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ABSTRACT

We introduce the approximation property of order (p,q) in Banach spaces
(in short AP,,) to study topological properties of the space Dy (E, F)
of (¢',p")-dominated operators between the Banach spaces E and F'. After
some equivalent formulations of the AP,,, we characterize the reflexivity
of Dgipr(E, F) when E has the APy, or F' has the APp, and we give

sufficient conditions for E®ap ,F and E®arp . F to be weakly sequentially
complete.

Introduction

In 1955, Grothendieck [5] introduced the notion of approximation property (in short
AP) for Banach spaces. Twenty years later Saphar introduced a weakened version
of it, namely the approximation property of order p > 1 (in short AP,). All Banach
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spaces have the AP;. The first examples of Banach spaces without AP, for p # 2, -
and of Banach spaces with AP, for p # 2 but without AP are due to Reinov [15].
These properties are closely related to the tensor topologies g, of Saphar [17] and
they are useful to study topological properties of the space HP(E, F) of p-absolutely
summing maps from the Banach space E into the Banach space F [18]. On the
other hand the tensor topology g, is a particular case of the tensor topologies ap,
of Lapresté [11, 2, 3]. Then it is natural to consider approximation properties
of order (p,q) in relation with the topology oyp,. This new property will provide
the natural setting to investigate topological propertiesiof the space Dgip(E, F) of
(¢',p')-dominated operators between the Banach spaces E and F.

In section 1, we introduce the approximation property of order (p,q) (in short
AP,p,) of Banach spaces and we give some characterizations of it. In section 2 we
provide applications to the space Dy (E, F). Then we characterize the reflexivity
of Dy (E,F) if E has the APp, or F' has the AP,,, giving applications to the
reflexivity of E“@apqﬁu, and we study sufficient conditions for the weak sequential
completeness of E®a:qu and EQq, F .

1. Terminology and notations

The notation about real or complex Banach and locally convex spaces is stan-
dard [10]. Throughout the paper, E and F will be always real or complex Banach
spaces. Bg will be the closed unit ball of E, E’ will be the dual Banach space of E
and Ig and Jg will be, respectively, the identity map on F and the canonical inclu-
sion of FE into its bidual E”. If T € L(E, F), the transposed map will be denoted
by T'. If p € [1,00], p’ will be the conjugate number given by 1/p+ 1/p’ = 1, where
1/00 = 0 as usual.

We follow the book of Piestch [14] for the definitions of operator ideals and of
the classes of operators from E into F'. Concerning general definitions and properties
of tensor norms, we refer the reader to [2, 3, 6, 7]. Given p € [1,00] and a sequence
(zi) (finite or not) of elements of E, we put

$'€BE! i

1/p
ep((zi)) = sup (Z |(-Ti,.’l:'>|p> ’

1/p
m((20) = (Z ||z,-||”)
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for p < 00, and
oo (84)) = Too (21)) = sup lJill.

Then we define

P(E) = {(z:) € E¥ : p((2:)) < o0}
and
P[E] = {(z:) € EN : mp((2:)) < o0}
If (\;) € KN and p € [1, 00], we put
”P((/\i)?;n) = ”p((’\i'))

where X; = X\; if i=n,n+1,...,m and A, = 0 in other case.
Given a pair of numbers p,q € [1,00], we shall always consider a number 7 €
[1, 00] such that

1/r+1/¢d+1/p' =1. (1)

Then, the tensor topology a,, of Lapresté on the tensor product £ @ F'is defined
by the norm

Opg(w) = inf 7, (W) eg (2))ep (@),  wEE@F

where the inf is taken over all the representations of u in the form
n
UZZ/\,'.’D,'(@:U,', NEK,z;€E, y;€F,1=1,...,n.
i=1

The space E ® F with this norm is denoted by F Rapg F and its completion

by E®,,, F. By [11], (see also [3]), every element of EQq,, F can be written in the
form

z = z AiZ; ® Yi (2)
i=1

with (i) € €7 ((\;) € ¢o if 7 = ), (2;) € €7 (E) and (y;) € €7 (F).
There are natural continuous linear maps

&, : E®4,,F — L(E', F)

U, : E'®q,, F — L(E,F)
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such that, if z is given by (2), for every z’ € E' and y' € F’

<@P9(z)(z,)vy Z’\ Tiy T yn )

and analogously for ¥,,. The set ¥, (E'®q,, F) is the set Ny (E, F) of the (p, q)-
compact operators from E into F', which will be always provided with the quotient
norm.

