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ABSTRACT

To calculate the zeros of a map f : D C R™ — R™ we consider the
class of triangulations of R™ so that a certain point belongs to a simplex of
fixed diameter and dimension. In this paper two types of this new class of
triangulations are constructed and shown to be useful to calculate zeros of
piecewise linear approximations of f.

1. Introduction

In the following R denotes the set of real numbers, D an open subset of R?™ and
C°(D) the set of all mappings from D into R?™ with derivatives of every order. To
solve

F(u)=0, F:DCR”™ — R™ FeC>®D),

with a finite number of zeros, let G be a mapping from D C R2" into R?*", G €
C*(D) all whose zeros are known. We construct the homotopy

H:Dx[0,1]] — R*™; H(u,t)=(1-1t)xG(u)+tx F(u).

We suppose that zero is a regular value for H, which is not a substancial restriction
acoording to Brown’s corollary of Sard’s theorem [4]. Let us study the inverse image
of zero, using the following theorems (with m = 2n+ 1, p = 2n, M = D x [0,1] and
N = R"),
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1-1-1.Theorem

If H is a smooth map H : M — N from an m-manifold M with boundary to a
p-manifold N, where m > p, and Y is a regular value for H and for the restriction
Hspr, then H=Y(Y) is a smooth (m — p)-manifold with boundary. Furthermore the
boundary §(H~1(Y)) is the intersection of H=*(Y) with §M, and its dimension is
m—n-—1[4].

1-1-2. Theorem

Any smooth connected 1-manifold is diffeomorphic either to the circle S' or to
some real interval; that is, it is either a loop or a path [4].

To calculate the zeros of F' we consider the connected component of H~1(0)
from ¢t = 0 to t = 1; H~1(0) is a union of paths and loops, according to (1-1-1) and
(1-1-2). By differentiation of H(u,t) = 0 with respect to the variable s, s being the
arc and {(u,?)} lying in a connected component of H~1(0), we obtain:

S OH | dw OH 4,
— Ou; ~ ds Ot ds -
It follows [2] that
dUi i ' .
T = (—=1)* x det (H.;(u,1)), i=1,..,2n, (1)
dt .
- = (1)1 x det (H',,_1(u,t)), (2)

where H', is the Jacobian of H with the i-th column deleted; so if the sign of
det(H',, _;1(u,t) is constant, (2) implies that ¢ = #(s) is monotonous.

1-1-3. We want to solve F*(z) = 0, where F* : D C C* — C" is holomorphic
with a finite number of zeros (C denote the set of complex numbers). Let G* be a
holomorphic mapping from D C C" into C™ whose zeros are known. We construct
the homotopy

H*:Dx[0,1] — C*,  H*=(H},...HD),
H*(z,1) = (1 — 1) x G*(2) + t x F*(2).

Let H : D x [0,1] — R?" be the mapping defined by H = (RH;,SH*1,...,SH}),
and analogously e

F:D C R™ — R, with F = (RF},SFy,...,SFL);
G:DCR™ —R?™  with G = (RG;,SGY,...,SGY).
It is obvious that the equations H*(z,t) = 0 and H(u,t) = 0 are equivalent.
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1-1-4. Theorem [2]
If H* is holomorphic, then det(H'(u,t)) > 0.

It follows that the paths of H~1(0) are monotonous with respect to s and there
are no loops. If we choose G such that for 0 < ¢t < 1, each path starting in (X*,0)
with G(X*) = 0, finishes in (X™**,1), H(X**,1) = 0. So, solving the problem of
initial values (1), (2), G(X*) = 0 we deduce that for each solution of G(u) = 0 we
obtain a solution of F'(u) = 0, and perhaps some paths which diverge to infinity. For
a sufficient condition of non-divergence of the paths see [2, p. 349]. In the paragraph
1-2 we relate H=1(0) to 6, 6 being a piecewise linear approximation of H.

1-2. From the definition of topological degree d(6,s,0) at zero of a continuous
mapping @ relative to an open bounded set s [5] and the second section of theorem
1-3-5 [5, p. 16] we have: if 0 ¢ 6(és) there is € > 0 so that d(H,s,0) = d(6,s,0)
whenever ||[H — 6||; < . It is also proved in [5] that if d(H,s,0) # 0 there exists
X € s, s0 that H(X) = 0. Also if there is in s an odd number of zeros of 6, and
0 ¢ 6(6s) then d(8,s,0) # 0; and, if there is no zero in s, d(,s,0) = 0.

