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ABSTRACT

In this paper we introduce and investigate classes of Fréchet and (DF)-spaces
which constitute a very general frame in which the problem of topologies of
Grothendieck and some related dual questions have a positive answer. Many
examples of spaces in these classes are provided, in particular spaces of se-
quences and functions. New counterexamples to the problems of Grothendieck
are given.

1. Introduction

In his work about Fréchet and (DF)-spaces and tensor products in the fifties ([25],
[26]) Grothendieck studied properties of function spaces from abstract considera-
tions. The function spaces in question included spaces of sequences, analytic func-
tions, infinitely differentiable functions, distributions and solutions spaces of certain
linear partial differential equations among others. Tensor products constitute a very
useful tool to treat function spaces and in particular it is important to know the
structure of the bounded subsets in the projective tensor product of two Fréchet
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spaces and also the locally convex structure of the injective tensor product of duals
of Fréchet spaces. Grothendieck posed the following questions:

(a) Let E and F be Fréchet spaces. Can every bounded subset B of the projec-
tive tensor product E®,F be boundedly lifted, i.e. are there bounded subsets C,
D of E and F respectively with B C I'(C ® D) ? This is the so-called problem of
topologies of Grothendieck ([26, question non resolue no. 2]).

(b) Let G and H be (DF)-spaces, is G ®. H a (DF)-space ? ([26, question non
resolue no. 10]).

(c) Let E be a Fréchet space and let G be a (DF)-space. Is Ly(E,G) a (DF)-
space ? ([26, question non resolue no. 7).

Due to the recent work of the third author (see [35] and [36]) we know that the
answer to these problems is negative. Partial positive answers were given in [18],
[35] and [37]. Our purpose is to present a general frame in which the answer to
all these questions of Grothendieck is positive. We shall introduce wide classes of
Fréchet and (DF)-spaces, called (FG)-spaces and (DFG)-spaces respectively, such
that the answer to problems (a), (b) and (c) is positive if we restrict our attention
to these classes. In this way we properly extend the results of [18, 35, 37].

After this introduction, this article is divided in four sections. In section 2 we
introduce the classes of (FG)-spaces and (DFG)-spaces and we study relations be-
tween them. Section 3 is devoted to provide examples of (FG)- and (DFG)-spaces.
For instance Banach valued Ko6the echelon spaces of order p, 1 < p < o0, p = 0,
the Fréchet spaces of measurable functions introduced by Reiher [34], L,(A4), with
absolutely continuous p (in particular the spaces L,((fr)nen) of Grothendieck [26],
1 < p < oo, where p; are o-finite measures (i € N)), Fréchet-Schwartz spaces with a
finite dimensional decomposition and a continuous norm, the Fréchet space of con-
tinuous functions CAp(X), are examples of (FG)-spaces. (DFG)-spaces are, e.g.,
strong duals of (FG)-spaces, the weighted inductive limit of continuous functions
ind C(vn)o (X), and the projective hulls CV(X), CVo(X) of the weighted inductive
limits of spaces of continuous functions. In section 4 we give the main results. we
prove that the answer to the three problems of Grothendieck mentioned above is pos-
itive for (FG) and (DFG)-spaces. We also treat the quasibarrelledness of L,(E,G)
and G Q. H, where E is an (FG)-space and G andH are (DFG)-spaces. At the end
of this section we completely describe the quasibarrelledness of Ly(A,(A),kq(V)),
where A,(A) is a Kothe echelon space of order 1 < p < 0o, or p = 0 and k,(V) is
a co-echelon space of order 1 < ¢ < oo or ¢ = 0. All the positive results remain
valid for complemented subspaces of (FG) or (DFG)-spaces. In particular for every
Fréchet Schwartz space with the bounded approximation property and a continuous
norm and for every space of continuous functions on a locally compact o-compact
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space endowed with the compact open topology. In section 5 we construct new coun-
terexamples to problems (a), (b) and (c). In particular, we show that there exist a
separable (LB)-space G which is an e-space in the sense of Hollstein and a reflexive
separable Banach space X such that G ®. X is not a (DF)-space. This shows that
e-spaces do not behave as well as £,-spaces.

Our notation is standard and we refer the reader to [30, 31, 33].

2. (FG)-spaces and (DFG)-spaces

In this section we introduce the classes of Fréchet spaces and locally convex spaces
with a fundamental sequence of bounded sets that we will consider in this article
and give some elementary properties.

DEFINITION 1. A Fréchet space E is called an (FG)-space if there is an increasing
fundamental sequence of seminorms (|| - || ), ¢y such that for every sequence (o )xen,
0 < ak <1, there is a sequence (Px)keny C L(E, E) satisfying

(FG1) z=Y Pj(zx) Vz€E,
JEN
(FG2) |Pe(2)|lk=1 < ok ||lz]ls Yz € E, VEk > 2,
(FG3) Vi >k, 3/\jk >1: ”Pk(:z)llj < )‘jk ||.’Z?”k Vz € E.

If we put Ux := {z € E ; ||z||x < 1} it is clear that we may assume that
(Uk)ken form a basis of 0-neighbourhoods in E. Condition (FG2) is equivalent to
Py(Ux) C o Ug—1, Yk > 2. Condition (FG3) is equivalent to any of the following
facts:

(FG3’)  Pi(Uyi) is a bounded subset of E for all k € N,

(FG3”) For every k € N, P factors continuously through the canonical Banach
space Ey := (E/ker || - ||x)" as follows

E B E
N\ /5,
E
where 7x: E — FEj is the canonical mapping.
If the sequence (Px)ken in the definition can be selected to satisfy

(FG4) PkPj = jkPk, Vk,j7 €N

we will say that E is a decomposable (FG)-space.
It is very easy to see that every decomposable Fréchet T-space in the sense of
Bonet and Diaz [18, Definition 1] is a decomposable (FG)-space.
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DEFINITION 2. A locally convex space (G,t) with a fundamental sequence of
bounded sets is said to be a (dFG)-space if there is an increasing fundamental
sequence (Bg)ken of absolutely convex closed bounded subsets of G and there is a
locally convex topology s on G, coarser than ¢, such that (G,t) has a basis of s-closed
absolutely convex 0-neighbourhoods and for every sequence (o )ken, 0 < ax < 1,
there is a sequence (Qx)ren C L((G,1),(G,t)) such that

DFGl) 2z = ) . . @j(z) Vz € G, where the series converges for the topology s,
JEN %I

(DFG2) Qk(Bk—l) C o Bk Vk Z 2,

(DFG3) Q;'(Bx) is a 0-neighbourhood in (G, ) for every k € N.

Condition (DFG3) is equivalent to the existence of a continuous factorization
of Qi as follows
G —= G
Ek\a /‘J'k

Gk

where G, = G, and ji is the canonical injection.
Condition (DFG3) implies

VEVYj >k, Ik >0 : Bj C Ajx Q7 (Bx).

If (G,t) is quasibarrelled this last condition is equivalent to (DFG3). If the topology
s can be taken equal to t in the definition we will say that (G,t) is a strong (dFG)-
space. If the sequence (Q)kren can be selected to satisfy

(DFG4) Qij = akak, Vk,j €N

we say that (G,t) is a decomposable (dFG)-space.

If a (dFG)-space (resp. strong (dFG)-space, decomposable (dFG)-space) (G, 1)
is also a (DF)-space, we will say that (G,t) is a (DFG)-space (resp. strong (DFG)-
space, decomposable (DFG)-space).

Proposition 3.

Let E be an (FG)-space, then (G,t) := E} is a (DFG)-space for the topology
s=o0(E'E).

Proof. It is enough to take By := UQ, k € N, Qk := 'Px, k € N, to obtain the
conclusion. O
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Proposition 4.

(a) Let (G,t) be a reflexive (DFG)-space for a topology s finer than o(G,G'),
which is decomposable. Then E := G} is a decomposable (FG)-space.

(b) Let E be a reflexive decomposable (FG)-space, then (G,t) := Ej is a reflex-
ive strong decomposable (DFG)-space.

Proof. We take Uy := Bp, k € N, Py := 'Qk, k € N. Since s is finer than
o(G',G), for every = € E, = = 3,y Pj(z) for the topology o(G,G"). Moreover
E is a reflexive Fréchet space and (P;j);en is a weak Schauder decomposition in E.
Consequently z = 3.y Pj(z) converges for the topology of E (see e.g. [32] or
[30,14.3.2]). The proof of (b) is similar. O

The definition of a (dFG)-space (G,t) already has consequences about the lo-
cally convex structure of (G,t). We refer the reader to [30] or [33] for a study of
(gDF)-spaces.

Proposition 5.

(a) Let (G,t) be a (dFG)-space which is a (gDF)-space, then (G,1t) is a (DFG)-
space.

(b) Let (G,t) be a strong (DFG)-space, then (G,t) is quasibarrelled.