A map T from E into F is called (p, g)-dominated if there is M)0 such that

7Tr'(<T($i)» y:)) < M ep((2:)) eq((9)) (3)
for every (z;) € £P(E) and every (y!) € £9(F"), where r,p,q € [1,00] are such that
1/r+1/p+1/q=1. The set Dy(E, F) of the (p,q)-dominated operators is normed
by 7pe(T) = inf M, where the inf is taken over all M such that (3) holds. It is
known [11, 2, 3] that

(E®aqu), = Dqlpl(E, F,)
If g =1, apqy = ap is the topology g, of Saphar and

(E@_%F), = H(FsEl),
p’
the space of p’-absolutely summing operators from F into E’' [17]. The norm of
T € [1,(E, F) will be denoted by mp (T).

The dual tensor norm of apg Will be denoted by ay,,. The dual space (E®a: JFY
is the space I,4(E, F') of (p, ¢)-factorable operators from E into F' [2, 3]. The norm
of T € I,o(E, F') will be denoted by I,o(T).

Finally, we refer the reader to [4] for questions related to the Radon-Nikodym
properties of a Banach space, and to [19, 20] for Schauder bases and decompositions.

2. The approximation property of order (p,q)

Given E and F and numbers p, ¢ which define a tensor norm a,,, besides the normed
topology, we shall consider on D/ (E, F) two other useful Hausdorff topologies. The
first one is the topology oo induced by the weak topology o(Dgp (E, F"), E@a,,., F’).
The second one is the topology Ty defined by the family of seminorms

{Ploy(y : (z:) € L9(E), (v}) € €7 (F")}
where
Pz (v)(T) = 7 ((T(2:), 91)))

for every T € Dy (E, F). It is easy to show that Ty, is finer than op and coarser
than the norm topology on Dy (E, F). We have
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Proposition 1

Let 1 < p,q < oo and let v be defined by (1). If 1 < r < oo, the topologi-
cal dual of [Dgp(E, F),Typ] is the quotient of EQq,, F' by the absolute polar of
Dqtpl(E, F) C (E®anF’)’.

Proof. We take the orthogonal set H of Dgp(E,F) in EQq,, F', which is closed
since Dy (E, F) can be looked as a subset of (EQaq,, F’)l. We form the quotient

Q = (EQa,, F')/H.

Let P be the canonical projection from E®aw F' onto Q.
Clearly 0(Dgp(E, F),Q) is coarser than Tyipr. On the other hand, given (z;) €
¢4 (E) and (y}) € £7'(F"), the map A from £ into E®aq,, F' such that

A((/\,)) = Z /\ixi & y;, (/\1,) € ZT,
i=1

is continuous and hence weakly continuous. Then if B, is the closed unit ball of £,
A(B;) is 0(EQa,,F',Dgp (E, F"))-compact and P(A(B,)) is 0(Q,Dgp(E,F))-
compact. Then for every T € Dy (E, F))

Piz) (v)(T) = mr ((T(2:),91)))
= sup { '

S (T ul)] - () € B,}

= sup {|{T,w)| : w € P(A(B,))}

and Ty is coarser than the Mackey topology 7(Dgp (E, F'),Q). Then

[Dyip (E,F),Typ] = Q
as sets.

Corollary 1

Let 1 < p,q < co and let r be defined by (1). If 1 < r < co and F is reflexive,
for every E we have

[Dyip (E, F"), Typ] = EQa,, F.
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Theorem 1

Let 1 < p,q < oo and let r be defined by (1). If 1 < r < oo, for a Banach
space E the following assertions are equivalent:

1) For every F, the canonical map
Upy: F'Qq,, E — L(F,E)

is one to one.
2) For every F, the canonical map

®,q: F&,, E — L(F',E)

is one to one.
3) For every F, E' ® F is 0¢-dense in Dy (E, F).
4) For every F, E' @ F is Tpig-dense in Dpigi(E, F).

