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ABSTRACT

The purpose of this paper is to obtain sufficient conditions, for a Banach space
X to contain or exclude cg or £1, in terms of the sets of best approximants
in X for the elements in the bidual space.

Let X be a closed subspace of a Banach space Y. If y € Y, we denote by Px(y),
the set of best approximants of y in X, that is,

Px(y)={ce X :|ly—z| =|ly+ X||}.

The set Px(y) is closed, convex and bounded and it may be empty. If it contains
exactly (at least) one element, for every y in Y, then X is said to be a Chebyshev
(proximinal) subspace of Y.

The closed ball with center z and radius r is denoted by Bx(z,r). The closure
of a set A is denoted A and its interior by A*. X° will denote the annihilator of X in
Y *. Let us say that X has the 1%—ball property in Y if X is a proximinal subspace
of Y and the following equality holds for all y in Y,

lyll = d(0, Px(y)) + |ly + X]|,
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234 CABELLO

where d(0, Px(y)) denotes the distance from the origin to Px(y). (This is equivalent
[7, Cor. 4] to the definition given by D. Yost in [13]). It is known that the Banach
spaces £; and ¢y has the 1%-ball property in their biduals [13, Lemma 2.6; 14, Th.
4,5,1 and Lemma 9]. However, whereas ¢; is a Chebyshev subspace in its bidual, for
X = ¢g and for for every F in X** = £, we have

B (0,2]|F + X1) C Px(F) - Px(F).
The assertions are, in a certain sense, opposite; observe that
0 € Px(F)— Px(F) c Bx(0,2||F + X||),

for any Banach space X which is proximinal in its bidual and for all F in X**.
Given 0 < t < 2, we say that a (automatically closed) proximinal subspace X
of a Banach space Y has the I(t)-property in Y, if for every y € Y\ X, we have

B (0,t|ly + X||) C Px(y) — Px(y).

P. Harmand and A. Lima [8. Th. 3.5] proved that if X has the I(2)-property
in its bidual (this is equivalent, [9, Th. 1.2 and Prop. 1.5], to the fact that X is
an M-ideal in its bidual), then it contains a subspace isomorphic to co. Moreover,
A. Lima showed in [9, Th. 2.6] that such a space X is an Asplund space, so X does
not contain /¢;.

On the other hand, G. Godefroy proved in [4, Th. 4] that if X is an L-summand
in its bidual (that is, there exists a closed subspace Y in X**, such that X** =
Jx(X)+Y and

lix(@) + 9ll = llall + Il

forz € X and y € Y) then X is w.s.c.. In particular, X has a subspace isomorphic
to £1, and no subspace of X is isomorphic to ¢y (see [5] for more information about
the geometry of the Banach spaces containing or not ¢;).

These observations allow us to glimpse that there is some relation between the
fact that a (non-reflexive) Banach space contains subspaces isomorphic to ¢; or ¢
and the “size” of the difference sets of the sets of best approximants of the elements
of the bidual in the space. The object of this paper is to illuminate this relation.

Given a bounded subset K of a Banach space X, we write

|K|| :=sup {||z|| : = € K}

while §(K') will denote the diameter of K.

Now we recall the definition of the property (u), which was introduced by A.
Pelczynski in [11]: A Banach space X has the property (u) if for every F in the w*-
sequential closure of X in X™**, there exists a W.C.U.-series ) yx (that is for every
fin X*, Y f(yk) converges) such that F is the w*-limit of the sequence {3 }_; y«}-

More concretely, we prove the following result:
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Theorem
Let X be a non-reflexive Banach space.
(1) If X has the I(t)-property in its bidual, then,
a) ift > 0, no subspace of X is isomorphic to ¢y ,
b) ift > 1 X has the property (u). In particular X has a subspace isomorphic
tocg .
(2) If X has the 1}-ball property in its bidual, then
a) ift < 2 and §(Px F)) < t||F + X|| for every F in X**, no subspace of X is
isomorphic to co,
b) ift <1 and F € X**\X is such that §( Px(F)) < t||F + X||, F is not of
first Baire class. In particular if X does not contain £y, then §( Px(F)) >
|F + X|| for every F € X**\X.

The proof of the first lemma is inspired in the one of [13, Th. 4].

Lemma 1

Let X be a subspace of a Banach space Y and 0 < t < 2. If X has the
I(t)-property in Y, then, for every f in Y™*, we have

I1Pxo (NIl < Il + (1 =DIIf + X]|-

Proof. We claim that X has the I(t)-property in Y if, and only if, X is a proximinal
subspace in Y and the following assertion holds for all z in X and y in Y with
llzll < lly + X1I,

By (y + (¢t/2)z,|ly + X|) n By (y — (t/2)z, lly + X[) n X # 0.