Proof. (a) Let (Bk)keN the fundamental sequence of bounded sets and let s be
the locally convex topology coarser than t given by the definition of (dFG)-space
(G,t). We fix a basis U of s-closed absolutely convex 0-neighbourhoods in (G,1).
By [11, Lemma A], to show that (G,t) is (DF) it is enough to prove that for every
(Wn)neN cu and (A'n)nENv ’\n > 0,

T:= ) (Wn + i ,\ij>

n€N

is a O-neighbourhood in (G,t). Since every (gDF)-space satisfies the countable
neighbourhood property, we may find p, > 0 such that W := [, g paWn is a
0-neighbourhood in (G,t). Now, for each j € N, we find p; > 0 with u;B; C W.
We put

aj = min()\j,min(2"jp;1uj"l; 1<n<j)), jeN

Given (o;);en, we select (Q;)jen C L(G, Q) as in the definition of (dFG)-space and
we put

U .= n anj_l(Bj).

JEN
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By (DFG3) U is a countable intersection of closed 0-neighbourhoods in (G,t) and
by (DFG2) we have

Vi, Vk>j, Qx(B;) C Qk(Bk-1) C aiBk,

hence
B; C ﬂ akQ;'l(Bk).
k>j
Since (G,t) is a (gDF)-space, we can apply [33, 8.3.2] to conclude that U is a 0-
neighbourhood in (G,t). We prove that U C W. If 2 € U and 1 < j < n,
Qj(z) € ajB; C AjB;. Now

2= Qi(x)= ) 277Q;(2'x),
i=1

j=n+1

where the series converges for the topology s. If 7 > n,
Qi(27z) € 290;B; C P aju;W C 2 ajujpnWn C Wh.

Since W, is s-closed and absolutely convex the series converges in s to an element
in W,,. This implies z € W,, + E;;l AjBj, for each n € Njie,z e W.

(b) Assume now that (G,t) is a (DFG)-space for the topology s =t. Let T be
an absolutely convex closed bornivorous subset of (G,t). For every j € N we find
a; > 0 with ojB; C 277T. Given (a;)jen, we select (Q;)jex as in the definition of
(DFG)-space. As above

U:=()a;Q;'(B;)
j€N
is a O-neighbourhood in (G,t). We check that U C T. If z € U, z = 3y Q(2),
and the series converges for the topology t. But if z € U, Q;(z) € a;B; C 27T for
each j € N. Since T is t-closed, z € T. O

The following lemma will be used very often in the rest of the paper.

Lemma 6.

(a) Let E be an (FG)-space. Let (Px)ken C L(E, E) be the sequence associated
with (ak)ken, 0 < ax < 1. Then U, ¢y a;lPk(Uk) is a bounded subset of E.

(b) Let (G,t) be a (DFG)-space. Let (Qk)ren C L(G,G) be the sequence
associated with (ag)ren, 0 < ax < 1. Then ey angl(Bk) is a 0-neighbourhood
in (G,1).
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Proof. (a) We fix j € N. If k > j, (FG2) implies Px(Ux) C axUr—1 C arUj, hence
Uks; a; ' Py(Ux) C U;. Now, by (FG3), U<k o' Py(Uy) is bounded in E. The
conclusion follows.

(b) Proceeding as in the proof of Proposition 5, ey @x@%  (Bk) is a borniv-
orous countable intersection of absolutely convex closed 0-neighbourhoods in (G,t)
which is a (DF)-space. O

Proposition 7.

(a) The countable product of (decomposable) (FG)-spaces is again a (decom-
posable) (FG)-space.

(b) The countable direct sum of (decomposable, resp. strong) (DFG)-spaces is
again a (decomposable, resp. strong) (DFG)-space.

Proof. (a) Let (E;)jen be a sequence of (FG)-spaces and let (|| - ||j,x)ken be the
fundamental system of seminorms in E; given by the definition. We set

k
E=]]E lale:=>_llzjlljk-ssr
7j=1

JEN
for 2 = (z;)jexn € E. Given (ok)ken, 0 < ax < 1, we put fjx := akqj—1 for all
J,k € N, and given (B;x)ken we select (Pjr)ren C L(E;, E;) satisfying (FG1,2,3).
It is readily checked that
Pi(z) := (P1x(21), P2 k—1(z2),- .. y Pea(zk),0,.. ), z€E,

satisfies (FG1,2,3).

(b) Let (Gj,t;), j € N, be a sequence of (DFG)-spaces. Let (B x)ren be the
fundamental sequence of bounded sets and s; the locally convex topology coarser
than t; (j € N) be given by the definition. We put

(G,t) := @(Gj’tj)’ (G,s) := @(GJ"SJ')’

JEN JEN
k
Bi:= P Bijk-js1, kEN,
i=1

then (Bik)ren is a fundamental sequence of bounded sets in (G,t). Given (ak)ken,
0 < ar <1, define B;x = ogyj-1, J,k € N and select (@, x)ren associated with
(Bj,k)ken. It is easy to check that

Qk(.’l‘) = (Ql,k(z1)7Q2,k—l(z2)’ RN Qk,l (zk)v 0’ R 7.), T E G,
have the desired properties. (O
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It is possible to reformulate the definition of (FG)-space (resp. strong (DFG)-
space) in order to obtain the stability of the new classes by taking projective (resp.
injective) tensor products. We will not include these details here. This stability
is relevant in infinite dimensional holomorphy because it yields consequences about
the spaces of polynomials defined on Fréchet or (DF)-spaces. We refer to [2] and
[24] for details.

3. Examples of (FG)-spaces and (DFG)-spaces

In this section we will include many examples of (FG) and (DFG)-spaces. This will
show that these are two wide classes and that our positive results in section 4 are
applicable to many concrete spaces.

First of all, as it was already mentioned after the definition of (FG)-spaces, every
decomposable Fréchet T-space in the sense of Bonet and Diaz [18] is an (FG)-space.
Consequently the following are ezamples of (FG)-spaces:

(i) Banach spaces and countable products of Banach spaces,

(ii) Banach valued Ko6the echelon spaces of order p, 1 < p < o0 or p = 0,
Ap(A,(Xi)ien) with X; Banach (7 € N), and even every X-Ko6the sequence space for
a Banach space X with a 1-unconditional basis (e,) in the sense of S. Bellenot [6].

(iii) Generalized Dubinsky echelon spaces with decreasing steps wich are Montel.
For instance if we take a K6the matrix A = (a,) such that A;(A) is Fréchet Montel
but not Schwartz, setting

E := ﬂ 1Pt/ (q,), 1< p< oo,
n€N

we obtain an (FG)-space which is Montel but which is not an X-Ko6the sequence
space.

(iv) The Fréchet spaces of measurable functions introduced by Reiher [34],
L,(A) with absolutely continuous p. In particular the spaces Lp((#n)neN) of
Grothendieck, 1 < p < 0o, where p; are o-finite measures (i € N).

(v) Fréchet-Schwartz spaces with a finite dimensional decomposition and a con-
tinuous norm.

The positive results that will be proved in next section are valid for comple-
mented subspaces of (FG)-spaces. Every Fréchet Schwartz space with the bounded
approximation property and a continuous norm is a complemented subspace of an
(FG)-space (cf. [7, 18]). Vogt has recently characterized the hilbertizable Fréchet
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spaces which are isomorphic to a complemented subspace of a power series space of
infinite type (see [39]).

We refer to [18] for all the details and more examples. Now we include new
examples. We refer the reader to [14] for the notations and the theory of Kothe
echelon and co-echelon spaces of order p, 1 < p < 0o or p = 0, on an arbitrary index
set I. For condition (D) in a Kothe matrix, we refer to [13] and [8). We recall that
a Kothe matrix A satisfies condition (D) if and only if A,(I, A) satisfies the density
condition (see [8] and [3]).

Proposition 1.

Let A = (an)nex be a Kéthe matrix on an index set I, satisfying condition (D).
Then A,(I,A) is a decomposable (FG)-space for 1 < p < oo orp = 0.

Proof. By the definition of condition (D) and passing to a subsequence of the a,’s,
these is an increasing sequence J = (I )men such that

@m (%)
(N,J) z1 If aJ(z) >0 foreveryj>m
M, J) Vn €N VI C I with Iyn (I'\Ix) # 0 for each m € N,
dn' = n'(n, L) > n with mf0 a::((z))

Note that I = {J,, ey Im by (M,J). We set Ny := I, N; := I; \ I;_; (j > 2), and
denote by @; the canonical projection associated to N; (j € N).