Ifr = 00, 1), 2) and 3) are equivalent and 4) implies any one of them.

Proof. 1) = 2) If

i=1

®,, (Z AiYi ® 13,') =0¢€ E(F',E),

with (X)) € €7 (X)) € ¢ if r = o0), (yi) € £9(F), (z;) € £¢ (E), since F' is
complemented in F'", we have

\Irpq<z X r(yi) ® z,-) =0e L(F",E)

=1
and by 1)
0=> XJr(y:) ® zi € F'®aq,, E.

i=1
But the isometry [7, satz 1.12; 3, 2.4]
JF®IE : F Qa,, E — F" Qq,, E

can be isometrically extended to the respective completions. Then

i Aiyi ® z; = 0.
i=1
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2) ==3) Given F, by 2) the map
., : F'®QME — F'Q.E C L(F",E),

is injective. Let z € F'@a”E be such that

!

(' 8Y) =0, & Oy € E'®F" C Dygl(EF") = (Fidu, ).
Then, for every T € (F'®.E)' we have

[(83o(2),T)] < Tl €(Bpo(c)
= ||IT|| sup {|(®pqe(2),v°° @ u)| : v°° € V°°, u® € U°}
= ||T|| sup {|(z, ®},(v°° @ u®))| : v°° € V°°, u® € U°}
= ||IT|| sup {|(z,u° ® v°°)| : v°° € V°°, u° € U°}
=0.

Then ®,,(z) = 0 and hence z = 0. Therefore, E' @ F" is 0 ((F'®aq,, E)', F'®,, E)
dense in (F'®q,,E) = Dpg(E,F"). But E'Q F is 0 ((F'®a,,E)'s F'®a,, E) dense
in E' ® F" by the representation with series of the elements z € F'®q,, E and the
theorem of bipolars. Hence, E' ® F is oo-dense in Dpig(E,F) C Do (E, F").

3) =4) (If 1 < r < ). Let

/
Q= [Dp'q’(EaF)an'q’] :
By proposition 1 and the definition of o we obtain that E'® F'is 0(Dp ¢ (E, F),Q)-
dense in Dyt (E, F). Then E' ® F is Ty g-dense in Dy g (E, F).

4) =3) It is inmediate since Ty is finer than oy.
3) =>1) Given F, every z € F'®,,, E has a representation

o0
2= Ay ®a
i=1

with () € £7((\:) € ¢ if 7 = 00), (y!) € €9 (F') and (z;) € £’ (E). Then, for every

z' € E',
m
= sup { Z Az, o' Wyh,y") 1y € BF,,}
i=n

<7, (()\i)?=1)7"q’ (((x,z'));’;n) Ep ((y:))

m

Z Ai(xi,xl)yé

i=n
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is arbitrarily small when n and m increases. Then we get

o0
Z Ai{zi, z')yl € F, z' e E.
i=1

Now, suppose that z is such that ¥,,(z) = 0. Then for every y € F and every
z' € E' we have

S Mgl o)z, al) = 0.
i=1

Since Jp(F) is o(F", F')-dense in F'" we have

SNy )ene') =0, @' €E, y" e F". (4)

i=1
This implies that z¢ € E@an F' vanisheson E'Q F" C Dpo(E, F"). Since E®amF'
is a subspace of E®,,, F"', by 3) we obtain that
<2th>=0v TEDP’Q'(EvF"): (E®aqu’),'
Then 2t =0 and 2 = 0. O

The theorem 1 motivates the following definition

DEFINITION 1. We say that a Banach space F has the approximation property of

order (p,q) (in short the AP,, ), 1 < p,q < oo, if for every Banach space F the
canonical map

®,,: F®O,NE — L(F',E)
is injective.
Remark 1. If p = ¢ = 1, since ay3; = 7, the projective tensor topology, the APy,
is the classical approximation property of Grothendieck. If p > 1 and g = 1, since

0p1 = gp, the AP, is the Saphar-Reinov’s approximation property of order p. The
theorem 1 gives some characterizations of the AP,, in Banach spaces.

Remark 2. By a result of Grothendieck [5, Remarque 10, 2°, p. 95; 3, 5.6], if E has
the AP then E has the AP, for all p,q € [1,00].

