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ABSTRACT

The group SU(2,2) acts naturally on an L2-space on a hyperbolic matrix
ball (type one bounded symmetric domain) with respect to the usual weighted
measure. We will find the corresponding invariant Laplace operator and study
its spectral resolution. ‘The spherical functions (K-invariant eigenfunctions)
can be expressed using hypergeometric functions. It turns out that, besides the
weighted Bergman space, some discrete parts enter into the decomposition,
The number of the discrete parts equals to the number of the orbits of the
Weyl group action on the zcros (in the “lower half plane™) of the generalized
Harish-Chandra c-function. We calculate their reproducing kernels in a special
case. As an application, we obtain decompositions of the tensor products of
holomorphic discrete series representations. This improves an carlier result
by 1. Repka.

The second author would like to thank the Magnuson fund, Royal Swedish Academy of
Sciences and Odense University for their financial support.
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274 PEETRE AND ZHANG
0. Introduction

In the papers [21] and [27], we studied the problem of the explicit. decomposition
of the action of the Moebius group on weighted ilbert spaces of functions on the
rank onc symmetric domains, which contain the usual weighted Bergman spaces
as irreducible components. In particular, we found all the other irreducible discrete
components in this decomposition and described these spaces using certain invariant,
Cauchy-Riemann operators.

In this paper. we study the same problem in the case of a hyperbolic matrix ball
(a bounded symmetric domain of type one). We will find the invariant Laplacian
and study its spectral resolution via the Harish-Chandra e-function. In our case, the
c-function has zeros in a cone (lower half plane) in the (complexification of the) dual
of a Carian subalgebra, while the Weyl group acts on the zeros via permutation.
Each orbit of the action gives us a discrete part in the decomposition. The invariant
Laplacian is of the form Laplace-Beltrami operator plus a first order differential
operator. We find exactly all of the discrete and the continuous spectrum.

As an application of our result, we find also the discrete parts of tensor products
of holomorphic discrete series. This refines an carlier result oblained by Repka [23).
In the case of the unit disk, the irreducible decomposition of the tensor products
of holomorphic discrete series was studied in |22}, [15] and [28]. Qur considerations
also lead us Lo orthogonality relatious ol the continuous dual Mahn polynomials
previously studied by Wilson |26]. In particular, we {ind that these polynomials
arc actually the Clebsch-Gordan cocefficients for the tensor products of holomorphic
discrete series of SU(1, 1) and that the weight in the orthogonality relations is a
product of the Harish-Chandra c-function and the symbol function of a certain
Berezin transform.

We note that a similar problem of decompostion of a Hilbert space of functions
on the Shilov boundary of a bounded symmetric domain was studied in [16]. I we
lift to the universal covering group of the automorphism group, the restriction of
the representation 1o the isotropy group gives us a character of this group, while
the spaces that we are studying consist of functions on the universal covering group
which are right invariant with respect to the character.

We will restrict oursell on the 2 x 2 hyperbolic matrix ball. Much of the cal-
culation can be carried out on any type | domain, and some for gencral symmetric
domains as well; it is our beliel that we eventually will be able to do the whole
theory on that level of gencrality.

Acknowledgement.  We would like to thank J. Arazy, 11. Upmeier and Z. Yan
for helpful discussions. We are likewise grateful to J. IFaraut, G. lleckman and
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G. Gasper for several valuable comments. The second author would like to thank
the Mittag-Leffler Institute for kind hospitality, where part of this work was done.

1. The invariant Laplacian

Let D be the rank two type I tube type domain, that is, D = D(I5,3) consists of all

complex 2 x 2 matrices
zZnn 2
7= %1 %12
221 222

with Z*Z < I. Its automorphism group is the matrix group SU(2,2) of all 4 x 4
matrices (written in block form)
A B
g= C D)/’

with det g = 1, which are unitary with respect to the indefinite metric
1] + | 22]* — |23]? — |24]2.

The action on ) is
97 =(AZ + B)(CZ + D)™

Let K(Z,W) be the reproducing kernel for the Bergman space on D. It is
well-known that

K(Z,W) = det (I — ZW*)~,

see [14], p. 84. The Bergman metric is then defined by 88 log K. The corresponding
Laplace-Beltrami operator is (see |14, pp. 117-118)

(1.1) L=tr[(I-22*)8; -(I-2*Z)- 8],

where 9z is the differential operator

0_ o
8z = gzu gzm ,

0z31 Oz
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and the dots here indicate that the factor (I — Z*Z%) is not differentiated. 'This
operator commutes with the weight zero group action, that is

I(/(9%)) = Lf(9Z), [ € C=(D).

Now let us consider the Hilbert space L2(D, du,), where o > —1 and is not an
odd integer, while dps(z) - Codet (1 — Z*Z)* dm(z), with

T(a+ 1)2M(a + 2)?
e+ Dl (e + 2)0(x | 3 (a+4)’

c, ™

dm being the Lebesgue measure, and pq(D) = 1. We let

el

(The number 4 is the genus of D.) 'I'ne group SU(2,2) admits the following action
on L2(D,due):

U J(2) — [(9Z)(Jg(2)%,
where J,(7) is the complex Jacobian of the transformation g. (If & is not an integer,
we have to pass to the universal cover.) For simplicity, we drop the index v in the
notation writing U, = U_,g”’ . We will find an invariant Laplacian intertwining the
group representation. Let
L —det (I = Z*2)™uw [(I = Z27Z*)07 - (I — Z*Z) - 9y (det (] — Z* Z)*)],
and set

L,=L\{l,.

