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ABSTRACT

‘The parametrization problem of the minimal unitary extensions of an isometric
operator allows its application, through the spectral theorem, to the case of
the Fourier representations of a bounded Hankel form with respect to the

norms ( [ |f|2(1/‘l.1)1/2 and (_['Ifl""d/‘l,z)l/z where 1), 12 > 0 are fiite
measures in T ~ [0,27). In this work we develop a similar procedure for
the (wo-parametric case, where f11, ji2 > 0 arc measures defined in T ~
|0, 27) x |0, 27). With this purpose, we define the generalized Toeplitz forms
on the space of two-variable trigonometric polynomials and use the lifting
existence theorems of Cotlar and Sadosky. We provide a parametrization
formula which is also valid in the special case of the Nehari problem and
gives rise 1o a Schur-type algorithm for this problem.

Introduction

In the theory of trigonometric moments, the problem of characterizing the finite
and non-negative in T ~ |0, 2%) measures u whose Fourier coeflicients 7 defined by
o~ 2 . . - . ~ .
i(n) = [ " exp(—int) du(t) are given by any sequence {8n}n>0, i.e. f(n) = s,, for
all m > 0, is a basic representation problem.

The Herglotz-Bochner theorem provides the answer for this problem; it says
that a necessary and sufficient, condition for the existence of a solution ft is that the
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Toeplitz kernel K : Z x Z — C defined by K(m,n) - - 8m—, is positive definite (we
write s_, §, whenever necessary). Morcover, if a solution exists, it is unique.

There are some variants and generalizations of this problem, such as the Nchari
problem [10] and the generalized Bochner problem, whose solutions are not unique
and we can state the problem of their parametrization, i.c., to provide a formula for
obtaining all the solutions.

In this way the theorem due to Adamjan, Arov and Krein parametrizes the set
of all the solutions in the Nehari problem and the results of Arocena and Katznelson
parametrize with differents techniques, the general case of Cotlar and Sadosky. In
[1] we give another constructive way for the parametrization.

The Nehari problem can be extended to the matricial cases; it was first solved
by Adamjan, Arov and Krein [2]. They obtained a parametrization of the solution
sel in terms of a linear fractional transform. A more general version was considered
by I'ritzsche and Kirstein |7} and their approach also gives rise Lo the study of the
generalized Toeplitz kernels. Katznelson [8] gave a parametrization for the matri-
cial generalized Bochner theorem by means ol the so-called Potapov’s fundamental
matricial incqualily.

Another way in which the Nehari problem can be generalized is the two-param-
etric case, where the sequences are double and the associated kernels are defined in
Z? x Z2. Recently, Cotlar and Sadosky [4] have proved the two-parametric version of
the genceralized Bochner theorem but they have not considered the parametrization
problem.

In this work. and following the constructive method started in [1], we give
a paramecirization formula for the generalized Bochner theorem in both matricial
and two-parametric cases. Moreover we build a Schur-type algorithm to solve the
Nchari problem generating the solutions through solving problems in which only one
coefficient, is not zero. ‘1o this end, we combine the method used in the scalar case
with other parametrization formulas for restricted interpolation problems considered
by Dym, de Branges, Fedehina and others (see [6]). “I'he relations among these
methods, the ones developed by Adamjan, Arov and Krein, Iritzsche and Kirstein,
Dym, Rovnyak and de Branges and the more recent one by Katznelson inspired in
the theory of Potapov are not studied here but they would be interesting.

In this paper the following definitions and results will be useful.

If V is a lincar space, Wy, Wa two linear subspaces of V and 0,7 : V = V
two linear isomorphisms satisfying i) oW, C Wy, o= 'Wy C W, ii) W, C W,
77 !'Wa C W, and iii) o1 == 7o, then the set (V, Wi, H"g,a,T) is called a discrete
two-parametric algebraic scattering system, which we abreviale a.s.s. In particular,
if ¢ - 1. we have a discrete one-parametric 4.s.s.
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In an a.s.s. (V, Wi, Wl o, T), a sesquilinear form B: V xV — Cis called Toeplitz
if Blaf,09) B(7[.79) - B(f,9),Y(f,9) € V x V. A sesquilincar form 3o: W; x
W2 — Cis called Hankel il Bo(of,g) = Bo(f.07'g), Bo(rf,9) = Ba(f,7'g), for
all (f,g) € W x Wy, So the restrictions of 'Toeplitz forms to W, x Ws are Hankel.

