Sturdy bands of semigroups

MIROSLAV ĆIRIĆ AND STOJAN BOGDANOVIĆ

Institute of Mathematics, Knez Mihailova 35, Beograd, Yugoslavia

Received 24/APR/90

ABSTRACT

In this paper we consider band compositions determined by two transitive systems of monomorphisms, called the sturdy bands of semigroups.

A.H. Clifford [3] introduced semilattices of groups and determined their structure in terms of what we now call strong semilattices of groups. Strong semilattices of groups, i.e. semilattice compositions determined by one transitive system of homomorphisms, are also considered by many authors. In [1] and [2] authors gave the construction of a band of monoids and of an inflation of a band of monoids by two systems of homomorphisms, which must not be transitive. In this paper we consider band compositions of semigroups determined by transitive systems of homomorphisms, called the strong bands of semigroups. Strong bands of monoids and groups are considered by B. M. Schein [8]. For example, B. M. Schein [8] proves that a semigroup S is a strong band of groups if and only if S is orthodox and a band of groups (called also the orthocryptogroup). For other characterizations of orthocryptogroups see [5], [6] or [9]. By Proposition 1 and Theorem 1 we give generalizations of Petrich's results [7, p 87–88, 4, p. 98]. For some related results we refer to [6] and [5].

For undefined notions and notations we refer to [4] or [7].

Let I be a band. To each $i \in I$ we associate a semigroup S_i such that $S_i \cap S_j = \emptyset$ if $i \neq j$. Let \leq_1 and \leq_2 be quasiorders (i.e. reflexive and transitive binary relations) on I defined in the following way:

$$i \leq_1 j \iff ji = i, \qquad i \leq_2 j \iff ij = i.$$

Let φ_{ij} and ψ_{ij} be homomorphisms of S_i into S_i over \leq_1 and \leq_2 respectively, for which the following properties hold:

- (1) For every $i \in I$, φ_{ii} and ψ_{ii} are the identical automorphisms of S_i ;
- $(2) \varphi_{ij} \circ \varphi_{jk} = \varphi_{ik}, i \leq_1 j \leq_1 k;$
- $(3) \psi_{ij} \circ \psi_{jk} = \psi_{ik}, i \leq_2 j \leq_2 k;$
- $(4) \varphi_{kj,k} \circ \psi_{ki} = \psi_{kj,j} \circ \varphi_{ji}, j \leq_1 i, k \leq_2 i.$

Define a multiplication * on $S = \bigcup_{i \in I} S_i$ by:

$$s_i * s_j = \varphi_{ij,i}(s_i) \psi_{ij,j}(s_j), \qquad s_i \in S_i, \ s_j \in S_j.$$

Then (S,*) is a semigroup and a band I of semigroups S_i , $i \in I$ [8]. If $j \leq_1 i$ and $j \leq_2 i$, then by (4) and by (1) it follows that

$$\psi_{ji} = \varphi_{ji}.$$

DEFINITION 1. A semigroup S is a strong band of semigroups if it can be constructed in the previous way, and we denote it by $S = [I; S_i, \varphi_{ij}, \psi_{ij}]$. If all φ_{ij} and ψ_{ij} are one-to-one, then we say that S is a sturdy band of semigroups S_i , $i \in I$, and we denote it by $S = \langle I; S_i, \varphi_{ij}, \psi_{ij} \rangle$.

If $S = [I; S_i, \varphi_{ij}, \psi_{ij}]$ is a strong matrix of semigroups, then, as in [8], we obtain that all φ_{ij} and ψ_{ij} are one-to-one. In the general case, when I is an arbitrary band, this is not true. Now we will consider strong bands for which all φ_{ij} and ψ_{ij} are one-to-one, i.e. sturdy bands of semigroups.

Proposition 1

On $S = \langle I; S_i, \varphi_{ij}, \psi_{ij} \rangle$ define a relation ρ by:

$$a\rho b \iff \varphi_{ij,i}(a) = \psi_{ij,j}(b) \land \psi_{ji,i}(a) = \varphi_{ji,j}(b),$$

 $a \in S_i$, $b \in S_j$. Then ρ is a congruence and S is a subdirect product of I and S/ρ .