Lemma 1

The operator L., is invariant under U = U ()| that is, we have
(1.2) LUg - UgL, (g€8SU(2,2))

on the space C™>(1)).
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Proof. We lot
L(Z)y T—-ZZ* F(Z) -1-24*Z.

In this notation,
L ir [lb‘(’?z . F(’)Q] ,

L, -det E7tr [Edg - FOy(det EY)).
We have det I¥ det I and '
(1.3) det E(g(2)) = Jg(Z) det K(Z)Jo(Z).

If feC>(D), then

LUWJ(7) - LU @2 (g ZDE b ir (1507 (£(92)) Foty(If (4))]

2717

In view of (1.1) the first Lerm to the right equals U, Lf(4). In order to prove the

lemma, we therefore need only Lo establish the identity

(1.1) Ugly [ -~ LU, f 1 tr [Eﬁz( AN,

%]
/] M
The left hand side of this formula is

LHS 4, f(gZ)(Jo(£))%.

Moreover,

LI(Z)Y (et I(2)) V0 [15(£)0y f(Z) 1F(£) Dy (det Ey(Z)].
Now we have the following transformation formulae (see {14], p. 11 7)
dzJ(gZ) (BZ* | A)Dy (f(92))(Z*C* + 1Y),
Ii(g4) = (ZB*  A*")"'I(Z)(BZ* | A7,
F(g7) = (Z*C* -1 D*)"'F(Z)C% + D))",
(@ (det I2)*)(g2) (CZ | D)oY, ((det, L(gZ)Y)ZB* | A*).

Multiplying these equalities together and taking trace, we get

(1.5) (L)) g£)IF (Z)

= det E~"(g)tr [E(Z)(’Bz (J(g92)) F(2)2, (det E(gZ)) J;%(Z)] .
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It follows from (1.3) that

o, (det? E(gZ)) &, (J_,}T'(Z)dct"E(Z)Jj(Z))

L4
1

- JE(72)8% (de\VE(Z)) J& (Z) + 0} (.lf(Z)) det” B(Z)JE(Z).

Substituting this into (1.5) and cancelling factors, we get

LHS  dot Iim(Z)tr [Ef}z (( fog)Jd ) 3y (det 1;")] (7)1
T ir [I_',-‘(’)Z( [og)Fo,J% ] (7)
LUS(Z) Ftr [Ea( fog)Fo'Ji ] (%) RIS.

"I'his proves (1.4). O

Next we caleulate the rvadial part of the differential operator L,. Let us first

introduce the following notation; sce [13]. We fix the Cartan subalgebra a of su(2, 2),
consisting of all matrices of the type

e 0 diag(1;.12)
 \ diag(ly,12) 0 '

We will identify it with R2. The corresponding subgroup A consists of all matrices
of the type

5 diag(chty,chiz) diag(sht,shiy)
! diag(sht;.shty) diag(chty,chiz) /) °

g

L.et aq, ao be the linear Munctionals on a defined by a1 (7") - 6. ax(T) = 12. The
rools system is then {£2aq, £2a9, £(ag -+ a2), £(a; — 02)}. We choose the Weyl
chamber defined by At = {(t1,12) : t; > 2 > 0}. The positive roots are then 2ay,
202, (1) +ag, ap —p. We also define p — oy + 024 (@ -Fag) | (g —ag) = 3oy | @,
The Weyl group W consists of all {ransformations of the tvpe

(L1, t2) = (Citaqr)s €2to(2))

where ¢; — %1, ¢ — £1 and o stands for permutation of the indices 1 and 2.
Let

w(T) = 2(ch2t; — ch2ly).
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The radial part of the Laplace-Beltrami operator is (sec [13])

1
Zw_l (Ly 1 Ly)w,

where 52 5
C C
L = — + 2coth 2t; —.
gz Tecoth iy

It is not, difficult to find the radial part of first order differential operator [,:

—Z(Lanhl 0 + tanh 0 )
2 o T o)
Since
Io) 0 13] 0 1
—1 .
w tanh {;— 4+ tanht ,—) - tanht;— |- tanhfy— | —
v ( Y t LTI o, enhhige g,

we sec thus that the radial part of the invariant Laplace operalor is, apart, from a
constant term,

1

2 | v 0
1 N
' — i—— < }’i‘_ I‘.
& ( _]4L 2L'inlldti)w

2. The spherical functions and the Harish-Chandra ¢-function

We will study the eigenvalue problem for the radial part of the invariant Laplace
operator:

2,
1 0 , 1 . ;
(2.1) w™! E (Zl.-,; - % tanh ti%> wo — —-4-(2(1/ —1)2 0%+ A2)o,
it - !

for A = (A1, Az), using the method in [13).
IFirst we look al the rank one case. ‘The eigenfunction problem then becomes

d*®y . _ do,, e g
“Er I 2(coth 27 —utanh7)—dr— = —((v —1)%1 A2,

This is the classical hypergeometric differential equation transformed. I'he function

L—v 1 iA 1—v—i) .
<,.->A=./-‘< V1 V-t 'l;—shzt>

2 H 2 1
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is a solution, which is regular at the point £ 0 (see [27]). The equation has two
other solutions ¢, and $_,, where

1—v Fid 1—v i)
2 2

Dy(1) - (et —e 1A ( $ 1A —5}1_21,) .