I By, 13y, 135 are Toeplitz forms, we say thal, 13y is bounded by By and B, and
write By < (3;.13,). il 13, By > 0 and l]'f()(j,g)|2 S Bi(f, ) Ba(g.9), Y([.g) €
Vo x V. Il this inequality is valid for (f.g) € W, x W,, we say that By is weakly
bounded with respect to 3 and Bz, and write 13y < (13, By).

If B3y < (13). 13y). we define the matrix (I')’,,,r,)(‘,w,,__1,2 where B, Ba (a0 1,2),
B - DBy, By B33, and say that the form B:V x V -+ C such that 13(f,g)
Bag([.g9), for ([.q) € W x W3 (. 8 = 1,2), is a generalized Toeplitz form, GTI.

‘The general lifting theorem dne to Cotlar and Sadosky states that, given an
a.ss. (VoW W roo) such that, for j - Tor2, 7"W; ¢ Wy or a"W; C Wy, VY € Z,
il Bo, By, By are three Toeplitz forms in V x V and By < (3, 35), then there exists
a ‘Toeplitz form 133: V x V — C such that I3} < (B, 32) and ”(,J|wi «w, Do

In the classical example where Vs the space of trigonometric polynomials in
two variables, a parametrization of all liftings of a G'I'I* can be obtained. ‘1o do 50,
in section | a parametrization formula for the unitary extensions of a special class of
isometric operators is provided. This formula is applied in section 2 Lo parametrize
the positive liftings ol a operator valued weakly positive measure matrix. In section 3
a Schur-type algorithm for the reduced matricial Nehari problem is provided. This
procedure and the parametrization formula for the two-parametric lifting theorem
deduced in section 1 are used in section 3 for the algorithm of the two-parametric
case of thig problem,

1. Characterization of the Unitary Extensions
of a Class of Isometric Operators

In this section we consider the following class of isometric operators. Let H be
an abstract Hilbert, space, U:H — H be an isometric operator with domain D
and range A which are closed subspaces of H and lot M = H< D, N - HOA
denote the deficiency subspaces of H. Suppose that there exists {eoj}i<j<n € D,
{e1i}tici<cm € A such that

(1) UfeojeD. 1<j<n, U *e_;cA, 1<i<m, Vk>0,
and H is spanned by the sets

(2) {(.,-"”m,.,- k>0, 1< Sn}, {U"e_.,,-, k<0, 1<i< -m}.
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This implies that the deficiency indices of U are dimM < m, dimA < n. We
consider here the case that dimM = m, dimN  n and m,n / 0 (thus, U has
infinite unitary extensions and eg; € A, e—y; € D, for any i, j).

A similar result to the one obtained in the scalar case is the following.

Proposition 1.1

Under the hypotheses (1) and (2), every minimal unitary extension U:H—~H
of U:H — H is uniquely determined (up to unitary cquivalences) by the matrix

(R,e_1., Cos ] ‘ith |z ,
(3) [( 2:0_1.i, €05) L <i<m 1< < with |z| < 1

where IR, is the generalized resolvent of U.

Proof. Fach cxtension U is determined by {((7 Pf.g): [,geH, pE Z}. By virtue
of (2), it is cnough to know the sets Ay {(E}pff()j,ﬁf()k> :1<j,k<n peZ}, A,
{([.A/?Pczuj,e_”) 1 <j<n 1<i<m, pel}, Ay = {((?T’a_lf,-,euj) 11 <i<m,
1<j<n,peZ}, Ay ={{ Ure_yi e i) : 1 <ik<m, pEZ}

Since, fm p =0, Uley; €D, U Pe_1; € D and U-? 7*, we have (7"”00-
UPey; and U “Pe_y; U7Pe_y;,forp > 0. Then Ay and Ay <1r('d(\tmmmod uniquely
by U, and Az  As. Thus, all the extensions [/ arc obtained from { UPe_, FNCHE
1<i<m, 1< _.n.pZO}.

