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Cauchy multiplication and periodic functions (mod r)
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ABSTRACT

We analyse periodic functions (mod 7), keeping Cauchy multiplication as the
basic tool, and pay particular attention to even functions (mod 7), the subclass
of periodic functions (mod 7) having the property f(n) = f((n,r)) for all
n. We provide some new aspects into the Hilbert space structure of even
functions (mod r) and make use of linear transformations to interpret the
known number-theoretic formulae involving solutions of congruences.

1980 Mathematics Subject Classification (1985 Revision) 11A25.

1. Introduction

Let 7 be an arbitrary but fixed positive integer and F a field of characteristic 0
containing the rth roots of unity. In [2], Cohen defined an F-valued function f
on the set of rational integers to be (7, F') arithmetic if f(n) = f(n') whenever
n =n' (mod r). For example, the function ¢;, defined by €;(n) = exp(2rijn/r),
is (r,F) arithmetic for any integer j. We denote by A,(F) the set of all (r, F)
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arithmetic functions. Any (r, F') arithmetic function f can be expressed uniquely in
the form [11, p. 328]

(1) f(m) = 3" azes(n),
j=0

where

(2) a; =17t N fu)ei(—u).

u (mod 7)

It may be noted that (7, F') arithmetic functions are, in fact, periodic functions
(mod 7) [1, 9, 11].

Now, f € A,(F) is said to be even (mod r) if f(n) = f((n,r)), where (n,r) is
the greatest common divisor of n and r. Taking F = C, the field of complex numbers,
we consider the subclass B, (C) of even functions (mod 7). If f € B,(C), then it is
known [3] that f can be written uniquely in the form

(3) f(n) =) a(d)C(n,d),

d|r

where C(n,r) is Ramanujan’s trigonometric sum. The coefficients a(d), d|r, are
called the Fourier coefficients of f. They have the expressions [9, p 80, 11, p. 335]

@) a(d) = 'Y f(r/8)C(r/d,8),

s|r

(5) a(d) = (ré(d)" Y fa)Cla,r),
a (mod 1)
where ¢ is the Euler totient.
E. Cohen has made an extensive study of the theory of even functions (mod r)
in a series of papers [3-7]. Though the idea of an even function (mod r) is implicit
in counting solutions of the linear congruence

(6) n=cy+z2 4+ (mod )

under the restriction (z;,7) = 1,7 = 1,2,...,s, the theory as developed by Cohen
gave the clue to various number-theoretic identities [9, 11].

The purpose of this paper is to analyse certain standard properties of even
functions (mod r), keeping Cauchy multiplication (for definition, see equation (7))
as the basic tool. We also make use of linear transformations to interpret the known
number-theoretic formulae involving solutions of congruences. A measure theoretic
approach provides a new insight into the structure of even functions (mod 7).
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2. The Cauchy product

The Cauchy product of f,g € A,(F) is defined by

(7) (fog)(n)= Y fa)g),

n=a+b (mod r)

where a,b range over the elements of a complete residue system (mod 7) such that
n=a+b (modr). If

r—1
f(n) = aje;(n)
=0

J
and

r—1
g(n) = bjei(n),
j=0

then their Cauchy product is given by [11, p. 329]:

(®) (Fog)m)=rY asbses(n).

i=0

The set A, (F) forms a commutative ring relative to ordinary addition and Cauchy
multiplication. Furthermore, A,(F) has the structure of a semi-simple algebra
over F and it can be expressed as the direct sum of r fields each isomorphic to
F [2]. The function eg, defined by

1 if n=0 (mod r),
€o(n =
0 otherwise,
serves as the identity under Cauchy multiplication. It can be written as
r—1
(9) eo(n) =771 Y €i(n).
§=0

We call g the Cauchy inverse of f if fog = eg.
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Theorem 1
Let f € A.(F') and denote

r—1

f(n) =" ajei(n).

Jj=0
Then f possesses a Cauchy inverse if and only if aj # 0 for all j = 0,1,...,7 — 1.
The Cauchy inverse is given by

r—1

Fm) = 1 Y it e(n).

Jj=0
Proof. Let .
g(r) =Y bjej(n).
=0

Then, by (8) and (9), fog = e if and only if rajb; = r~', 5 =0,1,...,r — 1. This
proves Theorem 1. O

Next, we shall confine ourselves to even functions (mod 7). The Cauchy product
of even functions f, g (mod 7) is an even function (mod 7) and is given by

(10) (fog)(n) =1 a(d)B(d)C(n,d),

d|r

where a(d) and ((d), d|r, are the Fourier coefficients of f and g, respectively
[9, p. 84, 11, p. 338]. The identity function ey can also be written as

(11) eo(n) =171 " C(n,d).
d.|r

Theorem 2

Let f € B,(C) with the Fourier coefficients a(d), d|r. Then f possesses a Cauchy
inverse in B.(C) if and only if a(d) # 0 for all d|r. The Fourier coefficients of the
Cauchy inverse are r~2a(d)™!, d|r.