By Kummer’s formula (|7], 2.10 (2)) we have
Ox = c(A)Px | (=)D,

where the function

n—v I l_i)\].‘(‘l',)\)

—v 11X v-E1 A
r
2 )T 2

e(A) =

I )

is the generalized Harish-Chandra e-function (see |27)).
Now let us define a function on the Weyl chamber A! by the product formula

by, (L) P, (12)
w(ar)

It is obvious that @ (a) is a solution of (2.1). Next we define the function

‘]’_.\((I'[‘) , A (/\|, /\2) .

onlar) - —2° x, (L) oA, (L2)
TR = Mwlar) |xa(t1)  ¢a,(t2)

We can use the same method as in [13] to prove that

oA (0) - 1

and that

(2.2) oalar) = Y C(sN)®,a(ar),
SEW

with

(2.3) CA) -2 0(3?1)_0(/\)};) _

‘Therefore ®4 (a1) is also a solution of the differential equation (2.1).
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Now we study the zero sel of our gencralized THarish-Chandra function C(\).
Since e(A) has zeros on the lower half plane in the sct

P-Am - —iv—1-=20),1 0,1,2,...,k}

where

v—1 -3
L
k L 9 ] ( - [ 9 ] ) 4
the C-function has zcros in the generalized lower half plane (conc)
{(M:A2) € T2, 90, 3N > 0}

in the set
P2 {(/\|Az)/\, S I)}

We now establish the corresponding Harish-Chandra expansion of the function
@a- Iirst we note that the function dx(2) has the following series expansion

x
(2.1) ba(t)  TIENEN L (A

n 0

while the function w(ay) has the expansion

- Lo ‘ oy A : — : Dy —
way) ;)—((:h 20 —ch2e,)7 (B ) o7 Pl L p2lay—!
¢ Z’I(l . (:2—2'\/4--',-_;_))—'(] _ (i—2\~t|-| tz})—l
(x4
(.,—21; 2 = (,—2[)“.[—(.2)—'21](1,1 tla)
pg 0
Therefore we find that ¢4 has the series expansion

(2.5)

(:l‘)’\l (/’| )(‘I)/\'z (I"Z)

el =
o o0
(:i":"’_’z : i/\l;l,,ﬁ-.:u—l | ida)ly E : (::--2;;(L|—t2)—2q(l,|-I-t-l) H > - I\s(/\i)c--.vt,
p,q-0 i 1,23=0
RTI E G s
elvepl iAYT L | “(,\)e w15 .

ne-L

where I is the semigroup in € generated by the linear functionals ay, oy — ez, and
where we have used the notation v for the linear functional v(T) -- (vt viy).
Next we need an estimate for the coeffiecients of this expansion.
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Lemma 2

For any H € a', there is a constant Ky such that
IU'W(A)] < KyetH .

Proof. Since I',(}) is product of the coefficients in the expansion (2.4), we can use
the corresponding result in the rank one case [27| to obtain the desired estimate. O

Lemma 3
IfA = (A1, A2). §A; <0, A2 <0 then we have the following estimate

C'(A)| < K(1+]A))?,
where K is a constant.
Proof. By (2.3) we find
[CHA)] — 2902 = )™ (e )l
It follows from the Lemma 2.3 in [27] that if X <0,
e WIS CL+IADE .
Therefore we find that if A = (Ay, A1), A1 <0, T2 <0, then
|IC™H (M) < C(1+ A

If 3A =0, we can pass to the limil, to produce the same estimate. O

3. The residue calculation

Let /'(A) be an entire function on C? and of exponential type R > 0. In this scction
we will calculate the following integral.

Lemma 4
IfT = (ty,1l2) and 1y > l2 > R. Then we have

/ I’-'(A)(_)-')..\((l']')IC(A)l_sz - Z €L\l F(pl'gapll)(p(ml DLy )
R h<ly

for some positive conustants ¢y, 4, -
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Proof. We have by (2.2)
L F®en@niowrtan - [ @) Y clsnpem@niomwia.
: R? s€EW

However, it is also casy to see from (2.3) that we have, for any A € R? and s € W,
|IC(A)|? - C(sA)C(—sA).

‘F'hercfore the above expression becomes
/ S F(A)®,a(ar)C (—sA)dA = W] / F(A)Y® _p (ar)C~ (A)dA
22 sEW R

where |W| = 8 is the number of clements of the Weyl group, and the cquality is
obtained by change of variables and the fact that I is invariant under W. Using
the expansion (2.5) and Lemma 2 and Lemma 3, we sce that the above is

D el ey / F(A)e™* M, (A)CY(A)dA.
JHEL &2

Let us calculate the integral in the above sum. From formula (2.3), we see that
it T = (t),t2),4) >l > R, then

(3.1)
Wl [ F(A)e ™MD (A)C™HA)A

27w [0 ([ PO ) O, ) - e )ik ) dha.