We denote by és the border of s,

|H |l = sup || DH(X)|| + sup || H(X)||.
Xe€s Xe€s

So if 8 and H are sufficiently closed there is a tube for each connected component
of H~1(0) that contains a connected component of §~1(0).

Our next theorem gives a sufficient condition to secure that  is sufficiently close
to H (i.e. the triangulation is fine enough).

1-2-1.Theorem

Let f: D C R® — R™ be a C?(s) function and 6 : D C R?™ — R2™ a piecewise
linear approximation of f relative to a regular triangulation of the domain of f, such
that 6 has a zero in the simplex s, and

2Me? < doo(0,6(8s));

M being a upper bound for the second derivative of f in s, and ¢ the diameter of s.
Then f has also a zero in s.
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Proof. From the definition of topological degree, it follows that if f has a zeroin s, -

d(f,s,0) = 1, supposing that zero is not a critical value for f. We now apply the
following two properties of the topological degree [1]:

1) if d(f,5,0) # 0 then £=1(0) 0,
2) d(-,s,0) is constant on {f} € C(3) if

sup |f(X) = 0(X)|oo < 7y
XE€Es

with r = doo(0,0(8s)).

We now calculate a bound for

max | f(X) - 0(X)]|, = max ([fi(X) = 61(X)|s., | fa(X) = (X)) .
For this purpose we suppose that
max | f(X) - 0(X)|, = |f{(X*) - 6;(X)|,  X"€s,j€L,...,m,

and we construct the function

F(X):R* — R",

R =Y = e+ S ) g k=,

i=1 aXl
with
X € s; s = (YO,...,Y");
n n
X= > AY% D N=1 M2>0,i=0,...,n,
1=0 1=0
and

he=Xe—Yy =) ANYF-Y7,  k=1,...,n
=0

To maximize |f;(X) — 0;(X)|, X € 3, we maximize

3fj(Y*) 0, ... 3fj(Y*) 0 _ 0]
)‘0[ 0X1 Yoot 0Xn Yo = X5+
6f.7'(Y*) n af](Y*) n n (V* . 3f](Y*) *
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or, in reduced form, to maximize |AgAo + -+ + AnAn + B| with the conditions
S>A=1X2>0,i=0,...,n, with

n

A=Y 00 oy,

vk =0,...
X, i =Y, k=0,...,n,

=1

B:fj(Y*)—Z i‘%%*_) X]/i*.

i=1

It is equivalent to calculate the
| max{Ao,...,An} + B]
max
| min{Ao,...,An} + B|
so this maximum occurs for a A; = 1, ¢ € {0,...,n}. Therefore
max | f7(X) - 6;(X))
occurs at a vertex. Let this vertex be Y, we have

6;(Y") = fi(Y")

and . .
max | f7(X) ~ 0;(X)| = [ (Y = f;(¥7)],
where
FYX) - f(X)],, < M x e
We have:

max | 7(X) - 6(X)],,, < max | f(X) = F*(Y*, X)], + max| (¥, X) - 0(X)],

SMe + | f*(Y*,Y) - f(Y)|  + |F(YH) - 6(Y")|
<2x M xe?,

because ' .
£ - o), = 0.
Being
sup |f(z) — B(X)|_ < max |f(X) - 6(X)|,
XEs €3

it follows that:
sup |f(X) - 9(X)|oo < 2Me?.
Xes

So, when 2 X M X €% < dw(0,6(6s)), applying 1) and 2), if there is a zero of 6 in s,
there is also a zero of f in s. O
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Remarks. 1) An n-simplex s of R™ x [0, 1] is contained in a hyperplane; it follows
that H|s, 6|5 are mappings from R™ into R".

2) If for each simplex s of the triangulation, 8(s) C H(s) is verified, then the
condition of Theorem 1-2-1 is necessary and sufficient.

1-2-2. Piecewise linear approximation

We need a domain of R?™ x [0,1], whose closure contains the connected com-
ponents of H~1(0), zero being a regular value for H; so that the intersections of the
closure of these domains with the hyperplane X3,41 = 1 are neighborhoods of the
solutions of our problem. To obtain it, we construct a regular triangulation K of
R2™ x [0,1], so that the point X* satisfying G(X*) = 0, is contained in the interior
of one of its 2n-simplices s; and the diameter of the 2n-simplices is less than the
admissible error. We construct a piecewise-linear approximation 6 of H relative to
the triangulation K:

:Dx[0,1] — R
H(u,t) for (u,t) € {vértices K}

k
o(X)'_ Z )\leI(Yt) forX:(’U,’t)e(Yo,---,Yk)a
1=0

A; being the barycentric coordinates of X concerning {Y°,...,Y*}. The study of
6~1(0) is the usual one in this class of algorithms.