Conversely, let $S \subseteq I \times T$ be a subdirect product of a band I and a semigroup T such that the following condition holds:

(5)
$$\begin{cases} (i \leq_1 j \land (j, u) \in S \Longrightarrow (i, u) \in S \\ (i \leq_2 j \land (j, u) \in S) \Longrightarrow (i, u) \in S, \end{cases}$$

for all $i, j \in I$, $u \in T$. Then S is a sturdy band of semigroups $S_i = (\{i\} \times T) \cap S$, $i \in I$.

Proof. Let $S = \langle I; S_i, \varphi_{ij}, \psi_{ij} \rangle$. It is clear that ρ is reflexive and symmetric. We will prove the transitivity. Let $a\rho b$ and $b\rho c$, $a \in S_i$, $b \in S_j$, $c \in S_k$. Then

(6)
$$\varphi_{ij,i}(a) = \psi_{ij,j}(b),$$
(7)
$$\psi_{ji,i}(a) = \varphi_{ji,j}(b),$$

(8)
$$\varphi_{jk,j}(b) = \psi_{jk,k}(c),$$

(9)
$$\psi_{kj,j}(b) = \varphi_{kj,k}(c).$$

Now,

$$\varphi_{jkij,jki} \circ \psi_{jki,ki} \circ \varphi_{ki,k}(c) = \varphi_{jkij,jki} \circ \varphi_{jki,jk} \circ \psi_{jk,k}(c) \qquad (by (4))$$

$$= \varphi_{jkij,jk} \circ \varphi_{jk,j}(b) \qquad (by (8),(2))$$

$$= \varphi_{jkij,j}(b) \qquad (by (2))$$

$$= \psi_{jkij,j}(b) \qquad (by (4^*))$$

$$= \psi_{jkij,ij} \circ \psi_{ij,j}(b) \qquad (by (3))$$

$$= \psi_{jkij,ij} \circ \varphi_{ij,i}(a) \qquad (by (6))$$

$$= \varphi_{jkij,jki} \circ \psi_{jki,i}(a) \qquad (by (4))$$

$$= \varphi_{jkij,jki} \circ \psi_{jki,ki} \circ \psi_{ki,i}(a). \qquad (by (3))$$

Since $\psi_{jki,ki}$ and $\varphi_{jkij,jki}$ are one-to-one, then we have that

$$\psi_{ki,i}(a) = \varphi_{ki,k}(c).$$

In a similar way we prove that

$$\varphi_{ik,i}(a) = \psi_{ik,k}(c).$$

Thus, $a\rho c$, so ρ is transitive.

Let $a\rho b$, $a \in S_i$, $b \in S_j$ and let $c \in S_k$. Then (6) and (7) hold, so

$$\psi_{jikjk,ikjk} \circ \varphi_{ikjk,ik} \circ \varphi_{ik,i}(a) = \varphi_{jikjk,jik} \circ \psi_{jik,ik} \circ \varphi_{ik,i}(a) \qquad (by (4))$$

$$= \varphi_{jikjk,jik} \circ \varphi_{jik,ji} \circ \psi_{ji,i}(a) \qquad (by (4))$$

$$= \varphi_{jikjk,jik} \circ \varphi_{jik,ji} \circ \varphi_{ji,j}(b) \qquad (by (7))$$

$$= \varphi_{jikjk,jikj} \circ \varphi_{jikj,j}(b) \qquad (by (2))$$

$$= \varphi_{jikjk,jikj} \circ \psi_{jikj,j}(b) \qquad (by (4*))$$

$$= \psi_{jikjk,ikjk} \circ \varphi_{jk,j}(b) \qquad (by (4))$$

$$= \psi_{jikjk,ikjk} \circ \psi_{ikjk,jk} \circ \varphi_{jk,j}(b). \qquad (by (3))$$