We only give the details if p = 0o, the other cases are very similar. By (N,J),
for every j, k € N, j < k, there is yjx > 0 with a;(¢)y;x > ax(é) for each i € N;.
Moreover, by (M,J) the series 3.y @ ;& converges to z in the sense of the topologies
of the seminorms by [13, 3.7]. Now, given a sequence (aj)rex, 0 < ax < 1, we put

g =271 min(ak,min('y;kl; i=1,...,k=1)), keN,
and we define

Jm = {Z € I, am—l(i) < 7mam(i)}’

-n\(Ur). Mw=an\( U &) 22

i>2 i>m+1



208 BONET, DiaZ AND TASKINEN

It is easy to see that I, C Uj-; M; (m € N). We denote by P; the canonical
projection associated to M; (j € N). Certainly P;P; = §;;P; for each ¢,j € N. By
the inclusion above we get

lm(i) - Zn:ij(i)‘ < |x(z’) _ Xn:cgjz(i)|, 2 € Ao(I,A), i€ I, n €N,
j=1 j=1

From this it follows that the series 3,y P;jz converges to z in A (I,A). Moreover
the following inequalities are readily checked
(2) || Pex|le-1 < akllz|lx, k € N

-1 , .
(b) 1Pells < (ves1 Yes2 - 73) " lelle, 5>k, j,k€N.
This implies that As(I, A) is a decomposable (FG)-space. O

Observe that Proposition 1 above implies that if A, (A) satisfies the density
condition, then it is an (FG)-space. By a very recent result of F. Bastin [5], for
a Kothe matrix A on N, A (A) is distinguished if and only if it has the density
condition or equivalently if A satisfies condition (D).

By the sequence space representations of Valdivia and Vogt [39, 40] and our
results above it follows that the function spaces C*(Q), Bo(2), B(R?) and Dp» are
(FG)-spaces.

One of our main motivations to deal with (FG) and (DFG)-spaces was to include
in our study the weighted inductive and projective limits of spaces of continuous
functions. When one deals with these spaces it is necessary to replace the projections
taken in sequence spaces by partitions of the unity, hence there is no hope to obtain
decomposable (FG) or (DFG)-spaces.

First we recall some notation (also see [15]). In what follows we denote by X
a locally compact o-compact space with a fundamental sequence of compact sets
(Kp)nex with K, C I:'n+1 (n € N). If A = (an)nen is an increasing sequence of
strictly positive continuous functions on X, we define (see [15, section 5])

CA(X) := {f € C(X); pa(f) = sup an(z)|f(2)] < 00, Vn € N},

CAo(X) := {f € C(X); anf vanishes at infinity on X, Vn € N},

both endowed with the metrizable topology defined by the seminorms (p,)nen-
Clearly both CA(X) and CAg(X) are Fréchet spaces.

At this point it is convenient to include the definition of weighted inductive
limits. Let V = (vn)nen be a decreasing sequence of strictly positive continuous
weights on X. We define the Banach spaces

C(va)(X) = {f € C(X); sup vn(2)|f(2)] < o0},
C(vn)o(X) := {f € C(X); vnf vanishes at infinity on X}.
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The weighted inductive limits are defined by

VC(X) :=ind C(v,)(X) and
VoC(X) := ind C(v,)o(X).

The maximal Nachbin system associated with V is defined by

V=VY):= {T) : X — R; v >0, upper semicontinuous,

su <ooVneN;.
rex Un(T)

The projective hulls of the weighted inductive limits are defined by

CV(X):={f € C(X); ps(f) := Slelg o(z)|f(z)| < 0 VB €V},
CVo(X) := {f € C(X); f vanishes at infinity on X Vo €V},
both endowed with the locally convex topology defined by the seminorms (ps);ev -

The spaces VC(X) and CV(X) coincide algebraically -and they have the same
bounded subsets

B, = {f € CV(X); 21€1§ va(z)|f(z)| < n} (n€N).

They coincide topologically if and only if V satisfies condition (D) (see [4] and [12]).
On the other hand VoC(X) is a topological dense subspace of CVp(X) (see [15]).
All our results will be based in the following lemma.

Lemma 2.

Let V be a decreasing sequence of strictly positive weights on X and V the
maximal Nachbin system associated with V. For every (ai)ken, 0 < ax < 1, there
is a sequence (y)ken in V N C(X) such that,

G1:= {z € X; vi(z) < 201(2)},
Gy := {z € X; vn(z) < agve-1(z), ve(z) < 21—’1«:(9’)} (k22)

form an open cover of X.
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Proof. Given (ak)ken, 0 < ax < 1, we put
By := min (v, kix;fn(am.,.l Cmta --- ap) 'vk) (m€EN)

Clearly both %,, and v, xk,, belong to V (here xk,, is the characteristic function of
the compact set K,,). By [15, 0.2 Proposition], we can find 9,, € V N C(X), strictly
positive on X and such that max(9,,vmxk,.) < om (m € N). We define now Gy
(k € N) as in the statement and we prove X = |J; ¢y G- To do this we fix z € X
and we select t € N such that z € K. First observe that if £ > ¢ we have

(%) ve(z) = ve(z)x K, (2) < Dr(2) < 20k(7)

We distinguish several cases:
(i) Vs > 2, vs(z) > asvs—1(z). This implies

v(z) < (12_1’112(.’13) < (o as)_1v3(z) <...,

hence
v(z) < min(vl(z),licgi;(az .. -ak)"lvk(:z:)) < 91(z) < 201(2),

and z € Gy.
(ii) Is > t with vs(z) < asvs—1(z). From (*) for k£ = s, this readily implies
z € Gs.
(iii) 3s < t with vs(z) < asvs—1(z) but v.(z) > arvr—1(z) for all 7 > s. This
yields
vs(z) < min (vs(:v),licgi;(asﬂ ) o) < Bs(2) < 204(2).

Consequently = € G and the proof is complete. [1

Proposition 3.
The Fréchet space C Ao(X) is an (FG)-space.

Proof. We take pn(f) := sup e x an(z)|f(2)], f € CAo(X), (n € N), as the funda-
mental sequence of seminorms in CAg(X). We fix a sequence (ak)ken, 0 < ar <1
(k € N) and we denote by v, the weight given by v,(z) := 1/a,(z) for z € X. Now
we apply Lemma 2 to select (¥x)ren C V N C(X) and the corresponding sequence
(Gk)ken of open subsets covering X. Since X is locally compact and o-compact, we
may find a sequence (¢k)keny in C(X) such that 0 < ¢ < 1, supp ¢ C G for all

k € N, and moreover for every m € N there is k(m) € N with ZZ(:";) vr(z) =1 for
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all z € K, and @(x) = 0if z ¢ K,n. In particular ), . pk(z) = 1 for all z € X
(see e.g., [1, p. 126]). Now, for every k € N we define Py : CAo(X) — CAo(X)
by Pr(f) := @rf. Since every f € CA(X) satisfies that a,f vanishes at infinity
on X for all n € N, it follows that 37, . Pif converges to f in CAo(X) for all
f € CAp(X) and (FG1) holds. Now we check (FG2). Given f € CA4y(X),

Pe-1(Px(f)) = sup ax-1(z)pk(e)|f(z)| < sup ar-1(2)|f(2)|
zeX z€G:

< sup ok ax(z)|f(z)] < ak pr(f).
z€G

To show that (FG3) is satisfied, we fix k € N and first observe that, since 9 € V,
for all j > k there is Ajx > 1 with aj(z) tx(z) < Ajx Vz € X. Now for j > k we
have

pi(Pe(f)) = sup a;j(z)er(z)|f(z)|
zeX
()

< sup aj(z)|f(z)| = sup aj(z) tx(2) ;:(w) ar(z)|f(z)|

<2xepk(f). O

Remarks 4. (1) Note that the same proof given above shows that C A(X) satisfies all
the conditions of an (FG)-space with the exception that the convergence in (FG1)
can only be obtained for the topology of pointwise convergence on X. By [13, 5.5],
CA(X) = CAo(X) coincide algebraically if and only if Vn VY C X non-relatively
compact there is m > n with

inf 22(0) _ g

veY Um(Yy)

(2) It is very easy to extend the former result to weighted spaces of Banach
valued continuous functions.

Examples 5: Fréchet spaces which are not (FG)-spaces

According to our results in section 4 and the examples given in [36] and [19],
we have the following consequences:

(a) There are Fréchet Montel spaces with finite dimensional decomposition and
a continuous norm which are not (FG)-spaces. Compare with (v) above.

(b) There are quojections (i.e., separated quotients of countable products of
Banach spaces) which are not (FG)-spaces. This should be compared with (i) above.

Now we provide ezamples of (DFG)-spaces.
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(i) Normed spaces and countable direct sums of normed spaces.

(ii) Strong duals of (FG)-spaces. This follows from Proposition 2.3 and gives
many examples of (DFG)-spaces simply taking strong duals of the (FG)-spaces given
before.

It is our purpose now to treat the weighted inductive limits of spaces of con-
tinuous functions defined on a locally compact and o-compact space X. In what
follows V = (vy,) is a decreasing sequence of strictly positive continuous weights on
X and V is its associated maximal Nachbin family.

Proposition 6.

The spaces VoC(X), CVo(X) and CV(X) are (DFG)-spaces for the topology of
the pointwise convergence. VoC(X) and CV,(X) are even strong (DFG)-spaces. The
inductive limit VC(X) is a (DFG)-space if V satisfies the condition (D) of Bierstedt
and Meise (i.e. if VC(X) = CV(X) holds topologically).

Proof. Without loss of generality we may assume that

B, = {f € CV(X) ; sup va(2) |f(z)] < 1} (n €N)
reX

form a fundamental sequence of bounded subsets of CV(X). In the other spaces
we take as fundamental sequence the bounded sets given by the intersection of the
B,.’s with the corresponding space. We give the details of the proof for CV(X) and
indicate the necessary changes in the other cases.