1-2-3. Construction of the algorithm

There are two ways:

1) We follow a conected component of §~1(0) lying on a connected component
of #=1(0). The mesh of the triangulation is fine enough to guarantee the desirable
approximation between the zeros of both functions. In the first step we know the
existence of a zero of G in the interior of a specific 2n-simplex s, where there is also
a zero of 4 if the rank of the matrix

1 1
A= ,
HY®) ... H(Yn)
is maximum, and A; > 0,7 =0,...,2n for
AX Aoy shan) = (1,0,...,0)°,  s=(Y0,...,Y").

Now it is known the existence of a zero of 6 in s. We construct an algorithm
following a connected component m of §71(0) and we verify if the 2n-simplex 7;,
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that contains the intersection of m with the hyperplane ¢t = 1, contains a zero of F.
For this verification we use Theorem 1-2-1.

2) In each 2n-simplex 7; which is intersected by a connected component of
6=1(0), we verify the existence of a zero of H with the aid of the Theorem 1-2-1. In
the negative case we return to the former 2n-simplex 7;_; and change the mesh of
the triangulation. We use for that a triangulation of 7;_;, and we use section (3) of
Theorem 5-1-3 [5]: if 7;,_; is the disjoint union of the sets 7;_11,...,7i—1,~ then

N
d(H)Ti—laO) = Z d(Ha Ti—1,jy 0)’

i=1

where

d(H,Ti_l,O) =1.

We start the study of each connected component of §71(0) from a 2n-simplex
that contains in its interior a zero of G. In this kind of algorithms, the usual approach
is, for a certain size of mesh and a certain point, to calculate the simplex that contains
a certain point, which may not be a 2n-simplex. This second approach is simpler:
given a certain size of mesh and a certain point, the domain is triangulated so that
the point is contained in a simplex whose dimension is one less the maximum feasible
dimension. The details follow.

2. Regular triangulations

A simplicial complex K consists of:

a) a set {Y'} whose elements are called vertices,
b) aset {s} whose elements are called simplices and verify that: 1) one vertex
is a simplex and, 2) any nonempty subset of a simplex is a simplex.

| K| is the set of the mappings {a} from the vertices of K into [0, 1] satisfying
the following conditions: a) if @ € |I|, the set of those Y such that a(Y) # 0 is a
simplex of K, b) > ycxa(Y) =1

Define an open simplex (s) as the set of those o € |K| such that a(Y) # 0 &
Y €s.

The following definitions are given in [7]: A j-simplex s is the relative interior
of the convex hull of j 4+ 1 affinely independent points:

J J
s:(YO,...,Yj):{Z ANxYi:iA>0,i=0,...,7, Z’\Fl}-
1=0

=0
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G is a triangulation of a convex set C C R" if: a) G is a collection of n-simplices,
b) the subsimplices of all the n-simplices of G form a partition of C, and c) each
X € C has a neighborhood that intersects only a finite number of simplices. We
add the following definition: G is regular if all its simplices have the same diameter.
Let ¢ be the linear extension to |K| of the identity vertex mapping, and let K

be a simplicial complex with the following properties:

1) The vertices of K are points of R".

2) Each simplex is a subsimplex of a n-simplex. (1)

3) Each (n — 1)-simplex is contained in two n-simplices.

4) The (n + 1)-points that establish an n-simplex are affinely independent.

5) The diameter of the convex hull of the vertices of a simplex is fixed.

Then we have the following result.

2-1. Theorem
The open simplex of vertices (Y°,...,Y’) may be identified with i((s)),
(s) € |K]|.