EhA

Since T'u(—A) is a rational function of A (sce [11], p. 453, for the case v — 0), so
we can perform the residue calculation as in [27]. By the computation there, we sce
that the inner Aj-integral is

k
- Z (3;] (p'f. - ’\:j)l"(ph : ’\2)6_1.(1)[] 'AZ)(T)]‘;L(_I)II ) /\2) :
4

where
¢, = 2_"|W|27rz',\lim (M —p)e” (M)
1Py
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Thus the integral (3.1) is

k .
> /.(p‘f. — M) (1, s Ag)e™ P XL (py Dg)e™! (g)dAs
II LT

Similarly. we can calculate this inlegral using the same residue method. We
find that it equals

".

o= - —i(pt, 21,) (T (L ‘
>_.4 g b ([)llfplz)ﬁ ARSI I’v(_pll' "7)12) ’
Lids 04y /s

whore

(3.3) i DT —pfz)‘_)ri/\lin'l (A2 —pr,)ec" (M)
2_""‘2

Now we take summation over the lattice L. We find that the integral in (3.1) is

k

L . | t— oy ey sy \ (LTI .

) a1 p,) Y et e r i IO, =y, —py, )
ll.IQ ().I] /l2 it

J ;'i' N , .
- ("I;.I-AI '[)/l'p".).)q‘)-; Pry - pLy)
P Lol ‘ N
/ (I)’l - )((‘Il ,l-z(l)(—]ul .—p,-,-,j | (’I'z.l] (:l)'._,,_,z e 1) .
Ly 00, <y
On the other hand. we have already seen that
T A2) 0l Apor Ay € P,
Henee the expansion (2.2} for the function @4 then reduces 1o
i L Al o - y . Al o _r "\ ol ,
(.-7)(—])11.—[)11;'(”/ ) {’( ﬂh: plz)(-b(--p,l.--pl,zj | (/( [).’.21 ])Il)([)(—mz. -ml) -
However. we can write

/ A / !
¥ ¢ \ 4 [(1 9 \
o Pi—pr, =) VGt Pimpry =)
/

cll da C-- l (_’)!1 . _7)'2 )C(_T”] . '"pl'_g )q)(—ﬂ!l =Py )
- the same item with (1;.1y) replaced by (I, 1)) .



Plancherel formula. The case of the hyperbolic matrix ball 285

Let us put
1
Clhla = _'2'0 l(plnplz)c;l,lz'

We can compute these constants:

2 2_4(l‘+l2)(l/ - 2l|)11 (l/ - 2[2)12
WG — L2 —1=25)

iy = 27T Wl =1 =22 (v —1 =1, — 1)

which are positive and invariant under the permutation I3 — lp. Thercfore we find
the the sum (3.4) is
k
Z =€l L, F(Plz,m, )¢p1, Ply (ar).

L, la=00 <y

Hence we have proved that

| FO@AGDICWI A S ety Py 21000,y -
- L,

This finishes the proof. O

Let f € C§°(D) be invariant under the group K = S(U(2) x U(2)), that is,
J(U2V) - f(2) for every pair of unitary operators U, V with detU - detV — L.
Define its generalized Fourier transform by

P(A) = /D H(Z)n P,

where ¢4 (7) is the K-invariant extension on D of oa(ar) on At.0.
From Lernma 4 and using the same argument as in [27], we can then prove the
following:

Theorem 1

Let f be a K-invariant function C$°(D). ''hen we have the following inversion
formula

k
ef0) = [ FOICWIA + 3 eys o),
ir 11.5=0
) <l

for some constant c.
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4. The discrete parts and the reproducing kernels

In this section we calculate the reproducing kernels for the spaces obtained from the
decomposition in a special case.

By Theorem 1 in §3, the invariant Laplacian L, has the continuous spectrum
1 2
(—OO,—'2'(V'— ]) ]7

while the discrete spectrum consists of the (*}!) points

1 . .
Z (2(1/— 'I)z —(v—1 —2l1)2 —(v-1 -—211)2), Lhlo=0,1...,k 1) <la.

et A;; be the eigenspace of I, correponding to I;, I;. 'This space is generated
by the spherical function ¢, p,. We first calculate ¢p, po- Since po - - —i(v — 1),
P - —i(v — 3), we sce that

| —v iipoe 0 l—v 1 ip : 1—v—ip
- B —— e,

=2—-v.
2 2 2

Tence ¢p, = £F(0.2 — v: I,—sh®) = 1 and @, () F(-1,2 — v;1,—sh?%t) =
=1+ (2—v)sh®t. From this we find that
—1
Opopr (OT) - 57— X
Rl 7 e )
F(0,2 —y;1, —sh2t) F(-1,2 —v;1, —sh?t)
x det 2 . 2, =
F(-1,2 —v;1;—sh*t;)  F(1,2 —v;1; —sh®ts)
—24 ] 9
(v —3)2—(v—1)2 2(ch2t; —ch2ty)
1 1 .
X dcl.( 1+(2- u)5112L1 11 (2- u)sh2t2> =1

In view of the Mocbius invariance, we see that Ay ; is just the weighted Bergman
space with the reproducing kernel

Ko (Z W) = K(Z,W) - det(1 — ZW*)=>4.

