N = C? is necessarily a minimal normal

subgroup. It follows N < S(G) which is impossible. We conclude that every element
of P — S(G) has order 4.

Suppose L = C, for all L. Then S(G) < Z(G). Let N <G such that
N/S(G)=<fl,:iz,f3> and G =N x, Cr.

Exchanging b by 7! if necessary, we can suppose

al
LIRS )

= Z1Zs.

waol

T =i'2, T 2523, T

Further, we can suppose

b b b '
Ty = 22, Ty = T3, T3 = T1T22 .
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for some 2’ € S(G) Let y; = z;2’. Then,

W=% »B=%, ¥ =unk
As y? = z for some z € S(G) and zb = z, it follows that
vi=y =9 =z
z1 = [y1,¥2] € S(G), so, if we conjugate by b succesiively, we get

[v1,92] = [y2, 93] = [y3, v1%2] = (3, v2l[y3, 1]

and [y1,y3] = 1. If we conjugate this relation by b again, we get

1 =[y2,v1%2] = [¥2, 01]-

So, (¥1,¥2,y3) is an abelian normal subgroup of G. As y2 = z = 22, we have:

2
z=2"=(¥8) = nwnyp =yiyi=2>=1.

So,
M = (y1,y2,y3) & C3

is a minimal normal subgroup of G such that M N S(G) = {1} which is impossible.
Thus, the case L = C5 is excluded.
Assume now that L = C3. Then

G:PXfC7=PXf(b).

We have
P/S(G) = C%

and

S(G) = Z(P) = C3.

Further, every element of P — S(G) has order 4. Supposse there exist
Ly = (w1) x (w2) X (wa), Lz = (21) X (22) X (23)

such that

b _ b _ b _ b _ b __ b _
wl —w2, w2 —w3, w3 —w1w3, Zl —Zz, 22 —-23, 23—2122.
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Then
L3 = {1} U Clc;(wlzl)

is a minimal normal subgroup such that
b _
(w121)” = w2,

(w222)° = w3z,

(w3z3)® = (w121)(waz3) or (wy21)(we22)

which is different from w, w3z,22. Thus, the minimal polynomial of b is the same on
each minimal normal subgroup L of G. If

min. pol(d) = z3 + z + 1

then
min. pol(5®) = 23 + 2% + 1,

so, exchanging b for b3, we can suppose that

min. pol(b) = 3+ 22 + 1.

Let

r, € P - 5(G), Ty =28, T3 = z5.
Then

b
(21’ =423, (23’ =43,  (23)" ==ial.
If 2} = #1%3, then 2} = r1z37y; for some y; € S(G). We have
3 3
(23)° = (z12331)? = (z123)%,
SO
(z1z3)2 = z%x% and [z1,23] = 1.

Let [x17$2] =21. Then [xgz,xgz] — 2%2, that iS [za,zlxal — 2%2’ 5o
[z3,21][z3,23] = zi’z and Z{F 1.

It follows that z; = 1, [z1,22] = 1. Now [z}, 28] = 1 that is, [z2,23] = 1. Therefore
(z1,z2,23) is an abelian group and P = (zy,3,23)Z(P) is also abelian. As

Z(P) = S(G) = u(P)
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we have
P~C3xC3.
Further, z; = :L"l’7 implies y; = z2 and therefore G is isomorphic to the group (1).

If (:E;;)Z’ = %1%, then 2§ = z12w; for some w; € S(G).

Let wy = w}, w3 = wd. Then wi = wyws. If we take as new representatives of

Z; the elements
" r_ b r_ b _
T = T1Wse, Ty, =] = Tows, T3 = Ty = T3wiws,

then we have

1\b 11
((E3) = T1T2W1WW1W3 = T1WeT2W3 = T1T5.

So we can suppose w; = 1 and a:g = z172. Let z; = zf We have

b _ b _ b _

But
2123 = zg = (a:g)2 = I1T9T1Ty = z%z%[xl,xz] = z122[21, T2]-

So,
[£1,22] = 2023 = z222.
Conjugating succesively by b, we get

[$2,$3] =2z = .’L‘%, [:1,'1,1‘3] = 2129 = .’L‘%.’E%

So, M = (z1,z2,z3) is a normal subgroup of G. If z; = 1, then 2z = z3 = 1 and
M = C} would be a minimal normal subgroup of G not contained in S(G). So
z1 # 1 and

N = (21,22,Z3> & Cg

is a minimal normal subgroup of G. Thus, M is a group of order 2 generated by
the elements z; of order 4 and with the conmutators [z;,z;] given by the above
relations. This group is a 2—subgroup of type Sz(8). If T = C3* is a complement
of N in S(G), we get the second group in the table.
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G) Assume G = C§ x ;Cs. If p # 2 as there exist € L* and b € C3* such that
zb = z it follows that B(G) = 1 and p™ — 1 divides 2¢.5. This implies |S(G)| = 32.
Since Aut(C2) has no subgroups isomorphic to Cj, it follows that 2 | |Ca(S(G))|.
Condition #(G) = 1 implies then

Co(5(G)) = C5 x C3

and C4 contains a minimal normal 2-subgroup. Thus p = 2 and if G = P x, Cs,
S(G) £ Z(P) and, necessarily, L = C; for each minimal normal subgroup L of G,
so S(G) = Z(G). Let b € G such that o(b) = 5 and

b b b
z1 € P - 5(G), Ty = Ty, T3 = I3, T4 = T3.