Proof. A vertex Y as an element of | K| is the characteristic function

. 1 ifi=y,
YHYY) =
0 ifij.
So for all a € | K|,
o= z a(Y)xY,

YeK

and for all a € (s),

i(a) =i (Z oY) x Y)
=0
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where

.
o

Hence, for each a belonging to (s), i(a) belongs to the interior of the convex hull of
{Y?,...,Y7}. Therefore i({s)) is contained or is equal to the interior of the convex
hull of {Y©,...,Y7}. Reciprocally for each Y belonging to the interior of the convex
hull of {Y?,...,Y"},

Y=EJ:/\,-XYi,
=0

with
j
Ai=1, Ai>0,1=0,...,].
i=0
Let B € | K| be such that
_ Ais i=0,...,7
BY') = : . :
ﬁ(Y‘):O, 1#0,...,7.

Then § € (s), and

i(B) =i ( > oY) ><Y"> =Y
YieK

hence Y € i((s)). Therefore the interior of the convex hull of {Y?,...,Y7} is equal

to i((s)). O

2-2. Theorem

A regular triangulation of R™ consits of the set {i((s))}, from the pair (K,1).

Proof. {i({s™))} = G™ or set of n-simplices, {i({(s"~!))} or set of (n — 1)-simplices,
.o, {i(YH)} = GO or set of 0-simplices or vertices of the triangulation. {{(s)}:i =
0,...,n} is a partition of ||. As i is a homeomorphism, i({{(s*)} :i=0,...,n})
is a partition of R™. Since the number of simplices with a common vertex is finite,
each X € R™ has a neighborhood that intersects only a finite number of simplices.
So G™ is a triangulation. O
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1. First triangulation
2-3. Theorem
Given a point X € R", let {Y°,...,Y™*1} be defined by

Y =X;—(n—i+1)x6/(n+1), i=1,...,n,

0o _
Yn+1— n+1s

and
yi=yi"! + 6§ X ui,

where u' is the i-th unit vector. The interior of the convex hull of {Y©,..., Y"1}
is a (n + 1)-simplex s of finite diameter §, and X belongs to the interior of the
subsimplex (Y°,...,Y™).

Proof. The points
YO = (YO],...,Y,,?+1),

Y=Y +8xu = (¥ +6,Y),....Y ),
Y?=Y! + 6 x u? = (Y'IO +5,}’20 +67}/30""7Y7?+1)’
Yl =Yn 6 xu = (Y +6,...,Y) +6,Y7, +6),

are affinely independent, because det B = 6"*!, where B is the column matrix of
these points. It follows that the interior of the convex hull of these points is a
simplex s. The diameter of s is

sup {||Y* = Y**||oo : Y*,Y** € s} = 4.

We now calculate Y° from X and § with the condition that the barycentric coordi-
nates of X relative to {Y°,...,Y"} are

n
==l =1/(n+1), Y X=1,%>0,i=0,...,n
1=0
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This implies that X belongs to the interior of the subsimplex sb = (Y?,...,Y™):

1 1
(Xl,...,Xn) = n+1(Y10,_..,Y,?,Xn+1) + n+1(Y10+6,Y20,...,Xn+1) + ..
1

+n+1(},‘.l0+6,"-aY7?+6’Xn+1)5

X = n+1((n+1)Y01+n6),
1

X, = —1 ((n + 1)Yy + (n - 1)6),
1

Xn+1=Y7?+1-
So, '
Y,-°=X,~—(—n-:z—j-—1—)£, i=1,...,n,
n+1

Y7?+1 = Xn+1. D

2-4. Proposition
Given a point Y* € R**1, let K° be the set

n+1
1{0:{Y6R”+1:Y=Y*+6Z kiv', ki €Z,i=1,...,n+1, 6eR+},

i=1

where u® is the i-th unit vector.
The relative interior of the convex hull of n 4+ 1 points of K° that satisfy

Yi=Yi=t 46 xu™, (2)

with m a permutation of {1,...,n + 1}, is a simplex s™*! = (Y°,...,Y™*1). The
set of all the simplices so constructed is a triangulation of R"*!,

Proof. {K°,{s"*1}} defines a simplicial complex K with the properties:
1) K° are points of R™*1.
2) Each simplex is a subset of a (n + 1)-simplex.
3) Each n-simplex is contained in two (n + 1)-simplices.
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Let us consider for this a (n+1)-simplex (Y?,7) = (Y?,...,Y"+1). It has three
types of n-subsimplices

(YO,...Y"-LyHl vyl i £0,i#£n+1,
(Yi,..., Y™y,
(Y°,...,Y™).