This is of course trivial and well-known.
Using this fact we can cevaluate the constant in Theorem 1 in §3. By checking
the equality for the constant function 1, we find ¢=:¢y,; .
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Remark. The constant —Lli is the norm of ¢p, . in L?(D,dp,). Therefore we
can obtain it by calculating the residue of the Marish-Chandra function. Other
calculations of L2 norms of hypergeometric functions are in [5]-

Now il [ is a C™°-function in Ay, 4,, so g(7) - jK f(kZ)dk is K-invariant and
in Ay, 4,. By Theorem 1 in §3, we see that

- j(U) - q(()) - ('ll_’lz (grd)pl, 'T’lz) ' (z(l),l]? (f’ ¢P11 va'z) ’

Co,1

where the inner product, is one in L2(D,du,,).

Thus the the reproducing kernel of the space 4y, 4, is

Kivia(Z:W) = 7L (g, (Z))% (T (7)) % by, g, (0w ()

Cly |l
- B K, W) b, (B ()
where ¢w is any Moebius transformation sending W to 0.
Welet a = 2. Thenv —a+4—6and k- |52 — 2. So thercare k | 1 —3
discrete parts. Moreover, py =54, p; - —3i, py = —i in this casc.
As we just calculated ¢p, p, - L ‘T'he spherical function ¢, p, is,
5 (ar) 2 ! det ! :
Ppo.p\OT p2 — p 2 w(ar) F(—2,-3;1;—sh?t;,) F(=2,—3;1; —sh%ty)
—=1- (shl2 F she?)
'I . _
- 1= S tr(aral)(! — araj)™".

=

‘T'herefore by the above, the reproducing kernel of the corresponding discrete
space is

Ko20Z, W)  co2K(Z,W) ]—;21'”(('/1w( ZYpw (Z)*(I = bw (Z)pw(2)*)™!

where Yy is a Moebius transformation which sends W to the origin O.
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Similarly we find that

. —21 l
Pp1,p2 ((J’T) - ﬁ (T)
1 2
< det ['( 1—1/2| ipy : 1— u2 ipy : 1 _Shzh) F( l—uzi ipy , l—u;m . 15 —Shztz)
I'.'( l—ué| ipy ? l—u;—ipg : ], —Shzf;]) l"( l--uél-ipz , 1—u£-y)2 : ]; —Shzf,z)

_ et FL =g —sh®ly) (=1, =451 —sh?ty)
~ sh? —shl I'(—2,—3;1; —sh®l;)  F(=2,—3;1;—sh?t,)

[ — g(sh21,. i-shty) + 6sh?t1sh2t,
1 — i(shzl,| | sh®l2) | 3(sh®ty 1 sh®t2)% — 3(sh™ey | sh'tz)
I — gtl(a-'r(l-?-')(l — araf) 1 3{u(eral)(! —araf)]®

— 3tr [(aypal)(d — av'fl-;')]z .

From this we sce that vhe reproducing kernel of the space corresponding to (pq, p2)
is

Ki2(Z,W) = ¢ 2 K(Z. W){l - gtr(lf)w(Z)’l/Jw(Z)*(l —Yw(Z)w(Z)") ')
2

| 3[tr(dw (2w (2)* (T — dw (2w (Z)* 1)]
3w (20w ()" (1 = w20 (2)) )’}

5. Tensor products of weighted Bergman spaces

In this section, we give an application of our results to tensor products of weighted
Bergman spaces. We will write down explicitly the intertwining operators between
tensor products ol weighted Bergman spaces and weighted 12 spaces.

The following considerations have a gencral nature, so for a while we let D he
an arbitrary bounded symmetric domain in C*.} Points of D will be denoted by
lower casce letters (such as z or w).

Let p denote the genus of D. (Thus p = 4 if D = D(llz3) is our hyper-
bolic matrix ball.) Consider, for each real number o > —1 the Hilbert space

! Necessary background on symmetric domains can be found in e.g. [1].
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L*(D, dua) of square integrable functions with respect to the measure dy,(z) =
C.K~%(z,2)dm(z) on D, where dm(z) is the Euclidean measure and K (2, w) is the
Bergman kernel of D, and po(D) = 1.

Let G = Aut [ be the group of all biholomorphic transformations of D into
itself. If » and s are positive real parameters such that v, x > p — 1, there is a
unitary representation of G on L?(D,dy1x—2p) given by the formula

U™ = f(2) = @) (Jo(2))3 (To(2)*  (9€G)

where J, stands for the Jacobian of the transformation g. Therefore U(*0 = (¥,

Lemma 5
The representation U“*) is unitarily equivalent to the representation U(*—+0),

Proof. Define an operator T form L#(D, dpiy 1 x-2p) t0 L*(D, djty—c—p) by

T: [(2) — f(2)K(2,2) 7.

Then T is a bounded operator. From the transformation formula
K(gz,92) = (Jo(2)) ™" (Jo(2)) 7 K (2, 2) ,
we see that 7" is an intertwining operator
TU =) = =m0

The Lemma is proved. O

Corollary

Two representations U**) and U™“"*) unitarily equivalent provided v — x =
v — kK,

The representation U(), where v = a + p, has, provided a > -1, an important
subrepresentation on the welghted Bergman space A*?(D) of analytlc functions
in L3(D,dp,). We write U™ for the corresponding representation on the space
A*2(D) of conjugate analytic functions in L2(D, dua).