Remembering that the genceralized resolvent of U is, for |2]| < 1,

R, ~ PR, HZz”l”’ Zz”l u®,

p>0 p>0

where ﬁ!z is the resolvent of U ., and Py the projection of H onto H, il can be deduced
that U is determined by the matrix (3). O

In order to obtain a parametrization formula for the matrix (3) in terms of
two matricial sequences {C*} = {cf.}k>0 and {D¥} = {d¥ }i>0 and a polynomial
family {PP*(d)} = {PF(®),...,Pk(®)}", for k > 0, with m components in m x n
variables, we will use the characterization of all gencralized resolvents £2, of any
isometric operator [/ due to Chumakin [5]. The formula he obtained is

(4) R, =(I —T,)"", for |2] <1,

where 1, — U %@, and &, is an analytic function and, for cach z, ¢, M — Nis a
contractive operator.
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Taking into account that dimM  m, dimAN  n, we can consider the or-
thonormal bases {uy,....um}, {to1,...,%0.} of M and N, respectively.  Since
H — D DM, we can wrile

m
Gy = Z(.:‘,-’j'u..j | voi tv9; €D, 1 <i<m;
jl
n
U Zd(j’,-u,- + 1woj : woy € D, 1<j<n.
il
IMwedenote by ug  (wor- .. uon)”, w = (g, yum)ecs < (e_igen e ec1m)”,

vo = (Cor,---,tom)s Wo - (or,...,Won)", the previous identitics can be ex-
pressed ina matricial form by:

e_ = u - vo. o G \Cn-:.xmp
0
ug = D"u Wo. D® € Crxm.

By recurrence, we define the matricial sequences {C* }i>o and {1¥}rsq and the
vectorial sequences Vie - (Tt ey Tkm) Ty Wik (Wi, ... wka) ! as follows:

“Vk C'j‘""lu | Vki1; (;'ktl f € C'm,xrn.e

—~
=)
=

(./Wk = L)kl lu | Wki1l, I-)k+] S (Cn,xm-

On the other hand. since ®,: M — N has norm less than or equal 10 one, we can
write:

(I)""ul {f’-ll(z) ‘:rcln(z) ol
$b,u- = ... . : = d(z) uy,
(l‘)::“rn ¥ml (Z) v {f;"'”‘l.(z) Un

where, for any z € D. d(z) € Cpuxy and || @(2)| < 1.
The next. polynomial family {P}‘} e>g0 for 1 <4 <m, can also be defined:

P?((])) (c:,)].? A | (:?'I‘",) E c?’

(6) k k -1 k—r k .p
P (®) Y P H @)D", iMk>1,

r.=1|

whore c{‘ is the i-th row of C*,
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Hence the following parametrization formula for the gencralized resolvent holds.

Theorem 1.2

If U is an isometric operator that satisfies the hypotheses (1) and (2) the (i, j)-
term of the matrix (3) is parametrized by

P
(1) (R.e—yi,e05) - Zz”(ZPg‘_l(Q)(]')(wp_k,60_7')) 1Y 2 (i, eoj),

p>1 k- 1 p>0

where |®]] < 1, P¥"! is defined in (6), vy is the i-th component of vp and

]
(wp—ka (3()_7'> ((’l—l'p—k',l ’ (i(\)j), sy (u"p—k.n s e(lj)) .

Proof. Applying the formula 1, = U ¢ ®, with ®,u  ®(2)ug and ||| < 1, we get

n
mn ro .() p a1
lz(i_ly,' . (U O] ‘1’,_)( E iUy + b(),j)
j 1

Uwvg; | Z (:?fl)zu.j
i=1
= clu -+ vy; 4 cfdug
= cilu 4 21 - C?<l>(l)"u | wo)
P{(®)u | P{(®)®wo + vy

An inductive procedure shows that
P
TPe_y, PP(@)ul Y P Y ®)Pwp i+ vpi-
k=1

"I'herefore, applying the formula (4) and taking into account that (u;,eq;) == 0, it
turns oul the desired result. O

Remark. Tormula (7) is similar to the one obtained in the particular case of defi-
ciency indices (1, 1). and we can also derive a procedure in order to obtain all the
positive liftings of an operator-valued measure matrix, without much cffort.
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2. Parametrization of the Positive Liftings of an
Operator-valued Weakly Positive Measure Matrix

In this section. we will apply the previous results to the problem of the positive
liftings of an operator-valued weakly positive measure matrix as an extension of
the scalar case. To this end, we need to define the corresponding concepts for this
subject.