Proposition 2

Suppose that 1 < p,q < co. If E has the APy, E has the AP, .
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Proof. Given a Banach space F, a map T € D, (E, F), sequences (z;) € ¢ (E) -
and (y!) € £9(F') and € > 0, by Kwapien’s theorem, [14, Theorem 17.4.3] there are
a reflexive Banach space M and linear maps A € [[,(E, M) and B € L(M, F) such
that T = BA and B' € [[,(F',M’). Since E has the AP,, by a result of Bourgain
and Reinov [1, Lemma 7] there exists z € E' ® M such that

Tp! ((A - Z)(:B,)) <e.
Then Bz € E' ® F and (B'(y!)) € £9'[F']. By the Hélder’s inequality we obtain

P2y (y)(T — Bz) = mp ((((BA — B2)(2:),9;)))

= (4 - 2)(@0), B'(W)))

= sup { 3 a4 - @), B'Wh)| : 7 () < 1}

< sup {mr (@) : 77 ((00) < 1} 7 (A = (@) 7 ((B'(80))
< ey (B'(4)-

o0

By 4) of theorem 1, E has the AP,, .0

Proposition 3

Every E has the APy, for each 1 < p,q < 2.

Proof. In this case ap, is a tensor norm equivalent to oy [3, Proposition 1.8].
Saphar shows that every E has the AP, [18, théoréme 3.5]. By the proposition 2,
E has the APy; = AP,,. This result is also a consequence of the fact that as; is

totally accesible (see [3], corollary of theorem 9.4 and the remarks that follow to
proposition 5.6). O

Remark 3. If 1 < p < 2 there is a Banach space E without the AP, [15]. However
this space has the AP, if 1 < ¢ < 2.
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3. Applications

We give some results in which approximation porperties of some order appear in a
natural way. The first one is to study the reflexivity of the spaces Dgip(E, F') and
E®a" F.

Theorem 2

Let E and F be reflexive spaces such that E has the AP, or F' has the AP,,
for some pair 1 < p,q < 0o. Then EQq, F' and Dy (E, F) are reflexive if and only
if

Dyp(E,F)=E'Qu, F
and
Ipq(E"F’) = NP‘Z(E”F,)'

Proof. First we suppose that E has the APg,.
Sufficient condition: We have

(‘E®°‘qu,), = ‘DQ'P'(EvF) = EI@&;GF

and
(E'@at, F)' = Ig(E',F') = Npg(E', F").

But the map T +— T’ from Npq(E', F') to Ngp(F, E) is an isometry onto, E and F
being reflexive. By the AP, of E,

Nop(F,E) = F,®apqE’
which is isometric to E®am F'. Then

NPQ(E,’F’) = E®O‘NF,
and EQq,, F' and Dy (E, F) are reflexive.

Necessary condition: E'®q F is a subspace of Dy (E, F) [3, Theorem 9.4].
Since F' and E®am F' are reflexive,

Dy (E,F) = EQq, F' = [Dgp(E, F),00]'.

But E has the APg,. Then, by the condition 3) of theorem 1, we get that E' ® F is
oo-dense in Dy (E, F) and hence it is dense in Dgpi(E, F). Then

E'®a; F = Dyp(E, F).
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Now as above, for every 1 < p,q < o0

NPQ(EI’F,) = E®°’qul

= (E®aq,, F')
(Dq’p'(EvF))’
= (E'®a, F)'
= Ipq(E',F').

n

Finally, if F' has the AP,, , the proof is analogous by the remark that
Npo(E',F') = EQaq, F',
Dy (F', E'") is isometric to Dy (E, F) (by transposition) and [7, p. 16]

FQa; E' = E'®ay F. O

Proposition 4

Let us suppose that
Dyip (E’F’) = EI@C’%F,

for 1 < p,q. If E' and F' are separable, E®O,NF is reflexive if and only if it is
weakly sequentially complete.