We proceed as in the proof of proposition 3, given (o)ren, 0 < ax < 1, we
apply lemma 2 to find (¥x)reny C V N C(X) and the open cover (G )ren of X. Now
we select a partition of the unity (¢k)ren of X subordinated to (Gi)ren with the
same special properties of the one selected in proposition 3. We define

Qr:CV(X) — CV(X), Qu(f)=¢xf (k€N)

and we observe that @, maps continuously VoC(X) (and CVp(X)) into itself. First
of all it is clear that CV(X) has a basis of 0-neighbourhoods which are closed for
the pointwise topology, namely

Cy = {f € CV(X); supa(@)f(=) <1}, TeV
z€X

This is also the case for VoC(X) and CVy(X), but not necessarily for VC(X), unless
VC(X) = CV(X) holds topologically.
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Now f = EkeN orf = EkeN Q@ f holds for the pointwise convergence for each
f € CV(X) and (DFG1) is satisfied. If f € CVp(X), the properties of (¢ )ren and
the fact that of vanishes at infinity on X ensure that the series converges to f for
the topology of CVp(X).

To check (DFG2) we fix f € Br—1 (k > 2). We have

sup vk(2)|Qk(f)(2)] < sup vk(z)|f(z)| < ak sup vi-1(z)|f(z)] < ax,
r€eX r€G zeX
hence Qx(Bk—1) C ayBk.

Finally to prove (DFG3), for each k£ € N, we show that the image by Q of the
0-neighbourhood

Wy i= {f € CV(z); sup vx(z)|f(z)] < 2"1}
T€X

is contained in By (k € N). Indeed, if f € W) we have

vi(2)

(
ﬁk(.a:)

ok(z) | f(2)]

sup vi(z) |f(z)] < sup vi(z) [f(z)| = sup
z€X z€G z€Gy

<2 sup x(2) |f(2)| < 1.
z€Gk

This shows that Q;l(Bk) is a 0-neighbourhood in CV(X). The proof is now com-
plete. O

The authors do not know if VC(X) is a (DFG)-space if condition (D) is not
satisfied by V. In particular, if A is a K6the matrix not satisfying condition (D) and
Koo is the bornological space associated to Aj(A)} = ke, and G is a Banach space,
is the injective tensor product kKoo ®c G a (DF)-space?

Now we deal with the weighted inductive limits K ,(V) of spaces of measurable
functions introduced by Reiher [34].

Let (X,X, ) a o-finite measure space, M the set of all y-mesurable functions
and p a saturated funtion norm with the Fatou property. We recall that p is called
absolutely continuous if (p( fn))nen tends to 0 if (f,)nen decreases to 0 in the natural
lattice structure. If @ : X — R is a measurable function with 0 < a < oo p-a.e., we
define

Ly(a) = {f € M; ||flla := p(af) < oo}
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This is the Kéthe normed space associated to p and a. For examples of these spaces
we refer to [34]. Given a sequence V = (vp)nen, 0 < Ung1 < v, < 00 p-a.e., of
measurable functions we associate the system

V= {ﬁ:X—»]R; vEM, u-esssup:—((a%<oo VnEN}

For a function norm p we define

ko(V) := {f € M; p(3f) < o0 V5 € V}
kp(V) :=ind L,(v,)

We observe that there is an increasing sequence (X, )nen of measurable subsets
of X such that

(1) m(X \UpenXn) =0 p(Xy) <00, Vne€N,

(ii) p(xx,) < o0 VrEN,

(iii) Ja(m,n),b(m,n) > 0; a(m,n) < v, < b(m,n) p-a.e. on X,,.

This follows from (34, 1.1].

Proposition 7.

If p is absolutely continuous, then k,(V) is a strong decomposable (DFG)-
space.

Proof. We use the notations established above and we fix the canonical seminorms
and fundamental sequence of bounded subsets of k,(V) (see [34, 1.3]). Given a
sequence (ag)ken, 0 < ax < 1 (k € N), we define

1. . (a(k+1,7) )
= —_—— 1<3<k
Yk := 27" min (ak+1,mm ( bk7) 1<5<k

and we put

Jr = {z € X ; vep1 < 1revi(2)}

Vi=X\ U, VYmi=dna\ |k m>2
kEN k>m

Observe that u(Xi \ Uyy; Jk) = 0. Indeed, if € X; N Ji (k > 4) then

1 a(k+1,9)

1
- ) < — 1
2 b(k,i) b(k,z) — 2 a‘(k + 172)’

ves1(z) < vrevi(z) <
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and this can only hold in a subset of X; of measure zero. Consequently
Xju...uX,cnryu...uyY, p-ae.,

hence X = UieN Y; p-ae.

The sets Y; are disjoint, hence the continuous projections Q;(f) := fxy; (: € N)
verify Q:Q; = 0, i # j. To check (DFG1), we fix f € k,(V). Since p is absolutely
continuous, it follows from [34, 1.4.c] that f € L,(v,) for some n € N. By our
comments above the sequence (fvn - Z:’;l vnQ,-f)meN decreases to 0 in the natural
lattice structure. By the absolute continuity of p it follows that

s (- S50)) -0

hence the series }°, . Q;f converges to f in L,(vn), hence in k,(V).
We denote by B, the ball of L,(v,) of radius n (n € N). We fix f € By_1
(k> 2),ie. p(vk-1f) <k —1. Since Y C Jx—1, we have

P(vkQk(f)) = p(vr fxvi) < plarve-1fxv.) < arp(vi-1f) < kay.

Consequently Q(Bk-1) C axBk, and (DFG2) is satisfied.
Finally for all £k € N, j > k, the following inequality holds p-a.e. on Y}

ve(z) < (Tk Yha1---Yi-1) " 0i(2).

Proceeding as we did before, we can find Aj, j > k, with Qx(B;) C Ax;Bx whence
Q7 (By) is an absolutely convex bornivorous subset of k,(V') which is bornological.
Thus Q;'(By) is a 0-neighbourhood in k,(V) for all k¥ € N and (DFG3) is satisfied.
a

We close this section by mentioning the following example that should be com-
pared with the examples of (DFG)-spaces (i) and (ii). By [19] and our results in
section 4, there are strict inductive limits of Banach spaces which are not (DFG)-
spaces and by [36] there are (DFM)-spaces with a finite dimensional decomposition
and a total bounded set which are not (DFG)-spaces.



216 BONET, DiAZ AND TASKINEN

4. Main results

In this section we show that the context of (FG)- and (DFG)-spaces is an appropiate
frame to give positive answer to the problems of Grothendieck. More precisely we
will show the following results:

(i) If E and F are (FG)- -spaces, then the problem of topologies of Grothendieck
has a positive solution for E®,F

(if) If G, H are (DFG)-spaces, then GQ H is a (DF)-space.

(iii) If E is a (FG)-space and G is a (DFG)-space, then Ly(E, G) is a (DF)-space.

The quasibarrelledness of GQ.H and Ly(E,G) as in (ii) and (iii) respectively
will be considered too.

We need some preparation and some abstract results which are helpful and
could be of independent interest.

First we consider two Fréchet spaces F and F. Grothendieck [26] proved that
Ly(E, F}) can be canonically identified with the dual (E®,F)' of (E®,F) endowed
with the locally convex topology of the uniform convergence on the bounded subsets
of E®.F of the form T'(C ® D), where C is bounded in E, D is bounded in F and
the closure is taken in E@,F. These bounded sets will be called localized in E@WF.
A bounded set is said to be localizable if it is a subset of a localized set. We denote
by A the family of all the localizable subsets of EQ,F. It is well-known that A is a
saturated family of bounded sets in E®,F in the sense of [31, p. 255] which covers
E®.F by [31, 41.4.6].

Following Taskinen [35] we say that a pair of Fréchet spaces (E, F') satisfies
property (BB) if any bounded subset of EQF is localizable, i.e. the problem of
topologies of Grothendieck has a positive answer for EQ,F. Clearly if (E, F) has
property (BB) we have Ly(E, F}) = (E®,F), holds topologically, hence Ly(E, F})
is a (DF)-space. Taskinen [38] proved that if E and F are separable and Ly(E, FY)
is (DF), then (E, F) satisfies property (BB). We will extend this result here. In this
way we show that the results about the stability of the (DF)-property for Ly(E, G)
if E is a Fréchet space and G is a (DF)-space, immediately yield applications for the
property (BB) of pairs of Fréchet spaces.

Lemma 1.

Let E be a Fréchet space. Let A be a saturated family of bounded subsets of E
covering E. Suppose that E' endowed with the topology of the uniform convergence
on the elements of A is a (DF)-space. Assume that one of the following conditions
is satisfied:

(i) the bounded subsets of (E',t4) are metrizable,
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(ii) for every bounded subset B of E there is a sequence (Cy,)nen in A such that
D := UpexCh is bounded in E and B C D, the closure taken in E.

Then every bounded subset of E belongs to A.