Indeed, if t = 0, both assertions are equivalent to the proximinality. Suppose then
that ¢ > 0. If X has the I(¢)-property in Y and z € X, y € Y with ||z|| < ||y + X]|,
then tz = z — 2/, with z and 2’ in Px(y). So

+ta;—z—z’
y 2

tr+z+ 2
2

=uy—zu=uy+xu=ny—zu=ny—

hence (z + 2')/2 is the desired element in the above intersection.
Conversely, fix y € Y, z € X, such that ||z]| < t||ly + X||. By assumption there
exists z in the intersection

By (v+3,ly+XI) 0By (y— 3, ly+XI) n X
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and so, z = /24 2z — (2 — 2/2) € Px(y) — Px(y), and this proves the claim.
Now, fix z in X, y in Y, such that ||z|| < 1 = ||y + X||. By the claim, there
exists 2z in X, satisfying

t
Hy:l:iz—z <1.

If f € Y* and we take g in Pxo(f), then
2g(y)+t(f—g)(z)=f(y+%w—z) +(29 - f) (y—%z—z)
$O
2Rg(y) + 1R(f — g)(z) < || fI| + |29 — FII-

According to the identification of X° with (Y/X)* and since

llg = £l =g = /x|,

we have
| 2Mlgll < AN+ (L =DIS = gll + llgll,
that is

lgll < 1IfI+ (1 =DIIf + X

for all fin Y* and g in Pxo(f), as required. O

Remarks. Let X be a subspace of a Banach space Y with the I(t)-property in Y. It
is clear that if, for f in Y™, f! and f? are two Hahn-Banach extensions of f|x, then
f'— f? = g — h, with g, h in Pxo(f). (In particular g — h € Px+(f — h)). Hence,
applying the above lemma we have

171 = £l < @ = 0llf + XII.

If t = 2, then we obtain that X has the unique Hahn-Banach extension property
in Y, which is proved in [14, Th. 4]. On the other hand, it is easy to prove that under
the additional assumption that X has the 1%-ball property in Y, the inequality in
the lemma actually is equivalent to the I(t)-property.
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In what follows, for a prefixed Banach space X, m will denote the projection on

X™* with range X™* and kernel X° (the annihilator of X in X***). If we fix 7 in
X*** and w in X°, it is clear that

7= (r = 77)l| = l|x7|| = |lx (7 — w)|| < [|7 — wl|
so, T — T € Pxo f(7). On the other hand, if we assume that X has the I(t)-property
in X** by lemma 1, we have
|7 = =7l < lI7ll + (1 = O)l|=7]]. (+)
In the next result, which is an obvious adaptation of the proof of [6, Th. 1], we
emphasize the fact that ¢ > 1.

Lemma 2

Let X be a Banach space, F in X** and 0 < e <1. If
|r = =7l < |I7l| = ell=r]],

for all 7 in X***| then F/Bx~ is the difference of two bounded lower semicontinuous
functions on (Bx=,w*). In particular X has the property (u).

Proof. First of all, we claim that
Bxe=(0,1) C co (% Bx=(0,1)U Bx« (0, 1)) ,
indeed, for each 7 € Bx-««(0,1)\X, writing
a:=c¢|r7|,

u:= (e l|7r7'||)—17r7'

and
vi= (1=ellrrl) 7 (7l = =7)),

one has 7 = au + (1 — a)v and, by the assumed inequality ||v|| < 1, as required.
Now, it is enough to observe that in the proof of [6, Lemma 2], the assumption
of that X is an M-ideal in X** is only used to imply the statement (2), but this
statement is not a necessary condition for its proof, indeed, this condition can be
relaxed by only assuming the condition (+). Hence, the first statement of our lemma
2 is consequence of [6, Lemma 3], which is an independent (with the condition of M-
ideal) topological argument. On the other hand, the second one follows by repeating
the proof from Godefroy and Li [6, pp. 366-367] word for word. O
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Proof of first part of the theorem. If we assume that X has the I(¢)-property, by
lemma 1 and the observation (+), we have that

7 = 7|l < (2 =)l

for all 7 in X***  hence ||1 — 7|| < 2 — t. Therefore, according to [2, Prop. 2], if
t > 0, X contains no subspace isomorphic to #;. The first one of b) follows from
the condition (+) and the lemma 2. The second one follows from a) and a classical
result of Pelczynski [12, Prop. 2]. O

For the assertion 2) we will use the following result, which is classical.

Lemma 3

Let X be a Banach space, Z be a subspace of X and G € Z**. Then

IG + 2l < 2]|G + X|| < 2|G + Z]|.