Proof. Since
(E®°‘qu), = DQ'P'(E7F,) = El®a'qu,

is separable, the topology o ((E®a,, F)", Dgp(E, F')) is metrizable on the bounded
sets of (EQq,,F)". If EQ,,, F is weakly sequentially complete, we must have

(E®°‘pq F) ! = E®°‘pq F.0O

In view of theorem 2 and proposition 4, it is interesting to know sufficient
conditions for the equality

— F!&
Dqlp'(E,F) =F ®arqu

to hold.
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Proposition 5

Let us suppose that E is such that E' has the Radon-Nikodym property and E"
has the AP, for some 1 < ¢ < co. Then for every F and every 1 < p < 0o,

Dyy(E,F) = E'@q F.

Proof. Given T' € Dy (E, F), by Kwapien’s theorem [14, Theorem 17.4.3], there
exists a Banach space M and mappings A € II/(E,M) and B € L(M, F) such that
B' € Iy(F',M') and T = BA. Since E’ has the Radon-Nikodym property, 4 is a
quasi-¢’-nuclear operator [12, p. 228]. By a result of Saphar [18, Théoréme 4] there
is a sequence (A,)52, in E'® M which converges to A in II:(E, M). Since E’®a1NF
is a subspace of Dy (E, F) we have

o} (BAp — BAp) = 7y (B(An — Am)) < 7802 (B)mg (An — Am)

(where w3#2I(B) is the norm of B’ in Il,«(F', M") [14, Theorem 17.4.3]). Then there
exists z € E’®a;qF such that z = lim,_,,, BA, in this space. On the other hand

Tgp (BAp — T) < 73 (B)7mg (An — A)
and the continuously extended inclusion
J: E'@a;qF — Dgp(E, F)
is an isometry. Then
J(Z)= lim BA,
n—00
in Dy (E, F). But this limit is 7. Then J is onto. O
Remark 4. The same proof can be used to show that the proposition 5 also holds
when E’ has the AP and the Radon-Nikodym property. Now every A € II;(E, M)

is quasi-¢'-nuclear [12, p. 228] and it can be approximated in II(E, M) by linear
maps of finite rank [13, Sitze 26 and 43].

Proposition 6

Let F be complemented in F" and such that F"' has the Radon-Nikodym prop-
erty and F"' has the AP, for some 1 < p < oo. Then for every E and every
l1<qg< oo,

Dyy(E,F) = E'®a;_F.
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Proof. If T € Dy (E, F), by proposition 5,
TI E Dqlpl(F,,El) — F”®a'pq EI

(because given A € II;(X,Y), we have A” € II;(X",Y")). Then T" € E’®aquF”
is the limit in this space of a sequence (2,)3%, of elements of E' @ F"'. Let P be a
projection from F' onto F. We have T = PT"Jg and Pz,Jg € E' ® F. Since

Dy (T = Pands) < 1P Do (1" = 2|75l = 1P (7" - 20),
we obtain T € E’@alqu as in proposition 5. O

Remark 5. As in the remark 4, the proposition 6 also holds if F” has the Radon-
Nikodym property and the AP.

As a consequence of theorem 2 and propositions 2, 5 and 6 we obtain

Corollary 2

If E and F are reflexive spaces such that E has the AP, for some 1 < ¢ < oo,
(resp. F' has the AP, for some 1 < p < o0), then for every 1 < p < oo (resp. for
every 1 < ¢ < 00), Dgipy(E, F), E®a,., F' and E’®a;qF are reflexive if and only if

Ipq(E”FI) = Npq(E'vF')-

ExAMPLE 1. On reflexivity of E“®%q€“. Let 1 < u,v,p,q < co. We have:
(i) fu<2and v <2 (or v <2and v < 2), then £*®,, £* is reflexive for every p
and gq.
(ii) f u > 2 and v > 2, ﬁ“@amf” is always not reflexive.
(iii) fu < 2and v > 2and u < g, (or u > 2, v < 2 and v < p), £*Qq, LY is reflexive.

(iv) fu<2,v>2andu>gandp<2(oru>2,v<2 v>pandgqc<?2),
4Qq,, L7 is reflexive.
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Proof. (i) If u € 2 and v < 2, f“@awf" is isomorphic to [*®.£? [3, Proposition
10.2]. By [9, Proposition 3.7], £“®amt’” is reflexive if u < 2 and v < 2 or u < 2 and
v < 2 and £*®q,, £" is not reflexive if u = v = 2.