Lemma 6

The representation U") @ U™ restricted to tensor product A%2(D)® AB2(D),
where v = a +p, K = B+ p, is equivalent to the representation U“*) op the space

L*(D, dibaipip)-
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Before proving the Lemma, we invoke the following

Lemma 7

Let H and 11, be positive self-adjoint 1-1 operators in a Hilbert space and let
U and U, be unitary operators there. Assume that UH - IIU,. Then U - U, and
I, .-ounu-.

Proof. We can write the relation UH = H Uy as UHU™! = HU,U~". Thus, upon
replacing H by UHU ™!, we may reduce to the special case U — 1. So we have to
show that if U{ .. If; then U == 1 and H; = H.

Lor simplicity assume first that If is onto. We have then U/ = I1,117'. 'Thus
1 -U*U - H7"HyH H™' = H=YI12117" or 1{? = H?. This again implies IT - IT
and U -~ 1.

It is now casy 1o fix up the proof, even if H is not assumed 1o be onto, only
1-1. 0

Proof of Lemma 6. Let f € A%%(D) ® AP:2(D). Then by the reproducing property
we have for cach z € D

122 = [ 1)K (w, 2)dus(w).

llence by Schwarz’s inequality

|f(z.2)]? < /n |K% (w, 2)|2dps(w) /D |/ (z, w)|2dpus(w) =
K% (z,2) /r) |/ (z, w)|*dus(w).
Integrating this yiclds
J VG2 Pduars15(2)
= 22 [ 102, )P K (2l s) <
<c[[ 1w Pdua(:dusw) - CUlLgnaqoysmersy-

So il R denotes the operation of taking the restriction to the diagonal, R :

f(z,w) — f(z,z), it follows that R is a bounded operator from A%2(D) @ A%2(D)
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into L2(D,dpia3). In addition, it is clear that R has the following intertwining
property:

(5.1) RUM ST UM™R  (geQ).

Since a function f(z,w) holomorphic in z and anti-holomorphic in w is uniqulely
detcrmined by its restriction on the diagonal, f(z, z) it is easy to sce that R is 1-1
and has a dense range. So we have the polar decomposition

R (RI*)*V =RV,

where V : A%2(D) % AP2(D) — L3(D,dpa | p4p) is a unitary operator. Thus (5.1)
can be rewriticen as

(5.1") IRVUM g UV = UPWIR] (g€ ).

Applying Lemma 6 with H - Iy = |R|, U — V(Ué’\) 8 UE("))V_', U, = UE('\‘"),
it follows that, _—
VWU s TOW =™ (e,

Thus V gives a unitary equivalence between the representations U7 & UU(®) and
U=, 0

From our Theorem 1 in §3 and Lemma 5 and 6 we immediately get the following

Theorem 2

Assume v,k > 3, and v—k > 3. ‘Then the representation UM gU®) of SU(2, 2)
on A%%(D)x AP2(D) is unitarily equivalent to U*=*) on L2(D, jte_p—4) and it has

at least
[=5=L] -+ 1
2

discrete parts in its irreducible decomposition.

Remark. A similar result for the group SU(1,1) is due to Repka |22]. For general
groups, the first half of our theorem was obtained by him in [23] using Schur’s lemma.
Our theorem refines the result in [23).
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Appendix 1. The Berezin type transform

In order to get a beller feel for what we are doing in §5 we shall (infra) consider
an cxample. Now let thus D . D(l;,1) be the unit disk (p = 2, G = SU(1,1)).
Assume that o > ¥ > —1 and a— (3 is not an odd integer and in thiscase v .- a1 2,
Kk (42

Iirst, we find an explicit expression for the operator RR*, whose square root,
we are interested in. (‘This reasoning is valid for gencral symmetric domains.) We
consider the inner product

(Rf,¢): / J(C. Q)¢ )il’n-lﬁlp(o
/ //Dxl) F(GKFCw)f (z’“’)d“a(z)dﬂia('w)) B(C)e 11p(¢) =

/ / /K»cz 3 (6 W) ditenr 1 p(C) (22 W)t 2)dpsg (w)
DxDJD

for any [ € A*2(1)) ® AP2(D) and ¢ € L2 (D,dprarprp). As (RS, @) = ([, R*¢), it
follows that

R ¢ (z,w) /, K3 ORP (0,8 darasnQ).

so restricting to the diagonal (z = w) yiclds

(a.1) RRO8() [ K5 (5,0R? (2 00(00dar 215(0).

"'his is an integral operator and so is its square root. Thus finding the unitary
ransformation V is reduced lo solving an integral equation.

If - A, wesee that we have essentially the Berezin transform (cf. [4], (2], [19]).
T'his suggests that the operator RIZ* might be a function of an invariant operator.
Indecd, this is s0 at least in the rank one case. We now calculate this function for
the disk D = D(Iy ).