In this section. A7 and N, will be two arbitrary complex cuclidean spaces and
dimM, = n, dimAN,  m; let PNLANL) = {f(t) - Z,A____,V e ()] (r) : (1) € N,y
ilr €Zy = 1,2. 1 & ']1‘} denotes the space of the generalized trigonometric
polynomials and P(N,) = {f(t) € PN, NG) : f(r) =01if r < 0}, PN2) = {f(t) €
PWNLANL) - f(r) = 0ifr > 0} denote the subspaces of the analytic and conjugate
analytic generalized trigonometric polynomials, respectively.

So the sel (P(M,A2), P(M), P(N2), 7), where Tf(1) et f(t) for all f(t) €
P(N1,N2), is a discrete 1-parametric a.s.s.

DEFINITION 2.1, .\ L(N;. Ny)-valued measure p is that one which maps every Borel
set A in T over an operalor p(A) € LN, N2) such that, for any £ € N}, n € Na,
(u(A)E,n) is a complex measure in T.

A LNy & Ny)-valued measure A can be writlen as a 2 x 2 matrix M
(Bap)ap-1,2 where f1,5(A) € L(Ng, N3), (a, 8= 1,2), and we say that M (1ta3)
is positive, and write (pa3) > 0, if M(A) is a non-negative operator in L(N; ©ON3),
i.c.,

“” ./l /2 Zz<llui Pr 4 fu(7) f,:l( )> 0, v'fl,f‘z G’P(Jvl,./\ﬁg).

a3 rs

ICM(fi. J2) = 0 for each (f1, f2) € P(N;) x P(N2), M is said to be weakly positive,
and write (jta3) > 0.

In this context. the following lifting theorem holds (see [3]).

Theorem 2.2 (Lifting of weakly positive measure matrix)

Given the martrix M = (a3) = 0, then there exists M’ — (#4,3) = 0 such that
M1, f2) = A1 f2), V()i f2) € P(MY) x P(Na).
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As a consequence of this we can deduce that there exists b € H(T) such that

(®) Wy M, diye - dia 1 h*dlL
‘ dpb, = dug + hdt, Py == fla.

Now, the problem of parametrizing all the positive liftings of A7 can be related to
the problem of parametrizing the unitary extensions of certain isometric operator,
as follows:

Assume that f3 is the form associated to M = 0, I3 defined by

2w

B(/.9) / SOOI dias(t) o (f,9) € PWa) x PIN3), 8 1,2,
JO

This form defines in P(A}, N2) an eventually degenerated inner product by (f, g) =
B([.g). Thus, we obtain a Hilbert space H such that P(AV,,A2), or its quolient, is
a dense subspace.

Let Hoy and Hy denote the closed subspaces of H spanned by { ern e A1,
€ Nailr €Za} and {e, 15 40,0 € Ny il s € Za} respectively; we define
the isomeltric operator U:H_; — Hy by U(e,n) - e¢r11. Since dimN7 = n and
dim AN, m. we can choose Lwo bases {ny,....0} and {&.....&0} of N and
Nz, respectively. We adopt, for reason of simplicity, the notation eo; = egn;, for
I <j<n,ande._ i =¢. & forl <i<m. Theoperator U satisfics the hypotheses
(1) and (2) because

l/ ""(;:;_,_,,- ern) € Hoy, fork>0,1<j<n,
(F'k(‘f--l.i - ¢_1&; € Ho, fork<0.1<i<m,

and we say that [/ is the operator associated with Al

Proposition 2.3

If M = (pa3) is a weakly positive measure mairix, there exists a bijection
between the set of all positive liftings of Ml and the sei of the minimal unitary
extensions U of the isometry U associated with M.

Taking into account that

(ernj.es&) - {faa(ers)ny. &) il (r,8) € Zy X Z3,
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it is plain that pqy and pge are uniquely determined. However py is defined only in
P(N1) and oy in P(Ny):

(2e)n;. &) (eon;, e—r&si)
= <(:f()1]j,[,’_r+1(2_1£,j) —= <U' Coj,€—1 ,) if r> O,
(p2i(en)isny) - (erbiyeom;) = (U™ e_1,5,€05), il r <0.