Proof. Clearly t 4 is finer than o(E', F) and coarser than S(E’, E), consequently if
(Un)nex is a basis of absolutely convex closed 0-neighbourhoods in E, then (Uy)nen
constitutes a fundamental sequence of bounded subsets of (E’,t4). Moreover E C
(E',t4) C E" and D C E" is (E',t 4)-equicontinuous if and only if there is A € A
with D C A4, the closure taken in (E",s(E",E')). Consequently a subset of E
is (E',t4)-equicontinuous if and only if C € A. Therefore, to conclude under the
assumptions (i) or (ii), we have to show that every bounded subset of E is (E’,t 4)-
equicontinuous.

First we suppose that (i) is satisfied. By a classical result of Grothendieck (e.g.
(31, 29.3.12]), (E',t4) is quasibarrelled. Now it is easy to see that every bounded
subset of E is strongly bounded in (E’,t4)’, hence it is (E',t4)-equicontinuous.

Now we assume (ii). Given a bounded subset B of E we find (Cp)nexy C A as
in (ii). The set D := |J, ¢y Cn is bounded in E, therefore it is strongly bounded
in (E',t4)". On the other hand it is a countable union of (E',t4)-equicontinuous.
Since (E,t4) is a (DF)-space, D itself is also equicontinuous, i.e., D € A. Finally,
since A is saturated, D € A and hence its subset B belongs to .A. O

As a consequence of this Lemma and our comments above we obtain the fol-
lowing result. For the density condition refer to [8].

Proposition 2.

Let E and F be Fréchet spaces such that Ly(E, F}) is a (DF)-space. Suppose
that one of the following conditions is satisfied:

(i) E and F have the density condition.

(ii) Every bounded subset of EQ,F is contained in the closure of a bounded
subset of EQ,F which is the union of a sequence of localizable subsets of EQ,F.

Then (E, F') satisfies property (BB).

Proof. In case (i) use [11, 1.6] to conclude that L,(E, F}) has metrizable bounded
subsets. Case (ii) follows directly from Lemma 1. O
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Remark 3. Condition (ii) in Proposition 2 is satisfied in the following cases:

(a) E and F are separable.

(b) There are (P;)jen C L(E, E), (Qj)jen C L(F, F) converging pointwisely to
the identity of E and F respectively and such that for every bounded subset B of
E®.F, (P; ® Q;)(B) is localizable in EQ,F. Here, to check that condition (ii) of
Proposition 2 is satisfied one uses that (P;);en and (@;);jen are equicontinuous.

(c) E or F is separable and it satisfies the bounded approximation property
(abreviated by b.a.p. from now on). Indeed, if E has the b.a.p., we have a sequence
(Pj)jen C L(E, E) such that dim P;(E) < oo for each j € N and converging point-
wisely to the identity. We take @; = id for all j € N. The result follows from (b),
since every bounded subset of P;(E)®xF is localizable.

Lemma 4.

Let E and F be (FG)-spaces. If Ly(E, F}) is (DF), then the pair (E,F) satisfies
the property (BB).

Proof. Let (Uk)ken, (Vk)ren be the 0-basis in E and F respectively. Given aj :=1
(k € N) we find

(Pe) e € L(E,E),  (Bk) ey C L(F,F)
satisfying (FG1, 2, 3) and we set

ﬁi = i Py, E,’ = Zl: Ry, 1 € N.
k=1 k=1

By Remark 4.3, it is enough to check that (13, ® R;)(B) is contained in a localized
bounded subset of E®,F for every bounded subset B of E®,F. Moreover it is
enough to check it for (P ® R:)(B), k,t € N. By (FG3), we have the continuous
factorization '

E®,F—*% — E§,F
Forl ™ @
Ek@wFt
Now 7€ ® 7' (B) is a bounded subset of the Banach space Ex®,F;, hence we can

find bounded subsets K, L in Ey, E; respectively such that 7f @ 7F(B) C T'(K ® L),
the closure taken in Er®, F;. Consequently

Py ® Ry(B) C P ® Ry(T(K ® L)) C T(Pe(K) ® Ry(L))
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the closure now taken in EQ,F. O

Theorem 5.

Let E be an (FG)-space and let (G,t) be a (DFG)-space. Then Ly(E,G) is a
(DF)-space.

Proof. Let (Uk)ren be the 0-basis in E as in the definition of (FG)-space. Let
(Bk)ken be the fundamental sequence of closed absolutely convex bounded subsets
in (G,t) and s the locally convex topology in G coarser than ¢ as in the definition
of (DFG)-space. Let Uy be a basis of absolutely convex s-closed 0-neighbourhoods
in (G,t). The sequence

By := {f € Ly(E,G) ; f(Ux) C Bk}

is a fundamental sequence of bounded subsets in Ly(E, G) and the family of all sets
of the form

W(A,V):={f € Ly(E,G) ; f(A)CV}

for a bounded set Ain E and a 0-neighbourhood V in Uy, forms a 0-basis in Ly(E,G).
According to [10, Lemma A], it is enough to check that for every sequence

(Ak)ken of bounded subsets of E, every sequence (Vi )ken in Up and every sequence
(Ak)ken, Ak > 0, k € N, the set

W= ﬂ (W(An, Vn) + Z Ak3k>
n€N k=1

is a 0-neighbourhood in Ly(E, F).
Since FE is metrizable we may find an absolutely convex bounded subset A of E
such that for all £ € N there is p;, > 0 with py A C A. We put

M := sup{||z||x; z € A}.
Since (G,t) is a (DF)-space there is V in Up such that for all £ € N there is px > 0

with V C prVi. Now for every k € N there is N, > 0 with N B, C V.
We put now for £k € N

Qg = min<2_k,2_k/\k,2"kMk_1,min(2'2kM,:1p,-‘1p,-, ;1< <L k)),

B = min(2_k,2"kz\k,2'ka,min(2"2kapiui_1 ;1< < k))
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Given (ak)ken we select (Pg)ren C L(E, E) satisfying (FG1,2,3) and we denote
by C the closed absolutely convex hull of

U ez Pe(Ux).
k€N

Given (Bk)ken we select (Qx)ken C L(G,G) satisfying (DFG1,2,3) and we put

W := ﬂ ﬁkQ;l(Bk).

keN

By Lemma 2.6, C is a bounded subset of £ and W is a 0-neighbourhood in (G,t).
We will check that

V:i={f€eL(E,G); f[C)cW}CW,

which concludes the proof. To do this we fix n € N, f € V and show that

f € W(An,Va) + Y \iBy.
k=1
If i € N we define

i i-1
fir=>_QifPi+ Y Qif P,
j=1 s=1
We first prove A\[! f; € B;, i € N. Fix z € U;. We may write

21'13 (2°A71Q:) F(2°Py(2)).

% i—1
NHi(e) = Y 5 (21Q5) FENT ) + Y
j=1 s=1

For j7 < 7 we have

2\ 1Py(z) € 2°A71Py(U;) € o 1 Py(U;) C C,
hence f(2:A\;!Pi(z)) € W. From this it follows

(27Q;) f(2'A; P(=)) € 294;B; C B; C B..
On the other hand, for s < ¢ we have

2°Py(z) € 2° P,(U;) C 2°P,(U,) C o' P,(U,) C C,
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hence f(2°Ps(z)) € W. Consequently
(2°A71Q;) f(2°Py(z)) € 2°A\1B:B; C B;.

Since

1

2it+s <l

ML

i 1 i
gt
j=1 s

and B; is absolutely convex we have A, 1 £ € B; as desired.

Now " "
Z fr € Z AxBi.
k=1 k=1

1l
-

We put
n
gni=F=) e
k=1

Certainly g, € L(E,G). We check g, € W(A,,V,). As a first step we check that
for each m > n and ¢ € A,, Y02, ., fi(z) € Vo We set

> A= Y S )

t=n+1 i=n+1

We may write
. L1 . i1 .
2fi2) = 3 5y (71Qs) fun2¥ P@) + Y 5 (27071 Q0) F(pa2 Pul2)).
ji=1 s=1

Fix j < 7 and recall n < i. Since z € A,, ppz € A C M;U;, this implies
T € M,-pi_1 U;, hence

1n 2% Pi(z) € pa Mip 128 Py(U;) C o1 Pi(U;) C C.
Therefore f(1,2% Pi(z)) € W, consequently
(27477 Q;) f(pn2* Pi(z)) € 2p;"B;B; C P pg ' BiN;'V C 29 B;N; Vi C V.,
Now fix s < . Since z € A,

pn2° Ps(z) = 2° Py(pnz) € 2° M, Py(U,) C a; ' Py(U,) C C,
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hence f(pn2°P,(x)) € W. This yields

2%p.1Qi f(pn2°Ps()) € 2% p; BiBs C 2% p, BiN; 'V
C 2% p 18N unV,, C Vi (recall n < 9).