(ii) Let w > 2 and v > 2. Let J be the composition of the natural inclusion
maps

YAy Ny Ny L}

Since the identity map on ¢? is (p,q)-factorable [14, Theorem 22.1.11], we have
J € Ipq((f“',ﬁv). However J ¢ Npq(E“'Z”) since J is not compact. By corollary 2,
£“®amlv is not reflexive.

(iii) Now, let us suppose v < 2, v > 2 and v > ¢. I T € Ipq(f"',ﬁ"),
by [14, Theorem 19.4.6], there are a probability space (2, ) and linear maps A €
L£(e¥, L7 (Q,p))and C € L(LP(, 1), £?) such that T = CIA where I is the inclusion
map from L9 (Q, ) into LP(Q, u). By a result of Rosenthal [16, Theorem A.2], A4 is
compact. Since £* has the AP, there is a sequence (A4,)52, in £* ® Lq'(Q,u) such
that

lim [|A— Au| = 0.

n—00

Then CIA, € I,(£*,£7) for every n € N and
Ing (T = CIAn) = Iy (CI(A - 4,)) < [IC]| I A — Aul.

Then (CIA,)S2, is a Cauchy sequence in £* ® £Y with the norm induced by
Lo(£¥,£¥). But this norm is ap, by the proposition 6. Hence T € *®q,, L0 and
T e Npq(E“I,E”). By corollary 2, £*®aq,, £” is reflexive.

(iv) If 2 < «' < ¢’ and p < 2, by [3, Proposition 1.8], £*®q, £¥ is isomorphic
t0 £¥Q®uppl?. If T € Ipp(£¥',£Y), there exists a localizable measure space (£, 1) and
maps A € L(¢*,L*(Q,p)) and B € L(L*(Q, ), £) such that T = BA [3, 4.6]. By
the above quoted result of Rosenthal, A is compact and the proof ends like in a
former case.

The other cases follow by transposition of the tensor norm ap. O

Remark 6. The last example shows, in particular, that L£(£2,£2) # Np,(£2,€2).
Then, the Radon-Nikodym property of E, E', F and F' does not imply the equality
Iyo(E,F) = Nyo(E, F) for 1 < p,q < .

The next applications concern the weak sequential completeness of E®a; qF
and E®ap I
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Theorem 3

Let 1 < p, g < co. Assume that E or F has a finite dimensional unconditional
Schauder decomposition (shortly an FDUSD). Then E®a;qF is weakly sequentially
complete if and only if E and F are weakly sequentially complete.

Proof. Let us assume that E has an FDUSD. We can suppose without loss of
generality that this FDUSD of F is also monotone [20, Proposition 15.3]. Since E
is weakly sequentially complete, the FDUSD is also boundedly complete (see the
comments of [20, p. 534] and [19, Chapter II, Corollary 17.3.b]. Then there exists
a Banach space G such that £ = G’ [20, Theorem 15.14] and E has the Radon-
Nikodym property [4, Theorem 1, p. 79]. By remark 4 we have

E®alpq F" = G,®a;q F” = D‘J'P' (G7 F")'

From now on, the proof is the same of [8, Theorem 2].
If F has an FDUSD, the proof follows by transposition of a;,,. O

ExaMPLE 2. If 1 < p,g < 00 and 1 < u,v < oo, the space €“®apq€“ is weakly
sequentially complete but in general, it is not reflexive (this is a consequence of
proposition 5 and the results of example 1).

Theorem 4
Suppose that E and F are such that F has an FDUSD and

qu(F”E) = qu(F,vE)

for 1 < p,q < oco. Then E®aNF is weakly sequentially complete if and only if E
and F are weakly sequentially complete.

Proof. Since E has the APg,, the proof is the same of [8, Theorem 1]. O

Remark 7. The hypothesis Io,(F', E) = Ngp(F', E) holds if every linear map from
F' into every LPI(Q,;L) is compact; for example if FF = £¥ with 1 < v < 2 and
v < p < 0o (see the proof of example 1).

Corollary 3

If E is weakly sequentially complete and 1 < v < 2, v < p < oo and 1 < q < oo,
E®apq£” is weakly sequentially complete.

We thank to the referee for his valuable suggestions.
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