So the set of all minimal unitary extensions of U is determined by mecans of
(U+e_, ;, ), 1 <i<m, 1 <j<mr >0, and this is equivalent to the
determination of (yh, (e,)¢:. m;), for r > 0.

By the same way as the scalar case, if {I't} is the spectral function of U we can
prove that (uh (A)&,n;) - (FE(A)e_y ., eoj). Applying theorems (1.1) and (1.2),
the parametrization is given by (7), which can also be determined throughout the
Stieltjes transform of ph; and po;.

Summing up, we can obtain the following parametrization.

Theorem 2.4

Let M (ha3)a.a-1,2 be a LN, & Ny)-valued weakly positive measure matrix
with more than one positive lifting; then there exist two matricial sequences {Ck}
and {D*} and one polynomial family {P¥} defined in (5) and (6), respectively, such
that all positive liftings Al’ ([l,uﬁ) of M have the following general form

Hio =i lg = fiza; phe o phyy oy = pan o+ Rl

(9) (h(2)ig+ (holz ,,+sz(zpk () (wy s, pm)

p21

where (h(z));; arc the components of the matricial function h(z), for 1 < i < m,
1 <5 < mn, & belongs to the unit ball of all the m x n-matrix valued fuuc.tzon.s of
class H™, and hg is a fixed particular solution.

3. Schur-type Algorithm for the Matricial Nehari Problem
‘The parametrization formula (9) also gives the gencral solution for the following

matricial Nehari problemn and, consequently, for the N-reduced problem associated
1o it. The same notation as in section 2 will be used here.
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Theorem 3.1

Given an arbitrary sequence s:Z — L(N2,Ny), the next stalements are equiy-
alent:
i) There exists 1T — L(Na,Ny), such that I — F(1)F'(1)* > 0, F(k) = s(k), for
k < 0.
ii) The sesquilinear form

(6,,1_,,771',&) for n,n of the same sign,

B(entis enki) (s(m ~n)n;, &) ifm<0,n>0,

(s(n —m)&;,m;) Ifm>0,n<0,

is a gencralized 'Toeplitz form.

We now provide an algorithm for which the general solution could he con-
structed using only solutions of the 1-reduced problem, and generating in a recurrent
form a sequence of associated parameters in the same way as the scalar case,

In the first step, if we fix the matrix s(—N) = ag, all the solutions F' are given
by:

(10)  (2YF(2))i;  (R.e_1s,e0,)

- ZZP(Z P:‘—1((I,)¢(wp_k,ﬂ0j>) i sz’(q),,i,EOj)y

p>t k-1 p>0

where @ belongs 1o 1he operator-valued Schur class S, P}"l depends on s(—N) and
('U()i:(?f()j> ('q('"]\'r)),;,j'

IFor the second step, given {s(—N),s(—N | 1)}, in order for (s(—N | 1))i'j Lo
be the coeflicient in z of (2 l"(z))i'j, we have to choose a sub-class S C 8. Such
coeflicient is ) ®(0){wo, oz} | (Vi en;) - (8(=N I 1))i j, 50 we have Lo take all the
¢ for which ¢)?d(0)(wo, eo;) = (S(=N 1 1))i; — (11, €05) = cP01(Wo, en;) is given.
Then we define the class

S {(D €8 C?‘I’(())(Wo, (iuj) C?(fl (WQ, e(,j), V’l,j}

This class S; is completely parametrized by what Dym 6] called a bi-lateral inter-
polation problem. However, Dym’s parametrization does not allow the algorithm o
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{ollow. Here, we will substitute that formula by a Schur-type sequence of parameters.
To do so, we decompose S; in union of classes Sy, defined by

Sla {(l” € 81 : ) P(0){wo, e5) = C?O']u:(wo,(:f()j)}

for cach possible value a,,.
I{ for cach o we define S {(I),,. €S:d,(0) = am}, it is casy Lo sce thal

lx
S| = S1.- Each 8!, can be parametrized by the next formula, similar to (10):
a%lo lox 8 )

(”) (q)“(z))i,j ZZ”(Z P:(_l(‘lln)\pu(wp—kaﬁ()j)) + Zz]‘('upiae()j>7

p21 k-1 p>0

where P:‘_l depends on a4, and ¥, € S.

