On jets of surfaces

FERNANDO ETAYO GORDEJUELA

Dpto. Geometría y Topología, Facultad de Matemáticas, Universidad Complutense, 28040 Madrid, Spain

Received March 19, 1991

ABSTRACT

We study the 2-jet bundle of mappings of the real plane into a manifold. We shall prove that there exists an imbedding of this 2-jet bundle into a suitable first order jet bundle, in such a way that its image is the set of fixed points of a canonical automorphism of the biggest jet bundle.

1. Introduction

Let M be a paracompact smooth real manifold of dimension $n \geq 2$. Let $J_0^k(\mathbb{R}^p, M)$ be the tangent bundle of p^k -velocities ([2, 4, 6, 8, 9, 10]), i. e., the k-jet bundle of mappings from \mathbb{R}^p to M with source $0 \in \mathbb{R}^p$. As is well known, $\pi: J_0^k(\mathbb{R}^p, M) \longrightarrow M$ is a fibre bundle, setting $\pi([\phi]_k) = \phi(0)$, where $[\phi]_k$ stands for the k-jet of ϕ .

In particular, if p = k = 1, we have the tangent bundle of M, and, if p = 1, k = 2, the second tangent bundle. This latter one satisfies the following property [1]: $J_0^2(\mathbb{R}, M)$ can be immersed in TTM as the invariant set of the canonical involution ([1,5,8]). This result has been generalized in [7] to the 1-jet bundle of sections of a fibre bundle.

In this paper, we shall prove that there exists a canonical involution α in $J_0^1(\mathbb{R}^2, J_0^1(\mathbb{R}^2, M))$ such that $J_0^2(\mathbb{R}^2, M)$ can be immersed in $J_0^1(\mathbb{R}^2, J_0^1(\mathbb{R}^2, M))$ as the invariant set of α . The same result is true for k > 2, but, for the sake of simplicity, we shall study only the case k = 2. The k-jet bundle $J_0^k(\mathbb{R}^2, M) \longrightarrow M$ will be called the k-jet bundle of surfaces, because the image of ϕ is a surface in M.

172 ETAYO

Notations in the work are those we have used in [5]. We wish to thank prof. Ignacio Sols for proposing to us this question

2. The results

In [8] Morimoto gives the following proposition (that we study in the case k = 1, p = 2):

Proposition 1

There exists a unique automorphism α in $J_0^1(\mathbb{R}^2, J_0^1(\mathbb{R}^2, M))$ such that:

- a) $T_2\pi\circ\alpha=\tilde{\pi}$,
- b) $\tilde{\pi} \circ \alpha = T_2 \pi$,
- c) $\left(f^{(\mu)}\right)^{(\lambda)} \circ \alpha = \left(f^{(\lambda)}\right)^{(\mu)}$, for all $\lambda, \mu \in N(2,1)$, and all function f of M, where $\tilde{\pi}$ is the canonical projection, $T_2\pi$ is the induced map, given by

$$(T_2\pi)\Big(\Big[[\phi]_1\Big]_1\Big)=\Big[\pi\circ[\phi]_1\Big]_1,$$

 $N(2,1)=\{(m,n)\in\mathbb{Z}\times\mathbb{Z}\mid m\geq 0,\, n\geq 0,\, m+n\leq 1\},\, f^{(\alpha)} \text{ is the function on } J^1_0(\mathbb{R}^2,M) \text{ given by }$

$$f^{(\alpha)}([\phi]_1) = \frac{1}{\alpha!} \left(\left(\frac{\partial}{\partial t} \right)^{\alpha} (f \circ \phi) \right)_{t=0}$$

with $t = (t_1, t_2)$ the canonical coordinates in \mathbb{R}^2 , and $\alpha = (\alpha_1, \alpha_2)$.

It is easy to see that $\alpha \circ \alpha$ is the identity. We shall call α the canonical involution of $J_0^1(\mathbb{R}^2, J_0^1(\mathbb{R}^2, M))$.

Proposition 2

The map i

$$i: J_0^2(\mathbb{R}^2, M) \longrightarrow J_0^1(\mathbb{R}^2, J_0^1(\mathbb{R}^2, M))$$

given by $i([\phi]_2) = [[\phi]_1]_1$ is an injective immersion.

The proof is easy.

Remark. This kind of injection is often used in the theory of jet bundles of sections ([7]).

The most difficult problem is the following

Proposition 3

With the above notation, $i\Big(J_0^2(\mathbb{R}^2,M)\Big)$ is the set of fixed points of the canonical involution α .

Proof. We have to take suitable local coordinates in all the manifolds, in order to obtain the local expressions of the injection i, the involution α , the maps $T_2\pi$ and $\tilde{\pi}$, and the lifted functions $\left(f^{(\lambda)}\right)^{(\mu)}$.