Proof. Theorem 2 follows on the lines of proof of Theorem 1 using (10) and (11). O
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3. The unitary space of even functions (mod r)

It is known [8, p. 194] that the vector space B,(C) forms a complex Hilbert space
(and therefore a unitary space) under the inner product

(12) (f,9) =Y $(d)f(r/d)g(r/d) = (¢ f3)(7),

dir

where g(n) = g(n), the complex conjugate of g(n), and * is the Dirichlet convolution.
We shall show this adopting a measure theoretic approach in Section 5. There we
shall also prove that the above inner product can be written as

(13) (f,9) =7 a(d)B(d)$(d) = (f 0 §)(0),

d|r

where a(d) and ((d), d|r, are the Fourier coefficients of f and g, respectively.
The inner product (f,g) given in (13) leads to the definition of a norm of
f € B,(C) naturally. That is, we define

1/2
(14) Il = (fo )72 = {Zia 2 (d) } .

d|r
The Cau'chy-Schwarz inequality states that
(15) (£ <A Ngll,  f.9 € Bo(C).

Incidentally, we remark about the analogous inequality about [|f o g||.

Theorem 3
For f,g € B,(C),

(16) 1 o gll < v/ IIAI Nlgll-

Proof. Suppose a(d),(d), where d|r, are the Fourier coefficients of f and g, re-
spectively. Then, by (10) and (14), we can write

(17) Ifogll® =7 rla(d)*16(d)*$(d).

dlr
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Also,
(18) IF1PlIgl? = r* > ) [l @) P18 $(d)(2).
dir t|r
For d = t, the right-hand side of (18) contains
123 a(d)PI8(d)2 6% (d).
dlr
Since, in addition, ¢(d) < ¢*(d) for each d|r, we have

Y la(dP1B(d)P¢(d) < Y la(d)P|B(d)P4*(d)

dlr d|r
<13 Y Ja(@) P8R HDL).
dlr t|r
Now, the desired inequality follows from (17) and (18). O

Next, we shall construct subspaces of B,(C). For f € B,(C), the Fourier coef-
ficients a(d), d|r, are known. Let ¢ be a fixed divisor of 7. Associated with f, we
can contsruct an even function f(n,q) (even (mod 7)) by defining

(19) f(n,q) =Y a(d) C(n,d).
dlg

If d|r, d fq, then a(d) = 0 in the representation of f(n,¢) as an element of B.(C).
In (19) we are actually forming a truncated sum’.

Let S4(C) be the set of functions of the form (19). Then S,(C) forms a subspace
of B.(C) of dimension 7(g), where 7(q) is the number of divisors of ¢. Since B,(C)
is a unitary space, the orthogonal complement of S,(C), written S;(C), exists and
we have

(20) B,(C) = 5,(C)® $;(C).
In (20), $;-(C) consists of functions of the form
f(n) = d(d)C(n,d).

djr
dfq

Its dimension is 7(r) — 7(q).

Remark 1. If 7(r) = m, the complex inner product space B,(C) is isomorphic to the
weighted Euclidean inner product space C™ with weights ¢(d), d|r. In particular,
when 7 is a prime, B,(C) is isomorphic to C2.
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4. Linear transformations

Given two unitary spaces B,(C) and B, (C), a transformation T : B,(C) — B (C)
is said to be linear if, for f,g € B,(C),

T(z1f + 229) = 21aT(f) + 22T(g), 21,22 € C.

Let L(B,,B,) denote the set of linear transformations from B,(C) into B.(C).
Then L(B;,B,) endowed with addition and scalar multiplication gives a vector
space of dimension 7(r)7(r').

A linear transformation from B,(C) into itself is called a linear operator.

DEFINITION. Let v € B,(C). The linear operator T, is defined by
Ty(f) =70 f, f € B:(C).
For eg, the identity element under Cauchy multiplication,
Teo(f)=eoof=f.

Theorem 4

If v,m € B,(C), the composition of operators T., and T, has the property
(Ty - Ty)(f) = Tyon(f), € Br(C).
Proof. We have
(Ty - To)(f) = T(T5(f)) = Ty(no f) = yono f = Tyon(f)
This proves Theorem 4. O
As an illustration, let

p(n) =

{ 1 if (n,7) =1,
0 otherwise.
The Fourier coefficients of p are r=1C(r/d,r), d|r. We note that

T,(f)(n)= Y fln—a), [e€B(C)

a=1
(a,r)=1
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If a(d), d|r, are the Fourier coefficients of f, then we have

T,(f)(n) = Y a(d)C(r/d,r)C(n,d).

dir

In particular,

(21) T,(p)(n) =71 " C(r/d,r)*C(n,d).

dir

The function T,(p) is the well-known Nagell totient [9, p. 119, 11, p. 343]. Let
N(n,r,s) denote the number of solutions of (6). Then

(22) N(n,r,s) = Tés_l)(p),

where T( ) = T,-...-T, (s factors), and so

(23) N(n,r,s) =71 ZC(r/d,r)sC(n,d).
dlr

For Ramanujan’s sum C(n,7), we have

(24) T,(C)(n) = Z C(n —a,r)=p(r)C(n,r)

(ar) 1

[9, p. 86]. Thus we can write

(T, — ()T, )(C) =0

and so we may look upon u(r) as an eigenvalue of the operator Tp.