Joining all these @, we obtain the desired class Sy, Thus (10) with & ¢ S,
provides all the solutions I for the sccond step of the algorithm, where s(—N),
s(—N 1 1) are given.

If we repeal, Lhis process in the following steps, we oblain a family of parameters
7o = 8(=N), O1a- T2u3, ... Necessary and sufficient conditions for the existence of
solutions for the N-reduced problem are given by the Nehari theorem (3.1) and they
are that cach parameter be the value in zero of a function ® € S.

4. Positive Liftings of Two-Parametric Toeplitz Forms

We define the space of two-variable trigonometric polynomials by:
V= {./:'IF2 —C: f(s,1) = Zm'nf(m,n) Em,n(8, 1), I(m, n) finitely supported}

where e n(s. 1) — e'™3eint,

I we consider the halfplanes E; .- {‘rn - (my,ma) € Z2 1 my > ()} and
By = {m = (mm;.my) € 2% : my < 0}, let Wy, Wa be the subspaces of V whose
cocfficients have support in E; and Ky, respectively. In V we define the shifts
af(s,1) — e [(s, 1) and 7f(s,t) = e f(s,); so that (V, Wy, Wa,a,7) is an a.s.s.
and satisfies the Cotlar-Sadosky theorem, Morcover a two-parametric generalized
Bochner theorem is also valid.
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Theorem 4.1 (Generalized Bochner Theorem) |4]

In the situation above, if By, By, Be arc three "loveplitz forms in V x V and
By < (B1, Ba), then there exist p, p1, g2 finite measures in T? such that p, pz > 0,
[(A)? < p1(A) p2(A), VA C T? and

BAJ,g) - / / fadw,  fgeV (i=12),
Bo(f,9) = //fgdu, (f,9) € Wi x Wa.

Here p. pp arce unique but g is not, and the set of all the solulions can be
parametrized through their Stieltjes transforms by the same method as the one-
parametric case [1].

A parametrization formula describing all the liftings of the G'T1® (53¢, 31, B2)
will be developed next.

In the space € W} x Wy we define the following inner product:

<[f1,gl|7|./'27.(12|> — Bi(f1, f2) 1| Ba(g1,92) + Bo(f1,92) t Bo(f2, )

Since By < (Bi, Bz), then (€,(-,-)) is a Hilbert space and we can supposc that
Wi ~ [W1,0], Wa ~ |0, Wa] are closed subspaces of &.

If we define :€ — € by 7|f,9] = [7f,Tg], it Tesulls that 7 is an isometric
operator with domain D, - Wy x 77 'W; and range A, .= W) x Wa.

It is plain that {eno ~ |en,0,0] : 7 € Z} C Dy, T8enp  €nk ~ l€nk, 0] € D,
(k >0), {em,—1 ~ |0,em—1] :m € Z} CA; and *em,—1  €mp—1 ~ [0,emi_1] €
A;, (k <0). Morcover e 0 € Ar and e,n,—1 € Do, Y, m.

‘'hus, £ is spanned by |W1,0] ~ {7%¢, 0,k > 0,n € Z} and [0, Wa| ~ {r%€n,—1,
k<0,meZ}.

On the other hand, 6: € — &, defined by o[/, g] = [0 f, agl, is a unitary operator.

Our next goal is to deseribe the m.c.u.e. (minimal commuting unitary exten-
sions) of (g,7). We say that (S, T) is a commuting unitary extension of (o,7) if
there exists a Hilbert space H such that € € H, S and 1" are unitary operators
in H, S|E = 7, ’I;E 7 and ST - TS. Such an extension is called minimal if
H -V S*T™(E), too.

A whole description which provides existence and unicily conditions for the
minimal commuting unitary extensions (m.c.u.¢.) is due to Mordn |9]. In particular,
a necessary and sufficient condition for the existence of such an extension is that
(ot fyrfY = (o™ f. /"), Y[.[' €D,y mn 1,2,... and here thatl condition is trivial,
because o is a unilary operalor and o(D;) — Dr,0(A;) - - A 0T = T(J'l,Dr.
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An analogous characterization to the one of scction 1 is the following.