Let $(x^1, \ldots, x^n) = (x^i)$ be local coordinates in M, n being the dimension of M. Then we obtain an induced local chart in $J_0^1(\mathbb{R}^2, M)$ given by (x^i, y^i, z^i) , where

$$x^{i}([\phi]_{1}) = (x^{i} \circ \phi)(0) = \phi^{i}(0).$$

$$y^{i}([\phi]_{1}) = \frac{\partial \phi^{i}}{\partial t_{1}}(0)$$

$$z^{i}([\phi]_{1}) = \frac{\partial \phi^{i}}{\partial t_{2}}(0)$$

Using this idea, we obtain coordinates

$$(x^{i}, y^{i}, z^{i}, x^{i+n}, x^{i+2n}, y^{i+n}, y^{i+2n}, z^{i+n}, z^{i+2n})$$

in $J_0^1(\mathbb{R}^2, J_0^1(\mathbb{R}^2, M))$, where

$$x^{i+n}([\phi]_1) = \frac{\partial \phi^i}{\partial t_1}(0)$$

$$x^{i+2n}([\phi]_1) = \frac{\partial \phi^i}{\partial t_2}(0)$$

$$y^{i+n}([\phi]_1) = \frac{\partial \phi^{i+n}}{\partial t_1}(0)$$

$$y^{i+2n}([\phi]_1) = \frac{\partial \phi^{i+n}}{\partial t_2}(0)$$

$$z^{i+n}([\phi]_1) = \frac{\partial \phi^{i+2n}}{\partial t_1}(0)$$

$$z^{i+2n}([\phi]_1) = \frac{\partial \phi^{i+2n}}{\partial t_2}(0)$$

where $x^i \circ \phi = \phi^i$, $y^i \circ \phi = \phi^{i+n}$, $z^i \circ \phi = \phi^{i+2n}$.

And we obtain for $J^2_0(\mathbb{R}^2, M)$, induced local coordinates

$$(x^i, y^i, z^i, a^i, b^i, c^i)$$

174 ETAYO

where the three last ones are the second partial derivatives

$$a^{i}([\phi]_{1}) = \frac{\partial^{2}\phi^{i}}{(\partial t_{1})^{2}}(0), \qquad b^{i}([\phi]_{1}) = \frac{\partial^{2}\phi^{i}}{\partial t_{1}\,\partial t_{2}}(0), \qquad c^{i}([\phi]_{1}) = \frac{\partial^{2}\phi^{i}}{(\partial t_{2})^{2}}(0).$$

We introduce the following notation

$$\xi = (x^{i}, y^{i}, z^{i}, x^{i+n}, x^{i+2n}, y^{i+n}, y^{i+2n}, z^{i+n}, z^{i+2n}).$$

Then we obtain

$$\tilde{\pi}(\xi) = (x^i, y^i, z^i),$$

$$(T_2\pi)(\xi) = (x^i, x^{i+n}, x^{i+2n}).$$

$$i([\phi]_2) = \left(\phi^i, \frac{\partial \phi^i}{\partial t_1}, \frac{\partial \phi^i}{\partial t_2}, \frac{\partial \phi^i}{\partial t_1}, \frac{\partial \phi^i}{\partial t_2}, \frac{\partial^2 \phi^i}{(\partial t_1)^2}, \frac{\partial^2 \phi^i}{\partial t_1 \partial t_2}, \frac{\partial^2 \phi^i}{\partial t_1 \partial t_2}, \frac{\partial^2 \phi^i}{(\partial t_2)^2}\right)$$

and then,

$$i\left(J_0^2(\ \mathbb{R}^2,M)\right) = \{(x^i,y^i,z^i,y^i,z^i,y^{i+n},y^{i+2n},y^{i+2n},z^{i+2n})\},$$

and the nine types of lifted functions are:

$$(f^{(0,0)})^{(0,0)}(\xi) = f(x^{i})$$

$$(f^{(0,0)})^{(1,0)}(\xi) = \frac{\partial f}{\partial x^{i}} \cdot x^{i+n}$$

$$(f^{(0,0)})^{(0,1)}(\xi) = \frac{\partial f}{\partial x^{i}} \cdot x^{i+2n}$$

$$(f^{(1,0)})^{(0,0)}(\xi) = \frac{\partial f}{\partial x^{i}} \cdot y^{i}$$

$$(f^{(1,0)})^{(1,0)}(\xi) = \frac{\partial^{2} f}{(\partial x^{i})^{2}} \cdot y^{i} x^{i+n} + \frac{\partial f}{\partial x^{i}} \cdot y^{i+n}$$

$$(f^{(1,0)})^{(0,1)}(\xi) = \frac{\partial^{2} f}{(\partial x^{i})^{2}} \cdot y^{i} x^{i+2n} + \frac{\partial f}{\partial x^{i}} \cdot y^{i+2n}$$

$$(f^{(0,1)})^{(0,0)}(\xi) = \frac{\partial f}{\partial x^{i}} \cdot z^{i}$$

$$(f^{(0,1)})^{(1,0)}(\xi) = \frac{\partial^{2} f}{(\partial x^{i})^{2}} \cdot z^{i} x^{i+n} + \frac{\partial f}{\partial x^{i}} \cdot z^{i+n}$$

$$(f^{(0,1)})^{(0,1)}(\xi) = \frac{\partial^{2} f}{(\partial x^{i})^{2}} \cdot z^{i} x^{i+2n} + \frac{\partial f}{\partial x^{i}} \cdot z^{i+2n}$$