Since $\psi_{jikjk,ikjk}$ is one-to-one, then

(10)
$$\varphi_{ikjk,ik} \circ \varphi_{ik,i}(a) = \psi_{ikjk,jk} \circ \varphi_{jk,j}(b).$$

Moreover,

$$\varphi_{ikjk,ik} \circ \psi_{ik,k}(c) = \psi_{ikjk,kjk} \circ \varphi_{kjk,k}(c)$$

$$= \psi_{ikjk,kjk} \circ \psi_{kjk,k}(c)$$

$$= \psi_{ikjk,k}(c)$$

$$= \psi_{ikjk,k}(c)$$

$$= \psi_{ikjk,jk} \circ \psi_{jk,k}(c),$$
(by (4))
$$= \psi_{ikjk,k}(c)$$
(by (3))

so

(11)
$$\varphi_{ikjk,ik} \circ \psi_{ik,k}(c) = \psi_{ikjk,jk} \circ \psi_{jk,k}(c).$$

Now we have that

$$\varphi_{ikjk,ik}(a*c) = \varphi_{ikjk,ik}(\varphi_{ik,i}(a) \cdot \psi_{ik,k}(c))$$

$$= \varphi_{ikjk,ik} \circ \varphi_{ik,i}(a) \cdot \varphi_{ikjk,ik} \circ \psi_{ik,k}(c)$$

$$= \psi_{ikjk,jk} \circ \varphi_{jk,j}(b) \cdot \psi_{ikjk,jk} \circ \psi_{jk,k}(c) \quad \text{(by (10, (11))}$$

$$= \psi_{ikjk,jk}(\varphi_{jk,j}(b) \cdot \psi_{jk,k}(c))$$

$$= \psi_{ikjk,jk}(b*c).$$

Thus,

$$\varphi_{ikjk,ik}(a*c) = \psi_{ikjk,jk}(b*c),$$

and, similarly,

$$\psi_{jkik,ik}(a*c) = \varphi_{jkik,jk}(b*c).$$

Therefore, $a*c \rho b*c$. In a similar way we prove that $c*a \rho c*b$, so ρ is a congruence. Let η be the band congruence on S whose classes are the various S_i . Then it is clear that

$$\rho \cap \eta = \varepsilon$$
,

where ε is the identical relation on S. Therefore, S is a subdirect product of $S/\eta \cong I$ and S/ρ [4, Proposition II 1.4].

Conversely, let $S \subseteq I \times T$ be a subdirect product of a band I and a semigroup T such that (5) holds. For each $i \in I$, let $S_i = (\{i\} \times T) \cap S$. Then it is clear that S is a band I of semigroups S_i , $i \in I$.

Define functions φ_{ij} , $i \leq_1 j$, and ψ_{ij} , $i \leq_2 j$, by:

$$\varphi_{ij}((j,u)) = (i,u), \qquad (j,u) \in S_j \ i \le_1 j,
\psi_{ij}((j,u)) = (i,u), \qquad (j,u) \in S_j \ i \le_2 j.$$

By (5) it follows that $(i, u) \in S$, so $(i, u) \in S_i$ in both cases. It is easy to prove that φ_{ij} and ψ_{ij} are homomorphisms and that conditions (1)-(4) hold. Let $(i, u) \in S_i$ and $(j, v) \in S_j$. Then

$$\varphi_{ij,i}((i,u))\psi_{ij,j}((j,v)) = (ij,u)(ij,v) = (ij,uv) = (i,u)(j,v)$$
$$(= (i,u) * (j,v)).$$

Hence, S is a strong band of semigroups S_i , $i \in I$. Let $i \leq_1 j$ and let $(j, u), (j, v) \in S_j$ such that

$$\varphi_{ij}((j,u)) = \varphi_{ij}((j,v)).$$

Then we have that (i, u) = (i, v), i.e. u = v. Hence, (j, u) = (j, v), so φ_{ij} is one-to-one. In a similar way we prove that any ψ_{ij} , $i \leq_2 j$, is one-to-one. Therefore, S is a sturdy band of semigroups S_i , $i \in I$. \square

Theorem 1

S is a sturdy band of groups if and only if S is regular and a subdirect product of a band and a group.