If
1 if (n,7) is a square,
(n) =

0 otherwise,

we may consider the operator T, and give algebraic interpretation to the number
M(n,r,s) of solutions of

n=r1+T3+---+2z, (modr)



Cauchy multiplication and periodic functions (mod r) 41

under the restriction (z;,7), i = 1,2,...,s, is a square [5]. The Fourier coefficients
of the function € are r~!B(r/d,r), d|r, where B(n,r) is an analogue of Ramanujan’s
sum and is given by [10]

B(n,r) = Z exp(2rian/r) = Z A(r/d)d = Z C(n,d).
a (mod ) d|(n,r) dD2=r
(a,r) is a square

Here ) is the well-known Liouville function. Now, analogous to (21), (22), (23), and
(24), we have

(25) T(e)(n) =171y B(r/d,r)*C(n,d),
d|r

(26) M(n,r,s) = TED(e),

(27) M(n,7,s) ="' )" B(r/d,r)°C(n,d),
d|r

and

(28) T(C)(n) = Mr)C(n, 7).

Remark 2. Since B,(C) is a Hilbert space, it is a complete normed linear space
under the norm given in (14). It can be verified that the sequences {N(:,7,5)}2,
and {M(-,r,s)}%2; (r > 2) of B,.(C) are not Cauchy sequences. Therefore these
sequences do not converge in B,(C).

5. Measure theoretic approach
Given the positive integer r, we write
X={d>0:d|r}.

Let B denote the power set of X. Then (X, B) is a measurable space. Define a
measure m on B such that

m(d) = ¢(r/d) for all d|r.
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It is clear that then (X, B, m) is a measure space.
Let f be a complex-valued function on X. The integral of f over X is

[ rim =3 d)aea).

d|r

Then the vector space L?(X,B,m) of all measurable functions f : X — C such
that |f|? is integrable over X consists of all complex-valued functions on X. Since
every even function f (mod ) is uniquely determined by its values on X, the vector
spaces L?(X, B,m) and B.(C) are identical. It is well known from linear algebra
that the vector space L%(X, B,m) forms a Hilbert space under the inner product

0= [ radm.

This proves that the vector space B.(C) forms a Hilbert space under the inner
product given in (12).

Theorem 5

The set

(29) {(rg(d))?C(-,d) : d| 7}

forms an orthonormal basis of the Hilbert space B.(C).

Proof. 1t is plain that the dimension of the vector space of the complex-valued
functions on X is 7(r), that is, the dimensjon of B,(C) is 7(r). Therefore it suffices
to prove that the set (29) is orthonormal. For d|r, § |7, we have, by [6, (2.1)] and

[3, (6)],

> C(r/e,d)C(r/e, 8)4( (6)) C(r/e,d)C(r]é,€) =

elr elr

{ ré(d) if d =6,
0

otherwise.

This proves Theorem 5. For a similar proof of this theorem we refer to §2 of Chapter
7of [8]. O
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Remark 3. Since the set in (29) is an orthonormal basis, we have, for each

f € B,(C),
(30) f(n) = 3" (£,(rd(d)2C (-, d)) (r(d) T2 C(n, d).

dlr
Since C(r/6,d)p(8) = C(r/d,8)é(d) [9, p. 93, 11, p. 333], we have

(f,(rd(@)T2C(-,d)) = $(8)f(r/6)(r¢(d))"/*C(r/6,d)

§|r
=7 2¢(d)/2 N f(r/6)C(r/d, ).
§|r
Therefore,
(31) (f,(rg(d))"2C (-, d)) = (r¢(d))2a(d),  d|r,

where a(d) is as given in (4). Thus the equation (30) with the inner product (12)
gives the Fourier expansion (3) with the Fourier coefficients given by (4).

Theorem 6 '
The inner products of the vector space B,(C) given by (12) and (13) are equal.

Proof. By Theorem 5 and Parseval’s identity, for f,g € B,(C),
(f,9) =Y (£, (r¢(d))"/*C(-,d)) (g, (r(d))"1/2C(:,d)).

dir

Using (31), this can be written as
(f,9) =7 a(d)B(d)é(d),
dlr

where a(d) and 3(d), d|r, are the Fourier coefficients of f and g, respectively. Since’
C(0,d) = ¢(d), applying (10) we see that

(f.9) = (£.09)(0).
This proves Theorem 6. O

Remark 4. The equation (30) with the inner product (13) gives the Fourier expan-
sion (3) of f € B,(C) with the Fourier coefficients given by (5).
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