Using proposition 1, a straightforward calculation shows that

$$\alpha(x^{i}, y^{i}, z^{i}, x^{i+n}, x^{i+2n}, y^{i+n}, y^{i+2n}, z^{i+n}, z^{i+2n})$$

$$=(x^{i}, x^{i+n}, x^{i+2n}, y^{i}, z^{i}, y^{i+n}, z^{i+n}, y^{i+2n}, z^{i+2n}).$$

Then the set of fixed points is $i(J_0^2(\mathbb{R}^2, M))$, as we wanted. \square

Remark. Condition c) of proposition 1 is sufficient to obtain α .

We can obtain more information on these jets of surfaces.

Proposition 4

The canonical coordinates in \mathbb{R}^2 define a diffeomorphism

$$\beta: J_0^1(\mathbb{R}^2, M) \longrightarrow TM \oplus TM.$$

Proof. We define $\beta([\phi]_1) = \left(\phi_*(\frac{\partial}{\partial t_1}), \phi_*(\frac{\partial}{\partial t_2})\right)$. It is easy to see that β is well defined and injective.

Let v and w be two vectors in T_xM , for some $x \in M$. Let Γ be a linear connection on M (it exists, because M is paracompact) and V a normal neighbourhood of $x \in M$. Let U be a small neighbourhood of $0 \in \mathbb{R}^2$, such that for all $(t_1,t_2) \in U$, $t_1v+t_2w \in V$. Then, we define $\phi:U \subset \mathbb{R}^2 \longrightarrow M$, by setting $\phi(t_1,t_2)=\exp(t_1v+t_2w)$. It is obvious that $\beta([\phi]_1)=(v,w)$, and that the construction is independent of the chosen connection. \square

Remark. The 1-jet of the surface $[\phi]_1$ is given by $\phi(0)$ and the velocities of the curves images of the axis of \mathbb{R}^2 . These vectors generate the tangent plane to the surface $\operatorname{im}(\phi)$, that can be degenerate, but their information is strong: it is possible that different 1-jets of surfaces define the same tangent plane.

Corollary 5

Given a linear connection on M, there exists a canonical diffeomorphism between $J_0^1(\mathbb{R}^2, M)$ and $J_0^2(\mathbb{R}, M)$.

Proof. It is a consequence of the above proposition and the fact that a linear connection defines a diffeomorphism [3]

$$\pi_{TM} \oplus \kappa: J_0^2(\mathbb{R}, M) \longrightarrow TM \oplus TM$$

where κ is the connection map [5] and π_{TM} the tangent projection $T(TM) \longrightarrow TM$ when $J_0^2(\mathbb{R}, M)$ is included in TTM. \square

Corollary 6

There exists a canonical diffeomorphism

$$J_0^1(\mathbb{R}^2, J_0^1(\mathbb{R}^2, M)) \xrightarrow{\simeq} T(TM \oplus TM) \oplus T(TM \oplus TM).$$

176

References

Етауо

- 1. A. Besse, Manifolds all of whose geodesic are closed, Springer, Berlin-Heidelberg, 1978.
- 2. L. A. Cordero, C. T. J. Dodson and M. de León, Differential Geometry of Frame Bundles, Kluwer, Dordretch, 1989.
- 3. C. T. J. Dodson and M. S. Radivoiovici, Second Order Tangent Structures, *Int. Jour. Theor. Physics* 21 (1982), 151-161.
- 4. C. Ehresmann, Les prolongements d'un space fibré différentiable, C. R. Acad. Sci. Paris 240 (1955), 1755-1757.
- 5. F. Etayo, Lifts and isomorphisms of commutation in bundles of jets, *Coll. Math.* 39 (1988), 231–247.
- 6. M. de León and P. R. Rodriques, Generalized Classical Mechanics and Field Theory, North-Holland, Amstrdam, 1985.
- 7. M. Modugno, Jet involution and prolongations of connections, *Casopis Pest. Mat.* 114 (1989), 356–365.
- 8. A. Morimoto, Prolongation of Geometric Structures, Math. Inst. Nagoya, Nagiya Univ., 1969.
- 9. W. Tulczyjew, Les jets généralisés, C. R. Acad. Sci. Paris 281 A (1975), 349-352.
- 10. W. Tulczyjew, The Lagrange complex, Bull. Soc. Math. France 105 (1977), 419-431.