Proposition 4.2

If T is the operator defined before, the minimal unitary extensions of T are
uniquely determined (up to unitary equivalences) by

(12) {(In’.zem,_l,en_u)} for |z| < 1,

mmneZ

where R, is the generalized resolvent of T.

By using the Chumakin formula (1), we can express the generalized resolvent
RooflTas R, =3 So2z"1}il|z| <lwhereT, =70, and ,:E2D, - ESA,
is, for cach z in the unit circle, a contractive operator.

If {u;—1}iez. {uj0}jer are two orthonormal bases of € & D, and € O A,,

respectively, since £ - D, ) (€ @ D;) we can wrile:
Crn—1 = E Coilli—1 + 00, w0 = E diui—1 4w with vy, w9 € D,
i€l i€z

and

b, (ui—y) Zgo,‘](z )uj0, VieZ.
JEL

If we write ® = |2i5li jex the associaled matrix of the operator @, then [|®] < 1.
We define the sequences {v2.}p>0 C D, and {wj’-’},,z(; C D. by recurrence as:

— P P+ k1 ;
7111 Z(nu Ui, —1 l_vﬁz (,U 2> 0)

(].3) n & 1 n |1
'ru'l’,- Zd;’i Ui —y + 1; (p>0)
i€Z

and the polynomial sequence {1°7

(14)
PY®) = (..., ) =

1 ERERE) “jns

m

PP(®) = PP7H@)@DY | PL7X@)ODY | ... | PY®)ODP 1 (p>1),

‘hore of = P P
where ¢ = (... ¢ fh e e

..yand D* = (df;J)n,jeZ'
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So the following general result can be stated:

Theorem 4.3

Let 7,0 be the given operators and R, the gencralized resolvent of 7. From the
vectorial sequences { P2, {vR}, {w,}, the m.c.u.c. of (o, T) are paramcirized by the
matrix {(ln’,z(.:_.,-,..;,c:,‘,_()), j.née Z}, with |z| < 1, where

(|5) (”.z(ij‘_[, (2.,,_()\) L (Z ])’\—1 (I)('w k: (::”’“\)) + Z Z""(‘l,’;-’r',(:!,-,‘,()),

m2>1 m>0
and © = [g; nline. is the matrix associated to &, such that
(16) {cl)z:?:i::- D, »ESA 9] <1, ab,  P.olp.p }

Proof. It is casy 1o prove by an inductive procedure that

17 e P (Pju_y I’Jf"_'(fb)dru,-'o 4ot 1’_,;-) (®)bwP~t -2, for m > 0.

7
‘Then:
(Roej1,e00) D> 2" (T{"¢j—1,€n0)
m20
™m
-— _ _
L 2! (2 I)l- 1((1)) q)( .m Cno ) E :Z’” l; (” ())
m21 [ m>0

In [9] it is shown that, if 7" is a minimal unitary extension of 7 and @, is its associated
characteristic function. the set (16) parametrizes the m.cate. of (o,7). Thus, the
formula (15) also parameltrizes the m.eawe. of (o, 7) il ¢, runs over the contractive
operators commuting with . O

In order o see how these extensions produce the liftings of the given Toeplitz
form, we proceed as follows:

‘l'aking into account that V =V, c.{7"W1} - V,c:{7" W2}, we defline the
form B':V x V = C by B/(7™w, m"wz) = (U™ "[w1,0],]0,we|) where U is a
unitary extension of 7 that satisfies (16). T'hus it is casy to prove that /3’ is a 7 and
o-invariant sesquilinear form and, for cach f,g e V, |B'(/. _q)]2 < B[, ) B2(g.9).
Morcover B’ extends 1o 3y and is uniquely determinated by U because it is sufficient
to compute B'(7™¢, _i.ex.0), 3.k € Z in order to determine the lifting.