Then
.’ii = Z1T9T3%4
and

(Eg = T1T2T3T4271
for some 21 € S(G). As z? € Z(G), we have
z} = 23 =z} = 23,

Let [z1,22] = wy € Z(G), then

[z2,23] = [wl,:vz]b = w’l’ =w and [z3,24] = [zz,z;;]b = w;.

If [z1,23] = w2 € Z(G), then
[z2,24] = wo and [z3,m4]" = w;.

This implies
[154,3311‘2%154] = Wi,

SO

(4, z1][24, 22][z4, 23] = Wy and  [z4,21] = [24,22]7" = wy.

Thus we have

[z1,22] = [z, 23] = [z3,24] = w1 and (21, 23] = [z1,24] = [T2,24] = wy.
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Further,

x_bs_b“_bl‘_b?_ b_
1= 171 =Ty =T33 = .’D4 = ($1$2$3$421) = T9T3T4T1T2X3T421,

* 2 =zf1 (z2x3z4)z1(T22324)
= ¢ 1 2T25 % (2 z324)?
= [z1, T22324](222324)°
= [931,132][331,wa][$1,934](332$3$4)2
= [z1,22)(z27324)?,
but

This implies
($2$3$4)2 = (581172)2

and 2 1,.-1 3
[z1, z2)(z122)" = 27 x5 (2122)

=2y 7y (2122) 7

1 1 1

=T I

=2 -1
=T, I

=1

T1

Thus z? = 2% and 2; = 1. Let M = (z1,%2,23,24)<G. Then
MNnSG)= (mf,wl,wz) < C3,

M/(MNS(G)=C;

and
G = (M x,Cs) x Cj.

We have
[$1,(B2] = w1 and [171,:1)2](271.’122)2 = 1,

so wy = (z172)?. Besides,
wy; = (x1x2)2

= (z22324)"

= T2T3T4T2T3T4
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= (z223)%(29z3) 122z ! (z223)24
= ($2$3)2z2[$2$3,$4]

= (2223)" 2} [22, 23][2, 74

= (zy23)%ziwyw,

= [z, z3]2zizi22w w,

= wyziziziw w,

= 2wy = 2wy,

2 22— 22 — 22 — 22
as Ty = rj = 5 = 5. So w; = z{w, and

M N S(G) = (22, wy,w;) < C2.
Then, |M| = 25 or 2%. Further
M/Z(M)=Cj and |Z(M)| <4

so b acts trivially on Z(M). It is enough to determine the 2-groups of order 27,
5 < n < 6, such that

5| |Aut(M)] and M/Z(M)=C;

(because for such a 2-group b acts trivially on M/Z(M) or acts f.p.f. on C}. In the
first case zb = z,so z® = zz and ¥ = z, that is b = 1, impossible. Consequently, b
acts f.p.f. on C} and

(M/Z(M)){b) = C3 x 1 Cs).

M/Z(M) = C3 implies M = 2"T with k = 5,10,11 or 13 and n = 5 or 6. The
groups 2°T'saz, 26Ts5a; and 2%T'j3as satisfy the additional condition 5 | |Aut(M)]
[3]. For these groups |Aut(M)| = 25-384-5,25-144-5 and 2% -22 -3 - 5 respectively.
So the desired groups appear.

H) Assume G = Hol(C3,C7 x; C3). If p # 2, there exist z € L*, b € C3*
such that 2® = z. Then 8(G) = 1 and necessarily, C3 < Aut(L) as 2/ |Cc(S(G))|.
Besides, p™ — 1 divides 8 -7-3,son = 2 and p € {3,5}. In any case 2} |Cg(z)|
for all z € S(G)* so C3 acts f.p.f. on S(G) which is impossible. Thus p = 2 and
S(G) < Z(P) with

G =P x,(Cr XfC3).

Consequently, L = Cy, CZ or C3. If L = C3, we consider

H = S(G)(C7 x5 C3).
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H is a T'—group such that
H/S(H) = C7 x5 Cs.

Then B(H) = 1, that is, §(G) = C3. Therefore, |P| = 2%. As the sectional rank of
P is <4, it follows that P = C3 or P is of the type Sz(8), obtaining the two listed
groups. If L & C2, C; acts trivially on L and

Cs(5(G)) = $(G) x Cr,
so C7<4G, impossible. If L = (C,, then
S(G) = Z(G) = u(G)
and every element of P — S(G) is of order 4 according to Maschke’s Theorem. Let
N/S(G)=C3 x5 Cn.