Then (a.1) spelled out reads

(a.l) RR¢(z) (v I-Hr—l)/D(l—zf)%(l = 20)Fp(Q)(L = [¢[*)*+P+2dm(() .
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The corresponding invariant Laplace operator A = A, g has the following cigen-
functions (see [21]) 2:

1
(1 — [2]2) 5418 (1 — 2@) F* H+i% (1 — z)— T +E+i3

(a.2) exw(z) =

where w € 81) : T and X is a complex numbers.
Note that A is not quite an eigenvalue of A, the relation to the cigenvalues &

reads as follows (cf, [21]):
——3
- (=)
2 .2

This suggests introducing the self-adjoint operator

Vo 4A - (v -k + 1)2,

One checks easily the following transformation formula

exg(w) (99 (2)) 5 (F2) 2 (g'(w)) T HHR G~ 114 - ey ,(2) (g€ @)

or in abrevialed notation
, o 7 FEE Y Hig, S B 4id
(l‘jéu.n) ® U!ST Fhig, ~%g5+4 7)) erz -= €xz .

(We have a group action on functions on the product D x @D). Using this again
one sees that

L2130 BIUS S SNS NPT _
(U!gu,li) ® U’; +gtig, —=F+ ”+"))RR'6,\,2 _ RR'e,\.z .
As the group (7 acts transitively on the set D x 8D, it follows that we must have
(a.3) RR'es . =const-ey ;.

To find the constant in (a.3) it suffices to evaluate the integral implicitly enter-
ring in the left hand side of this formula for z = 0 and w -~ 1. [t is question (sece
(2.1'), and notice that a4+ 8 +2=v + K~ 2)

1 ~ 2y e -3
Lo 5 (1= I+ dm(c).

(VST HE (] - ()T FE

? There only the case 3 = 0 was considered; rewriting the formula therc we get the present
more symmetric formula,
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Using the binomial expansion

Z (a')n

n=0

and remembering that the monomials 2™ (n = 0,1,2,...) form an orthogonal set
with respect to any radial weight, in particular, one of the type (1 —|¢|?)¢, we end
up with the scries

o (455 5 Fid)a —”"‘Hl*n vin
S et I P Ml [ e gy 5 teidam(q),
n=0 o

Now, quite gencrally,
n!

[ 1P = iePydm(0) - e

Recall also a famous formula for the hypergeometric function (cfl. e.g. [17], p. 8):

Faben  HOKE=a=b

I'e—a)l(¢—b)"
In our case this yiclds the expression
1 i (55 1 51 i (—555 + 3 +i3)n n! B
L-'Z-m - % + ’L% n=0 n! n! (L’_‘l‘_"_’ + l 1- ’L%)n
1 v—k 1 A v—kr 1 A v+ 1 A
= F - _—, —— -— - - - l -
52-_&_%”%(2 by ligy =g Ty tigi—g— F2"2)
NN (C TR £ NG o )
) . 1 A B )
vie 112 F(W)'(x)
D (= — 51 i)
I)V(x)

T'his shows that.

RIE (v bR 1) Vl. (n)ll‘(wn _l_H-_V_)

1
v+ 1 v
N ——-=+i—}|{.

(RR*): (v 1 k—1)} (m)

If @ = B (and therefore v = k) this is full agreernent with what is in [4], {2], [19].
Note that in view of LLemma 5 one can in this case even reduce to the case . = 8 = 0.

and so, finally,
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Appendix 2. A class of hypergeometric orthogonal polynomials

In this appendix we will give an application of our consideration in §5 and Appendix
1 to hypergeometric orthogonal polynomials.

Iirst we restate the Plancherel formula in [21] as follows. Let /) be the unit disk
and we keep the notation in Appendix 1. We invoked there the invariant Laplaﬂan

A - Aaﬂ on L2 (I) d/l,l 1 #12), which is unitarily equivalent to the operator 0, _
on L2(D,dpa—s-2) (sce |21]),

52
Our = (1= [2*)? 7 = (v = K)2(1 — |2? )92-

From [21], we know that the operator A has the cigenfunction (a.2). We define the
generalized Tourier-1lelgason transform on radial functions as follows:

= ./n f(2)ex1(2)dpay g p2(2).

Then we have the Plancherel formula
[ Pt [ FOPdo(),
Jp JRYULA] oo Ak }

where

— ] 2 «
() = G T e

on Rt while

—_ 1)2
AND = e =1 -2,

with Ay - —i(v—k—1-20) (1 =0,1,...,k), k - [¥=5=L], C is a constant (depending
only on v and «); here e()) is the g,(:ncralv,(:d Harish-Chandra c¢-function

2—(U—K.)-| l—i'\]‘(’l'/\)
—W—8)1TFIAN V=K1 Fi) '
e E AR}

F4

c(N)

I(

Now we consider the tensor product A*2(D) ® AB2(D). As shown in §5, it

is unitarily equivalent to L2(D,dpatg,2). Now we are going to find the Clebsch-

ordan coefficients. Let 12 be the restriction operator with the polar decornposition
= |R|V = (RR*)?V, where

V: A%4(D) % A32(D) = LA(D, dftars | 2)
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is a unitary operator and
VUM Uy =yEmy.
From these rclations we get
ve (A4r)V, |[RIA A|R|,

where C' is the Casimir operator in (28],

] P -

‘ ) ) 0
C = (L — zw)? (,);01_1) —vuw(l — z'w)—f;?; —kz(1 — ztﬁ)a + VK2 .