This implies Z?;nﬂ fi(z) € Vo, Ym > n, Vz € A,. Certainly V, is closed
in (G,0(G,(G,s)")). If we prove that for every z € E, f(z) = > ;2; fi(z) in the
topology o(G,(G,s)"), we get gn(z) = Y. 2,41 fi(z) for the topology o(G,(G,s)"),
which yield g,(z) € V, if z € A, as desired. First observe that if 2 € E, n € N,
Yr i) =(Q1+ -+ Qn)f(PL+ -+ Py)(x). Moreover,

(G.0(G(G,5))) — Im (@1 +...+ Qn)f(2) = f(z), VzeE.
Consequently we are done if we show
(G,0(G,(G,s))) - nli—{réo(Ql +...4Qn) fz—(Pi+...4+ P,)(z))=0, z€E.

Fix v € (G,s)" C (G,t). It is easy to see that { }(Q1 + ...+ Qn)(v);n € N }
is bounded in (G',0(G’,G)), hence {tft(Ql +...4+Qn)(v);n € N} is bounded in
o(E',E), hence equicontinuous. As lim,_,(P1 + ...+ Pp)(z) = 2 in the topology

of F and
(@ +...4+ Q) flz = (PL+ ...+ Pa)(z)),v)
=(z — (P, +...4 P)(2), Q1+ ...+ Q.)(v))

the conclusion follows and the proof is complete. [

Corollary 6.
If E and F are (FG)-spaces, then (E, F) satisfies the property (BB).

Proof. By Proposition 2.3, F] is a (DFG)-space. We can apply Theorem 4.5 to
conclude that Ly(E, F) is a (DF)-space. The conclusion follows from Lemma 4. O

To treat the quasibarrelledness of the space Ly(E,G) if E is an (FG)-space
and G is a (DFG)-space, we need the density condition. The density condition
was introduced by Heinrich [27] in the context of ultrapowers of locally convex
spaces. It was studied for Fréchet spaces by Bierstedt and Bonet [8]. A Fréchet
space E has the density condition if and only if the bounded subsets of E; are
metrizable and if and only if ;& F is distinguished and if and only if Ly(E,ly) is
quasibarrelled. Consequently every quasinormable Fréchet space and every Fréchet
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Montel space satisfies the density condition. The density condition for Kéthe echelon
spaces of order p, 1 < p < 0o or p = 0, was characterized in [8]. The dual density
condition for (DF)-spaces was studied in [9,10]. A (DF)-space G has the dual density
condition if and only if the bounded subsets of G are metrizable and if and only if
loo(G) = Ly(l1,G) is quasibarrelled. In particular every (DF)-space satisfying the
strict Mackey condition (cf. [25]) and every (DF)-space with a fundamental sequence
of compact sets satisfies the dual density condition. The characterization of this
property for weighted inductive limits of spaces of continuous functions can be seen
in [10]. More information can be seen in [9,11,12].

Proposition 7.

(a) If E is an (FG)-space with the density condition anf G is a (DFG)-space
with the dual density condition, then Ly(E,G) is a quasibarrelled (DF)-space.

(b) If E and F are (FG)-spaces with the density condition, then E® F satisfies
the density condition, hence it is distinguished.

Proof. (a) Ly(E,G) is a (DF)-space by Theorem 4.5, with metrizable bounded
subsets by [11, Prop. 1.6]. The conclusion now follows from a classical result of
Grothendieck (see e.g. [33, 8.3.13(ii)]).

(b) By Corollary 4.6 the pair (E, F) satisfies the property (BB), hence it is
enough to apply [11, Corollary 7] to conclude. O

Remark 8. Due to the results in [9,10], Proposition 7 is optimal in the following sense:
(i) If E'is an (FG)-space such that Ly(E, G) is quasibarrelled for every quasibarrelled
(DFG)-space G, then E satisfies the density condition (take G = [). (ii) If G is a
(DFG)-space such that Ly(E,G) is quasibarrelled for every (FG)-space E, then G
satisfies the dual density condition (take E = ly). (iii) If E is an (FG)-space such

that E®,F is distinguished for every distinguished (FG)-space F, then E satisfies
the density condition.

Now we study the injective tensor product of two (DFG)-spaces.

Proposition 9.

Let (G,t) be a (DFG)-space. If X is a normed space, then G®.X is a (DF)-
space.
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Proof. We identify G®.X with the linear subspace of L.(X!,,G) of all linear

co?
continuous mappings with finite dimensional range (see e.g. [31, 44.2]). Let (B )ken

be the fundamental sequence of bounded subsets of F and let s be the locally convex
topology in G coarser than t given by the definition. We denote by V the unit ball
of X. A fundamental sequence of bounded subsets of G®. X is given by

B :={2€ G®:X ; 2(V°) C Bg}.
If Up is the basis of s-closed absolutely convex 0-neighbourhoods in (G,t), the sets
WU):={2€ GR.X ; 2(V°) C U}, U €Uy,

form a basis of 0-neighbourhoods in GQ.X.
We fix a sequence (Ug)ren in Up and a sequence (Ag)ken of positive numbers

and we prove that
T:= ) (W(Un) +3 X Bk)

n€EN k=1

is a 0-neighbourhood in G®.X. To do this we first find p, > 0 such that U :=
Npex #nUn is a O-neighbourhood in (G,t) and now Ny > 0 with By C NxU, k €
N. Then we put for £ € N, a) := min (z\k,min(Q‘ka‘lu;l; 1<i<L k:)) Given
(ak)ken, we select (Qr)ken C L(G,G) satisfying (DFG1,2,3). By Lemma 2.6, W :=
MNkex 2k Q3" (Bk) is a 0-neighbourhood in (G,t). We check that

W:i={2€GR.X; z2(V°)cW}CT.

Fix z € W. Foralli € N, we set 2; := Q;0z € G®.X. First we show that z; € \; B;,
i € N. Indeed, if u € V°,

A7 12i(u) = A\71Qiz(u) € A\71Qu(W) € A\ B; C B;.
Nowifn € N, put y, := 2— (21 + - -+ 2,). We are done if we show that y,, € W(U,,)
for all n € N. Given u € V°,
yn() = 2(0) = (Qu + -+ Qu)(=(wW) = Y Qi(x(w)),
i=n+1

wherg the series converges for the topology s. It is enough to check that if i > n,
Qi(2'2(u)) € Uy. But

Qi(22(v)) = 2'Qi(2(n)) € 2° Qi(W) C 2'e; B; C 2'a; N;U C 2'0; Nip U, C Un.
This yields z € T and G®.X is a (DF)-space. O
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Proceeding in the former proof we obtain

Proposition 10.

Let (G,t) be a (DFG)-space. If X is a normed space, then the e-product of
Schwartz GeX is also a (DF)-space.

Proposition 11.
Let (G,t) and (H,t") be (DFG)-spaces. Then GQ.H is a (DF)-space.

Proof. This follows directly from Proposition 9 and [20, Prop. 5]. O

Proposition 12.

Let (G,t) be a strong (DFG)-space. If X is a normed space, then GQ.X is
quasibarrelled.

Proof. This follows with an argument similar to the proof of Proposition 9. O

Corollary 13.

(a) Let (G,t) and (H,t') be strong (DFG)-spaces. Then G®.H is quasibarrelled.
(b) Moreover, if G and H are bornological, than G®:H is bornological.

Proof. The first part follows directly from Proposition 12 and [20, 5 and 6].
Concerning the second part again by [20, 5 and 6] it is enough to prove that GR. X
is bornological for every normed space X, if G is a bornological (DFG)-space. But
this follows from Proposition 12 and [29, 3.4]. O

Proposition 14.

If (G,t) and (H,t') are (DFG)-spaces with the dual density condition, then
G®:H is a (DF)-space with the dual density condition and hence quasibarrelled.

Proof. By Proposition 11, GQ.H is a (DF)-space. On the other hand, G®. H
is a topological subspace of L.(G%,, H), which in turn is a topological subspace
of Ly(G}, H). Indeed, first of all L(G.,,H) C L(G},H). Moreover, since G is
quasibarrelled, every bounded subset of G} is (G,t)-equicontinuous. Now Gj is a
Fréchet space with the density condition and H has a fundamental sequence of
bounded sets which are metrizable. By [11, Prop. 1.6] Ly(G}, H) has metrizable
bounded subsets. Consequently its topological subspace G®.H also has metrizable
bounded subsets. Since it is a (DF)-space. it satisfies the dual density condition by

(10, Theorem 1.5]. O
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If you compare Proposition 7 and Remark 8 with the previous Corollary 13 and
Proposition 14, you will immediately see that if £ and F are (FG)-spaces, the spaces
Ly(E,F]) and E}®.F] have a different behaviour with respect to the property of
being quasibarrelled, e.g., Ly(A2,ls) is quasibarrelled if and only if A, satisfies the
density condition while (/\2)L®elw is always quasibarrelled.

We close this section by giving a complete characterization of the quasibar-
relledness of Ly(E,G) when E is a Kéthe echelon space of order 1 < p < coorp =0
and G is a co-echelon space of order 1 < ¢ < oo or ¢ = 0. We shall freely use the
notation of [14], and we refer to this article for unexplained notation.