Then
S(V) = 2 (2(N)) = 5(G)

and N is a I'-group such that
N/S(NY=2C3x;C; and  S(N)= Z(N),

which is impossible (if S(G)(S(N) then P—S(G) has elements of order 2,s0 P = C}
and according to Maschke’s Theorem P = S(G) x T with T'4G, impossible).

I) Suppose
G € {C? x5 Qs, C% x;DC3, C? x5 SL(2,3)}.
Then B(G) = 1 and §(G) = C?. Consider the homomorphism % : G — Aut(L).
Then, ker(4)<G and ker(¢) = {1} or C? < ker(%). In the first case G < Aut(L)
and 5% - 4 divides |GL(m,p)| and p™ — 1 divides 5° -3 -4. If L = CJ* then |L| = 11?
and 112 — 1 = 5 - 24 so, necessarily
G = CE x;SL(2,3)
and SL(2,3) acts f.p.f. on S(G). In this case we have

G = N x;SL(2,3)
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and C; acts f.p.f. on N. This implies that N is abelian and C?<G, impossible. If
C? < ker(¢), then C2 < Cg(L) and p = 5. If |L| = 5™, 5™ — 1 is a divisor of 24, so
m=1or2. Ifm=2,

G = N x5 S5L(2,3).

Let
H = 5(G) x5 SL(2,3).
H is a I'-group such that
H/S(H) = SL(2,3),
so B(H) = 1, that is S(G) = C?. Besides, N is abelian because it has automorphisms
of order 2 that act f.p.f. on N. So Q;(N) = S(G) = C? implies N = C%, and
G = C} x; SL(2,3),

impossible because such holomorph does not exist. If L = (z) 2 C5 and we suppose
that there exists Qg < G, then z¢° = z with (a*) = Z(Qs), so z% = 271 = z° with
Qs = (a,b). Then z%® = z and o(ab) = 4 which is impossible as |Clg(z)| = 4. We
conclude G has no subgroups isomorphic to Qg and

G’EC? XfDCg.

Then G = N X5 C4 so N is abelian and C3 < C(S(G)). This implies C3<4G which
is impossible.

J) Assume G = PSL(2,11). We have
|PSL(2,11)] = 660 = 11-5-3 - 22,
If there exists L such that Cg(L)/L # 1, then Cg(L)/L = G and L = C,, S(G) =

Z(G). Consequently
G/Z(G) = PSL(2,11)

and
G'Z(G)/Z(G) = PSL(2,11).
So,
G'/(G'nZ(G") = PSL(2,11),
that is

G'/Z(G") = PSL(2,11)
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and, in general
G Z(G¢N = PSL(2,11).
Let s € N be such that
G = g,
Then G{*) is a perfect central extension of PSL(2,11) and Z(G{*) is a subgroup of
the Schur multiplier of PSL(2,11), that is, Z(G{®)) < Cy. If Z(G(*)) = 1, then
G = PSL(2,11)
is a minimal normal subgroup of G, which is impossible. So Z(G¢*)) = C, and
G =G2(G) =G x Ct
G{*) being the only perfect central extension of C; by PSL(2,11). Suppose, on the
other hand, that Cg(L) = L for all L, so G < Aut(L). If p = 2, as 2 has order 10
modulo 11 and Cj; is not a subgroup of Cg(L) it follows that |L| = 2°*10¢ with
2% = |C(b)| and 2!°¢ = |[L,b]| being b an element of order 11. But |L| — 1 divides
11-5-3 -_22 which is impossible. If L 2 C" and p # 2, then p™ — 1 is a divisor fo
660 and G' < Aut(L), impossible.
K) Finally, assume G = My. We have
B(G)=1 and |G|=720=16-9-5.
Besides My/Ag = C;. Let M/S(G) = As<G. If there exists L such that Cg(L)/L #
1 then M < Cg(L) and therefore L = C; or Cs. If L = C,, then
S(G) = Z(G) = C! and G/Z(G) = M.
MJZ(M) =2 As so M = T x C3 being T the only perfect extension of Cy by
PSL(2,9) 2 A¢. Let d € G — M such that o(d) = 2¢. So,
G=T({d)yxC3 and T(d)/Cy = My.
If L = (5, we have
M = p®
for some s € N. This implies M = D x C§ with D the only perfect central extension
of C3 by A¢ and
G = (D x C8)e)
with o(e) = 2* and 2¢ = 27! for all z € C§, being D(e) such that
D(e)/Z(D) = My, Z(D) = Cs.
If Co(L) = L, then G < Aut(L) and |L| — 1 divides 720. It follows |L| € {2%,3%}.
Asg has no subgroups isomorphic to My so the case |L| = 2 is excluded. If |L| =

3%, |L*| = 5-16, so the 2-subgroups of G act f.p.f. on L which is impossible as these
subgroups are isomorphic to § Dy and C? < §Dys.
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