Proof. Let z be in X. By the Hahn-Banach theorem it is easily seen, that ||z + Z|| =
llz + Z**||. Let G be in Z**. We put a = ||G + X||. Let 8 > 0 be given. Then
there exists zg € X such that ||zg — G|| < a + B. By the above remark there exists

zg € Z such that ||zg — 28|| < a+ B. Therefore: ||G — 2g|| < 2a + 28 and the lemma
is proven. O

Proof of the part (2) of the theorem. 2)-a) Assume that X has a subspace isomorphic
to ¢o and fix € > 0. According to [10, Prop. 2e3], there exists a subspace Z of X,
and a linear isomorphism T from ¢y to Z such that

Izl NN < (1 + )=l

for all z € ¢y. On the other hand, putting F = (1,1,...,1,...) in £s and z =
(2,0,...,0,...) in ¢ we have that

5

1Al = IF +eoll =1 = | P — 2 < 2L

Therefore, for every z,y in X, we have

2= |l2ll < IT()I < NT(2) = 2l + llz = yll + llyll-
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Now, if we note G = T**(F') (the norm of G —T(z) and G are less than or equal
to 1+ ¢) and if we take infimum in z,y, with z,y € Px(G), we obtain

2 < d(T(2), Px(G)) +d(0, Px(G)) + k(Px(G))
and by the 1%-ball property of X and the bound on the diameter
2<lG-TE) -G+ X[+ ]Gl - |G + X|| + t]|G + X]|
<21+4¢e)+ (t-2)|IG+ X||,

that is
(2-1)||G+ X|| < 2¢

Therefore, according to lemma 3 and the inequality
IG+ Z|| 2 [I[F + «oll = 1,

we have
2 -t < 4e,

in contradiction with the choice of ¢t and the arbitrarity of €.
(2)-b) Assume t < 1 and take F in X™* such that

§(Px(F)) < t||F + X|.
It is clear that
| Px(F)|| < 6(Px(F)) + d(0, Px(F)) < t|F + X|| + d(0, Px (F)).
By assumption, X has the lé-ball property in X** and £ < 1, so
IPx (Bl < Il + (¢ = DIIF + X]| < FJl.
Now, fix z € Px(F). It is clear that

Bx(z,(1=OlIF + X|)) € ) Bx(a,||F - zl).
T€X

Indeed, if v € Bx(z,(1 —t)||F + X||), since z —z € Px(F — z)
lu =2l < flu— 2]+ [z - <]
SA-DIF + X|| +|F - 2ll + (¢ - DIIF + X]|

= 1P .
Hence
Fg¢{Fex: ﬂ Bx(z,||F — z||) contains at most one element},
z€X

and therefore, by [4, Prop. 3 and rem.], F is not of first Baire class. O
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Remarks and questions. It is known [13, Cor. 2.3] that the real Banach space C(K),
K compact, has the 1%—ball property in its bidual, so our theorem gives information
about the set of best approximants. Indeed, with the same arguments of the theorem,
it is easy to prove that there exist F' in X**, X = C([0,1]), and z, y in Px(F'), such
that |z — yl| = 2||F + X]|

There are Banach spaces that have the I(¢)-property in their biduals which are
not M-ideals in their biduals. For example, let us denote X, the space ¢y X ¢o
normed by

[z, 9)l|, = max {[l=[l, lyll + e |lzl, (1 + o)llyll}

If 0 < a £ 1, it can be verified that X, has the I(2 — 2a)-property in its bidual but
is not an M-ideal in its bidual. Of course, the assertion (1) of the theorem is trivial
for these examples (0 < o < 1) (this class of Banach space satisfies a lot of the
geometric properties of the Banach spaces which are M-ideals in their biduals [1]).
However [3] a suitable iteration in the above renorming (¢o(X, ) for an appropiate
sequence {ay,}) allow to build a dense subspace Z of ¢y and a new norm in Z, || - ||,
such that [Z,] - ||]] has the I(t)-property (for some ¢ > 1). But, unfortunately we do
not know if this space is isomorphic to a Banach space Y, which is an M-ideal in its
bidual.

Analogously, there are Banach spaces (a suitable product of a Banach space,
which is an L-summand in its bidual, and a reflexive Banach space) that verify the
hypothesis 2-a) (it is easy to prove, with the same arguments of the theorem, that
in such spaces there are no Fréchet-differentiable points of the norm in X) or 2-b).

Hence, it is natural to ask:

Does exist a Banach space which has the I(t)-property in its bidual (satisfies
the hypothesis 2-a) or 2-b)) and which is not isomorphic to an M-ideal in its bidual
(to a suitable product as above)?
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