If A= (ap)nex is a Kothe matrix on N, i.e. 0 < a,(7) < ant+1(?) Vi,n € N, we
say that A satisfies condition (M) if

(M) Vn VI C N infinite 3n' € N : inf an_@ = 0.
i€l ani (1)
It is well-known that A satisfies condition (M) if and only if A,(A) is Montel, 1 <
p < oo or p = 0 (see e.g. [14]).
We say that A satisfies condition (D) if there is an increasing sequence J =
(Im)men of subsets of N satisfying

(N,T) Vm g Vk > np ¢ inf 2=l S o
i€l ai(?)
M, ) Vn VI C N such that IN(N\ I,) # 0 for all m,3n' > n :
.o Gn(1)
@ ="

By [8], A satisfies condition (D) if and only if Ap(A) has the density condition,
1 <p<ooorp=0. For p= 1, condition (D) is equivalent to A;(A4) being
distinguished.

If V = (vn)nen is a decreasing sequence of strictly positive weights on N, we say
that V satisfies condition (M) (resp. (D)) if and only if the Kéthe matrix (1/v,)nen
has condition (M) (resp. (D)). In what follows V' will stand for the maximal Nachbin
system associated to V = (v, )nen, ie. all those non-negative weights ¥ on N such
that sup;ey 9(¢)/va(é) < oo for all n € N.
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Theorem 15.

Let A be a K6the matrix on N and let V be a decreasing sequence of strictly
positive weights on N. Let 1 <p< oo orp=0and 1< qg<oo0orq=0. The space
Ly(Ap(A), ky(V)) is always (DF). This space is quasibarrelled if and only if A,(A)
is distinguished, kq(V) is quasibarrelled and the conditions (1), (2), or (3) in the
following diagram are satisfied

p 1 o 1 1<g<co o0
0 1) | 2 (2) (1)

1 ORNRO, (1) (2)
1<p<oo (1) (2) (3) (1)

(1) : A has condition (M) or V has (M) or A and V have (D).

(2) : No condition (i.e., always quasibarrelled).

(3) : A has (M) or V has (M) or A and V have (D) or p > q.

In case p # 1,4 # oo, the result can be stated as follows, Ly(Ap(A),kq(V)) is
quasibarrelled if and only if every continuous linear operator from A,(A) into ke(V)
maps weakly convergent sequences into convergent ones or both matrices A and V
satisfy condition (D).

Proof. If ¢ # 0, the space Ly(Ap(A), kq(V)) is the strong dual of A,(A)®, Ay (B),
where B = (bp)nen, bn = v;! (n € N) and ¢7! + ¢~ = 1 as usual. Consequently
all the results in this case follow from [23, Theorem 15] (Observe that the case
p = 1,9 # 0 was already obtained in [8]).

It remains to consider the case ¢ = 0. If p = 1 the result follows from [9, 2.5].
Hence we assume p # 1,¢q = 0. If A satisfies condition (M),

Ly(Ap(A), ko (V) = Ap(A)y®cko(V)

which is quasibarrelled by Proposition 4.7 above. If V satisfies condition (M), then
ko(V) = koo (V) and we can apply the case ¢ = co. If both A and V have condition
(D), the result follows from Proposition 4.7.(a). To complete the proof we will show
that if Ly(Ap(A), ko(V)) is quasibarrelled and A and V do not satisfy condition (M),
then A and V must satisfy condition (D). If A and V do not satisfy condition (M),
then Ap(A) and ko(V) contain a complemented subspace isomorphic to I, (or ¢co
if p = 0) and co respectively. Consequently both Ly(lp,ko(V)) and Ly(A,(A),co)
must be quasibarrelled. First suppose that A does not satisfy condition (D). By [3,
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Prop.1.2.4 and 1.2.7] there are A; > 0 (j € N), n € N such that Vo € V 3(éi(m))men C
N strictly increasing such that

inf (A1a1(i(m)) 7L, ..., Amam (i(m)) ™) > an(i(m))~? )

*

9(i(m)) < an(i(m))~".

We denote by

Uni={ 2 )i (Sanleil?) " <1} itp 0,

1€EN

U, = {:1: € Mo(A) ; supan(i) |z < 1} ifp=0 n € N,
i€N

and by V the unit ball of ¢g. We put

Bm :={fEL(’\p(A)vCO); f(ﬁ ’\nUn)CV}v m € N.

n=1

Clearly each B,, is closed and absolutely convex, B,, C Bn4+1, m € N, and C :=
Umex Bm is bornivorous in Ly(Ap(A),co). Since this space is (DF), we have C C 2C
(see e.g. [33, 8.2.27]). Consequently C is a 0-neighbourhood in Ly(A,(A),co) and we
can find ¥ € V such that if B is the bounded subset of A,(A) defined as

- (Y -
B._{zEAp(A),Z(E(i) <1 ifp#0
1€EN
B::{.’EE/\()(A); sup (i) |z;|§1} ifp=0,
i€EN
then .
W= { f€ Ly(X;(A),c0); f(B)CV }CC.
Given that » € V we use (*) to determine (i(m))men C N. Now define
{ﬂn(i(m))fvi(m) if i = i(m),

otherwise.

fi2p(A) — co,  f(2) = (¥i)ien, ¥i=

Since z € Ap(A) it follows that f is well defined and continuous. Moreover if
T € B,

|Zi(m)|
ofi(m)) =

|an(i(m)) Zi(m)| = an(i(m)) (i(m))
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hence f(z) € V. According to our assumption, there is some m € N with f € By,
i.e. f(ﬂ;n=1 A;U;) € V. But if p = inf(Aa1(i(m))~1,..., Amam(i(m))~1), then
teim)y € Nj=y AjUj, but the i(m)-th coordinate of f(ueim)) is pan(i(m)) > 1,
hence f(peim)) ¢ V. A contradiction.

Finally suppose that Ly(l,, ko(V)) is quasibarrelled (with I, = ¢o if p = 0) and
that V does not satisfy condition (D). As before there are A\; > 0 (7 e N)and n € N
such that Yo € V 3 (i(m))men C N strictly increasing with

inf(Av1(i(m)), ..., Amvm(i(m))) > va(i(m))
o(i(m)) < vm(i(m)).
We denote by V' the unit ball of /, and we define

(*%)

B = { f € L(lp,ko(V)); sup inf (A121(2), ..., Amvm(?)) [f(2)(D)| <1 VzeV }
t€N

Clearly each B,, is closed and absolutely convex and B,, C B+ for each m € N.
Moreover C := |J,, ¢y Bm is bornivorous. Again, since Ly(l,,ko(V)) is a quasibar-
relled (DF)-space, we may find » € V such that

W i={ £ € Lty ko(7)) 5 sup (i) 1f(2)(5)| <1 Ve eV }ccC.
1EN

Given % € V we select the sequence (i(m))men C N by (**) and we define
Fily = co(vn) = ko(B)

for z € I, by
vn(z(m))‘lz,(m) ifi = z(m)

f(2)(@) = {
0

Clearly f:l, — co(vy) is well-defined and continuous. Moreover if z € V, m € N,
we can apply (**) to get

9(i(m)) | f(2)(i(m))| = 5(i(m)) va(é(m)) ™ [2i(m)| < 1.
Consequently f € W, and there is m € N with f € B,,. Hence
inf (A1v1(3(m)), .. ., Amom (3(m)) | f(2)(im)| £ 1
for every z € V.. For z = e;(,) we obtain, by (**),

1 <inf (Av1(i(m)), ..., Amvm(i(m))) vn(im)v_1 <1,

otherwise

a contradiction.
This completes the proof. [
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‘Remark 16. In the former theorem the space ko(V) may be replaced by its sub-
space ko(V) = ind ¢o(v,,) which is also a (DFG)-space by 3.6. Indeed, if V does not
satisfy condition (M), even k,(V) has a sectional subspace isomorphic to ¢g. It is
then enough to check that if V satisfies condition (M) and F is an arbitrary Fréchet
space, then every bounded subset of Ly(E,ko(V)) is contained in the closure of a
bounded subset of Ly,(E, ko(V)), because, in this case both spaces are simultaneously
(DF) by [33, 8.3.24]. Let (Un)ren be a 0-basis of closed absolutely convex neighbour-
hoods in E. For m € N define m,: ko(V) — Ko(V) by 7mm(z) := (21, -,2Zm,0,...),
z € ko(V). A fundamental sequence of bounded sets in Ly(E, ko(V)) is given by

Cp:= {f € L(E,ko(V)) ; supwvn(d) |[f(2)(D)| <1 z€ Un}, n € N.
1€N
For each f € Cy,

(Tm © flmen C L(E, Ko(V))  and Sup vn(8) |(Tm 0 f)(2)(9)] < 1 Vz € Un.

It is enough to check that, if V has (M), then (7., o f)men converges to f. To do
this we fix 2 bounded subset B of E and % € V. The bounded subset f(B) of ko(V)
is precompact, hence it is also precompact in the weighted co-space, ¢o(7). By a
well-known characterization of the compact subsets of ¢,

Jim_sup {3(0) [/(2)(@)| s 2 € Byi > m} =0
and this implies

lim_sup 3(i) | £(2)(3) = ™ o f(2)(0)] = 0

i.e. (Tm o f)men converges to f in Ly(E, ko(V)). O

Before closing this section it is important to recall that all the positive results
given here remain true if the classes of (FG)-spaces and (DFG)-spaces are replaced
by the classes of spaces isomorphic to complemented subspaces of (FG)-spaces and
(DFG)-spaces.