Proof. Let $S = \langle I; S_i, \varphi_{ij}, \psi_{ij} \rangle$ be a sturdy band of groups G_i , $i \in I$, and let e_i be an identity element of G_i , $i \in I$. Then by Proposition 1 we have that S is a subdirect product of I and a semigroup S/ρ . Since S is regular and S/ρ is a homomorphic image of S, then S/ρ is regular. It is clear that every idempotent from S/ρ is of the form $e\rho$, where e is an idempotent from S, i.e. $e = e_i$ for some $i \in I$. Moreover, for every $i, j \in I$ we have that

$$\varphi_{ij,i}(e_i) = e_{ij} = \psi_{ij,j}(e_j),$$

$$\psi_{ji,i}(e_i) = e_{ji} = \varphi_{ji,j}(e_j),$$

so $e_i \rho e_j$. Hence, S/ρ has only one idempotent, so S/ρ is a group.

Conversely, let S be a regular semigroup and S be a subdirect product of a band I and a group G. Let e be an identity element of G. Assume that $S \subseteq I \times G$.

Let $i \in I$. Then there exists $a \in G$ such that $(i, a) \in S$. Since S is regular, then there exists $(j, b) \in S$ such that

$$(i,a) = (i,a)(j,b)(i,a)$$
 and $(j,b) = (j,b)(i,a)(j,b)$.

Thus

$$(i,a) = (iji,aba)$$
 and $(j,b) = (jij,bab),$

i.e. i = iji, a = aba, j = jij and b = bab. So $b = a^{-1}$. Now we have that

$$(i,e) = (ijji,abba) = (i,a)(j,b)^2(i,a) \in S.$$

Moreover, it is clear that (i,e) is the identity element of a semigroup $G_i = (\{i\} \times G) \cap S$. Also, we have that

$$(i,b) = (i,e)(j,b)(i,e) \in S$$

and

$$(i,a)(i,b)(i,a)=(i,aba)=(i,a).$$

Therefore, G_i is regular and since G_i contains only one idempotent, then G_i is a group.

Let $i, j \in I$ and let $i \leq_1 j$, $(j, a) \in S$. Then ji = i, so

$$(i,a) = (ji,ae) = (j,a)(i,e) \in S.$$

In a similar way we prove that by $i \leq_2 j$ and $(j,a) \in S$ it follows that $(i,a) \in S$. Hence, (5) holds, so by Proposition 1 we have that S is a sturdy band of groups G_i , $i \in I$. \square

Corollary

S is a sturdy band of periodic groups if and only if S is a subdirect product of a band and a periodic group. \square

References

- 1. S. Bogdanović and M. Ćirić, Bands of monoids, Matem. Bilten 9-10 (XXXV-XXXVI) (1985-1986), 57-61.
- 2. M. Ćirić and S. Bogdanović, Inflations of a band of monoids, Matematicki Vesnik (to appear).
- 3. A. H. Clifford, Semigroups admitting relative inverses, Annals of Math. (2) 42 (1941), 1037–1049
- 4. M. Petrich, Introduction to semigroups, Merill, Ohio, 1973.
- 5. M. Petrich, The structure of completely regular semigroups, *Trans. Amer. Math. Soc.* 189 (1974), 211–234.
- 6. M. Petrich, Regular semigroups which are subdirect products of a band and a semilattice of groups, Glasgow Math. J. 14 (1973), 27-49.
- 7. M. Petrich, Inverse semigroups, Wiley, New-York, 1984.
- 8. B. M. Schein, Bands of monoids, Acta Sci. Math Szeged 36 (1974), 145-154.
- 9. M. Yamada, Strictly inversive semigroups, Bull. Shimane Univ. 13 (1964), 128-138.