Each of these subsimplices is a subsimplex only of (Y°,7) and another (n + 1)-
simplex:

First let us remark that, in a (n + 1)-simplex s™*+! with the ordination (2), two
consecutives vertices have only one different coordinate, whose difference is 6. Let
be sb = (Y?,...,Yi-L Y+l ' Y"+1), this subsimplex has only two consecutive
vertices Yi~1, Y+l with two different coordinates, instead of one. So it is a subsim-
plex of the (n + 1)-simplices that adds a vertex with one of these two coordinates
increased. That is: (Y%, x) and (YO, (x(1),...,7(i + 1),7(3),...,m(n + 1))).

Let < Y1,..., Y"1 >= sb. Two consecutive vertices have only one different
coordinate, being § the diference between the two. All the vertices of sb have one
equal coordinate. To construct a (n + 1)-simplex from {Y?,...,Y"*1} we add

a vertex with this common coordinate diminished or increased. So sb, is only a
subsimplex of

¥%7m) and (YO 46 x u™®;(n(2),...,7(n + 1),7(1))).

Finally let sb = (Y°,...,Y™); with a similar argument we may prove that sb is a
subsimplex of

(YO, ) and (YO -6 x u™;(n(n + 1),7(1),...,7(n))).

4) Given the pair (Y%, ), {Y?,...,Y"+1} are affinely independent, because
det B # 0.
5) The infinite diameter of (Y°, ) is equal to §. O

Remark. We construct the 1-triangulation from Y* equal to Y? defined in 2-3; Y°
is calculated from a certain diameter of mesh é§ and any point X.

2. Second triangulation

Given a point X € R"+1, let us construct the simplex s™ that contains X, given
in Proposition 2-3. We now write Y = Y= 4+ § x «™(®), i > 1 in the form

Yi — Yi—-l + Sn(i) X uw(i)’
with s the vector sign (+1,...,+1). Let Y* = Y©.
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2-5 Theorem
Given a point Y*, let K° be the set

n+1
{YGR”+1 :Y:Y*+6Z kixu, ki€Z, i=1,....n+1, 5eIR+}
i=1
where u' is the i-th unit vector. Let {Y?,..., Y"1} Yie K° i=1,...,n+1 be
the points
DY’ =Y*46(k1y....kny1), ki €Z,i=1,...,n+1
2)Yi=Yi"l 4+ 6sr(i)u"(i), t=1,...,n+1,
with T a permutation of 1,...,n + 1, and s a (n + 1)-vector sign.
The relative interior of the convex hull of these n + 2 points is a (n + 1)-
simplex s"t1,
The set s"*! of all the (n+1)-simplices so constructed is a triangulation of R™1.

Proof. With the symbol (Y°,,s) we now denote the relative interior of the convex
hull of {Y?,...,Y"+1} formed with the rule

Yi=Yil4 65,,(i)u"(i);

it is a simplex, because the rank of B is maximum. The diameter of (Y°,x,s) is
equal to 4.

{K®,{s™*1}} defines a complex with the properties (1); i.e.:

1) K° are points of R"*1.

2) Each simplex is a subset of a (n + 1)-simplex.

3) Each n-simplex is contained in two (n + 1)-simplices.

Let us consider a (n + 1)-simplex (Y°,7,s) = {Y°,...,Y"*1}. It has three
types of n-simplices

{v°,...,y"= Ly, . yrtty, i#0,iAn+1,
{vt,... yrti},
{v°,....,Yy"}.

FEach of these subsimplices is a subsimplex only of (Y°,7,s) and of other
(n + 1)-simplex: {Y°,...,Yi~1 Yt [ Y™*!} with a similar reasoning as 2-
4 we conclude that it is a subsimplex of (Y°,n,s) and of (Y°;(x(1),...,7(i +
1),7(2),...,m(n + 1));s).

Similarly {Y°,...,Y™} is only a subsimplex of (Y% r,s) and of (Y°,7,s —
23r(n+1)6u”(”+1)) and finally {Y1,...,Y"*1} is a subsimplex of

(Y%, 7,s) and (Y0 + 2s,r(1)6u"(1);7r; s — 2s,r(1)6u”(1)).
4) Given (Y°,x,s), the points {Y?,...,Y™*!} are affinely independent.
5) The diameter of (Y, 7,s) is equal to 8. O
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Remark. There exists for each diameter of mesh and starting point one and only one
affinity transforming the first triangulation in the Freudental’s triangulation. Also,

the

re exists for each diameter of mesh and starting point one and only one affinity

transforming the second triangulation in the Tucker’s triangulation.

—

[,
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