We recall that every Fréchet-Schwartz space with the bounded approximation
property and a continuous norm is a complemented subspace of a Fréchet-Schwartz
space with finite-dimensional decomposition and a continuous norm by [7], hence a
complemented subspace of an (FG)-space. Moreover by a recent result of P. Doman-
ski, if X is a locally compact and o-compact, then C(X) endowed with the compact
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open topology is complemented in a countable product of Banach spaces, hence in
an (FG)-space.

Vogt has characterized recently the hilbertizable Fréchet spaces which are iso-
morphic to a complemented subspace of a power series space Ao () (which is cer-
tainly an (FG)-space) in terms of conditions (DN) and () (see [41]).

5. New counterexamples to the problem of
topologies of Grothendieck

In this last section we construct a separable Fréchet space F whose bounded subsets
have a particular structure and a reflexive separable Banach space X such that the
problem of topologies of Grothendieck is not satisfied for EQF. This example in
particular shows that the additional assumptions in [37, 3.2.3] are necessary.

Analizing this example we obtain some consequences about the injective tensor
product of (DF)-spaces. In particular Corollary 3 shows that e-(DF)-spaces do not
behave as well as Banach spaces which are L-spaces (see e.g. [28] or [33] for the
definition of e-space). It is important to recall that a Banach space F' is an £,-space
if and only if EQ.F is (DF) for every (DF)-space E ([21]).

Theorem 1.

There exists a separable Fréchet space E having the property that each bounded
set B C E is contained in a bounded disk D C E such that Ep is isomorphic to
an ly-space and there exists a separable reflexive Banach space X such that (E, X)
does not satisfy the property (BB).

(Sketch of) Proof. a) Construction of E. For all n € N, large enough, we choose
the spaces (Gp,gn) and (Mp,gn), M, C Gy, as in Example 3.2.1 of [37]. We fix
a continuous projection Pp:G, — M, and set @, := idg, — P,. We choose an
li-norm g), in the space @,(G,) =: N, such that g}, (z) > gn(z) for z € N,.. This
means that we choose some algebraic basis of N,, and form the /;-norm with respect
to this basis, and to get g;, > g, we multiply this norm by a suitable constant. Since
N, is finite dimensional, there exists a number C,, € N such that

(1) Cngn(2) > gr(z)

for all € Ny, and such that (Cx)2, forms an increasing sequence. We define now
for every k € N and z € G,

(2) k() 1= 2 gn(Pag) + 200tk losk g/ (9 1 2)
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where D, € N, D, > maxi<n—1{ dim (Nyn),||Pr||,||@~||, Dt }, the operator norms
taken in (Gp, grn). Now the space E is constructed as in [35, Sect. 4], with this choice
of M, G, and g, and replacing (4.4) by (2).

b) Construction of X. We choose X to be the l3-sum of the finite dimensional
Banach spaces (Mp,gr)'. Then X is separable and reflexive.

c¢) On the bounded sets in E. Let B C E be bounded. Then B is contained in
aset D:={z € E; ¥%_ r71 nu(z) < 1}, where the sequence (7,,) of norms (see
[35, 4.4]) defines the topology of E, and for m > 1 the numbers r,, are assumed to
be of the form

(3) Tm =T1 Ctm Dtm2t"‘c'mD‘m

for some t,, € N (this is possible since the sequence (C;D; 2t€+Pt),cy is increasing
and unbounded), and we also may assume

(4) Tm41 > om+l, for all m € N.

For s € Nlet E; be the s-th coordinate space of E (see [35,4.4]). It is elementary
to see from the definitions that Ep is the space

(D& EnD)

s€N

i.e. the l;-sum of the Banach spaces E; endowed with the Minkowski functionals of
E;N D. Hence, it suffices to show that the Banach-Mazur distance

(8) d((Es, E; N D), 1) <12 A

for all s € N, where A is as in [37, Example 3.2.1].
It is easy to see (using (4) and the definition of the space E) that

(6) E,NDCDs:={z€kE,; r'h(z)+r1h(z) <1} C2(E,ND)

(the meaning of h and h is as in [35, 4.2]). Let us denote by Gnx the (n,k)-th
coordinate space (isomorphic to G,) of Es. Again, it is easy to see that (Es,D;) is

equal to
(g'%(ank,ps NGu)), -

So, to prove (5) it suffices to show that

(7 d((GrkyDs N Gpy), 1§™ Gk ) < 6 A
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for all » and k. Let n and k arbitrary. The Minkowski functional of D; N G, is
equal to

gnk(z) :=17 " gn(z) + 1731 gnk(2)
(8) =17 gn(2) + 7531(2 gn(Paz) 4 200+ R Cn s Dusk o) (7))

where 2 € Gpi. Recall that 7,47 is of the form (3) for some t,41. We have two
cases:

(i) Assume that ts41 > n+ k. Then, by (3) and the choice of (Ct)ien, (Dt)ten,

7'.;_-1}1(2 gn(Pnz) + 2(n+k)C,.+gD,.+;,g7I1(an))
<riCoL D7 (gn(Pa) + 94(Qnz))
<1 C DY (gn(Paz) + 65 (Qn))
< 7' DN (gn(Paz) + gn(@ne))
(9) <2 rl'lgn(z).

So, in this case, Vr € G,
(10) 11 9n(2) < Gnk(z) < 377 gn().

Since d((Gr,gn),19™ &) < X (see [37, Example 3.2.1]), we get (7) by using (10).
(ii) Assume that ;47 < n+k — 1. Then

ren 2RO Dt gl (Quz)) > r1CyY, DY 204 Dot gl Q)
(11) > 1790(Qnz) > 11 gn(Qna).
Now we show that
1, _ 1 oim )
371 gn(Paz) + 13, 20RO Dn0k 61 (Q,10)) < k(o)
(12) <2 (rl‘lgn(}?nx) + 7-;:12(n+k)0n+kDn+kg;l(an)).

Let z € Gri. Case a: If g,(Prz) > 2 gn(Qrz), then

1
(13) gn(m) = gn(in + Qnm) > gn(Pn37) - gn(an) > ‘2" gn(an)-
Hence,
Gnk(2) = 177 9n(2) + 7541(2 gn(Paz) 4 20RO sr Dotk g1 (9, 7))

1, _ -
(14) 2 5(m Lgn(Pa) + 1oy 2R sk Dask g (Q,2))
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and the first inequality of (12) holds in this case.
Case b: If g,(Prz) < 2 gn(Qn), then by (11) we have

17 gn(Paz) < 2 171 gn(Qnz) < 2 17} 20 K)Cn sk Dtk gl (@ 2)

and consequently the first inequality of (12) holds.
The second inequality of (12) follows in both cases a and b from (use (11))

Tl—lgn(x) < Tl—lgn(an) + Tflgn(an)
< 17t gn(Paz) 4 13y 200HROnarDnsr gl (Q 2).

Now (12) implies (7) also in the case (ii), by the choice of g; and since
d(M,, 18m™May < X by [37, 3.2.1].

d) The fact that (E, X) does not satisfy property (BB) is proved as in [35, 4.5].
a

Corollary 2.

There exist an ¢-(DF)-space G and a reflexive Banach space X such that
Ly(X,G) is not (DF).

Proof. We take X and E as in the theorem above, and G := Ej;. It is clear
that G is an e-(DF)-space, moreover it is a projective limit of £,-spaces. Now, the
result follows from the theorem above and Proposition 4.2 (note that £ and X are
separable). O

Corollary 3.

There exist an e-(LB)-space G and a reflexive Banach space X such that GQ. X
is not a (DF)-space.

Proof. Let E and X be as in the statement of Theorem 1. We first show that E
has a predual which is an ¢-(LB)-space. Indeed, E is a Fréchet space of Moscatelli
type (see [17] for definition) associated with [; and Banach spaces H, L (H — L)
where H and L are [;-sums of finite.dimensional Banach spaces (see the comments
after [17, 2.5]). Then, we can construct cp-sums of finite dimensional Banach spaces,
say K and Y (Y — K) such that K; = H and Y,/ = L. We consider the (LB)-space
of Moscatelli type (see [16]) G := ind co((K)k<n, (Y )k>n). According to [17, 2.6]
we have that G} = E. Now Ej is an ¢-space and E; = G = G, where n is the
natural topology. Thus, by [28, Prop. 2.12] it follows that G is also an ¢-space and
our assertion is proved.

To finish we assume that G®.X) is a (DF). Hence it is quasibarrelled since G
and X are separable (see [31, 29.3.12]). Then we apply [21, Prop. 2] (note that X
has a finite dimensional decomposition so it has the approximation property) to get
that (E,X) satisfies the property (BB), contradicting Theorem 1. Thus G®.X] is
not a (DF)-space. O
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