We have a natural orthonormal vectors {e,} in A*?(D) ® AB2(1)), where

2u)"
en(2,w) = "'(1_')1_

3
|

with
. I'(n + 1)U(v)
I n,v v N
' P'(n it v)

A simple computation reveals that the operator C has the matrix form on {e. }:

= ||z"’||i,,.z( py and similarly for I'y.« .

(%1.4) C(en AnCriy i ! bnen + ¢nln-1,
with
1 L L i
]12 ]\2 I12 1-‘2
) ) Arnllw nilk R 2 n=ly-n—LlK
an (m4v)(n+ h.)—-—‘—'l—‘_%—, b, —n@2n+v+EK),c,- n —T
1 n.,u]- n,w | ﬁ,urn,n

note that a, = ¢ny-

Now we consider the Fourier-Helgason transformns of Ve, defined above. It is
clear that Ve, are radial functions. So we can use our result in the beginning of
Appendix 1.

Taking the Fourier-Ilelgason transform using (a.4), we then get

AVer(A) = tnVenp1(A) + buVen(A) + cnVen_1(A),

where 1
=k—=[((v=—Kk—1)24 )2
A=k 4((1/ k—1) +/\).
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Set
(2.5) m() -+ =)
| )
With these notations. we have
Agn(A) - (1 1)2qu 1 (A) —n@2n | v+ K)n(A) +(n—1 Fv)(n—11 K)gn_1(A).
In order to identify the functions q,()), we need to determine
_ Veo(A)
T
However, as R - [R|V, we have V. [R|7IR = (RR*)~%R. Tlence, by the selfad-
jointness of (I#R*)~7, we have that

q0(A)

Veolh) - [ (RR)HR1ens (2)dtars 202

D

< (RIT) T (2)ex 1(2)dptarp 2(2)

Jn
< [ R A ers (12
Jn
el WL Lo, VE+BE—=111iA -1
(v 1 7= 1)THT ()3T () () /, ex,1(2)dfatp 2(2)
)
3 -1
V-1 k= )T AL LR,
12
x (v 1 w=—DI'W) (k)™ i]-‘(l/_-l_-%lz/\)
=V +k— ])%]'(1/)‘%]‘(,;)"% ‘[‘(_____V | & _2_ ! +Z’\)|.
Therefore we have
aw(A) = (v 4 k= 1))~ (k)% 1‘(——” I_E_QJ 1A,

Recall now the hypergeometric polynomial p,, in [28],

p'n(A)
_ (u]-m;]]i,\)nx
n!
V=K |-l—tA —v+K+1—iN  —v—Kk-=2n13—i)
><3Fz(—-'n, 5 , > i1 5 ;1)-

4
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I follows from the result in [28] that p, satisfy the same recursion formmla as g,
and po - - 1. We therefore have

(a.6) gn(A) - qo(A)pn(A)
- (v + = D) i~ DT ),

Since

/” en(z)e'rn(z)dllru+;3-l-2(z) = 611,111,

we have

——

Using (a.5) and (a.6), we get

1 1

Ven(A) i I'Z 12 cqn(A)
v+ r—1+1iA

PR E (v 1 k= 1)) H (k) "} |1 5 )| pn(A) .
Therefore, we have
V+n—1/ v+e—1+iA [}, Snm
—_— I (A)pm (A ll‘ — )| dp(A —_—
F(V)I‘(K') . R"U{Al,...,)\k}] ( ) ( ) ( 2 ) P( ) ]-n,u] n,K

This is the orthogonality relation we have looked for. [t is also one of the orthogo-
nality relations for the hypergeometric polynomials in [26]. We now explain this in
detail.

First we recall T'homac’s transformation formula (see [9], p. 39):

{d—b
(d)n

sFo(—n,a,b;e,d;1) slo(—n,e—a,b;e, 1 1-b—d—mn;1).
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It, follows that,

Pn(A)
(uin;l-l i)\)n
= e— X

n!
N F(—n v—gK-+1—1iA —U+n+1—i,\_1 —u—n—2n+3—i/\_1)
31472 sy 9 ) 9 » 1 9 )
I G (S T N
- n! —V—K—2n+3—i\
( 2 )'n
o I"( " —v-K-+1 1A —V+H,-|1—i)\_l ])
312 s 9 ) 9 y 4y Kyl
_ (K)n 3[',2(_‘”’ -V iKk+14 i/\! —v I_'H_]_i/\;],n;l)
n! 2 2

1 —V+K+144A —v+K+1—-1A
(n!)z(l)'ll(K)T‘l 3F2( —-n, 9 ’ 9 i 1y K -I-)

1

(A
- (- B

where

k—vil v—r+1 u+n—1)
2 3 2 ’ 2 ?

Sn(z?;0,b,¢) = (a | bn(a | €)n sF2(—n,a+iz,a —iz;a | bya+c;1)

are the continuous dual Hahn polynormials (see [3], |26]). In particular, as a con-
sequence of our result, we get a new proofl of the Wilson’s orthogonality relation
and, further of the fact, that the weight function is a product of the Harish-Chandra
c-function and the symbol function of a Berezin transform.
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