IFinally, cach form B’ defines a measure g by the formula B'(f.g) - [ [ fgdy'.
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5. Schur-type Algorithm for the Two-Parametric Nehari Problem

A consequence of the generalized Bochner theorem is the Nehari theorem (see 1)),
and the parametrization of all the solutions is also valid in this case. We will now
devclop a Schur-type algorithm in order to generate the set of all the solutions of the
special Nehari problem, in which is given a finitely supported sequence s:Z2 — C
and we want to find a function I € L=°(T?), such that ||F]|e < 1 and ﬁ(m.,mg)
s(my,my) for =N < my < —1, but only resolving special problems of first order.

Theorem 5.1 ('I'wo-parametric Nehari)
Given the double sequence s: Z? — C, the next stalements are equivalent:

(a) There exists a bounded function F : T x T — C such that ||Flle < 1 and
F(my,m3) = s(tny,my), for ma < 0.

(b) For any finitely supported sequences a,b with suppa C Ey, suppb C Eo,

2
< > am)E ) (b(m)P.

me72 nei?

Z s(m —n) a(m) b(n)

m.ngii?

(¢) The sesquilinear form B:V x V — C defined by
s(m—-mn) ifmeEq, n ek,
B(em,en) S(n—m) ifmekE;, neckE,,
6(m—mn) ifm,neE; orm,necE,,
is a gencralized Tocplitz form.
The first step is to find I € L™ such that
N s(my,—1) il my € Z, mg == —1;
I'(my,my) {
0 if me < —1.

By theorem (5.1), this problem has a solution if and only if the form

1 ifm=mn
s(rmy —ny,—1) ifmg=—1,n2 = 0
4
B(€m;sen) -
S(ny —my,—1) ifmg -0, ng=~-1

0 otherwise,
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is a generalized ‘Toeplitz form.
In particular. this condition implies that 3, . |s(k, -- 1)]2 < 1. Morcover that
solution will be unique if Y, o [s(k, —1)[* 1.

In the sequel we will use the notation ¢o /L =Y, |s(k, —1)}2.

In the space of the two-variable trigonometric polynomials V' we define the inner
product (e,,. ¢n) 13 (€m.en), and the corresponding Hilbert space H.

The operator :H — H defined by T€m,m, - €y ng1, 18 an isometry with
domain D, V. {exj:j/ —1} andrange Ar Vieo{ers: i / 0}

Morcover, the operator o: H — H defined by gen, my = €y 1,m, 18 unitary
and verifies o7 Tolp..

It turns ont that the families {uk -1 = o ((:;\ — L,(V s(r, —1)ek—rp, k € Z)}
and {uno = 5= (k0 — X e 80 =1) €k rm1s k C Z) } are orthonormal bases of H

D. and H 3y A~ respectively.
from the first one, we can decompose e, —; as a sum of elements in Dy and
H < D:, as [ollows:

. )
Ch Colg,—p | 2 s(ro=1) e g. keZ.
re’
In order to preserve the notation used in seetion 4, we eall
0 Z .
UL S(I y — | )(:fk_,‘-,(‘)

ret

and define the soquence {21 C D, hy recurrence as:
I kTp>0 \

O T G S5 Z.s(r Dex—rp  (p>0).

rel

[t is obvious that (¢, en0)  s(k—n,—1) and (&f, e,0) -- 0, il p > 0.
In the same way we oblain:

: _ |
Uk.0 o Cro — Z S(r, —1) J{ cotpegr—1 | L ek r—1.0
0

rel el

= Z?(/ Dty pey I — (c'k 0 — L L ${ty 1) gy 0)

re’, re’ €
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and define {wl},>0 C D, by:

’ll,’z: = (('k ()—ZZ I —-l f —I)(’;, |-1—L0>
Co

reZ te’,
wh = rul”! = P
(()((‘A,,- ZZ \ f—[)(k“_,«p) (p>0).
r€7 LEL
Moreover if ¢,:H < D, — H O A, is the characteristic function associated to T,

b, (Ur,—1) - Lhe/ @rk(2) Uk, for v € Z, we call ¥(2) = (p4(2)), kez 20d, as is
well known, [[$(2)]| < 1. V\" also define the polynomial family in &(z):

P(®) =(...,0,...,0,¢,0,...) = c?,
PL@®) = P (@)@ @Dy, (p21),

By theorem (4.3), the m.c.au.e. of (o,7) are parametrized by (15) which takes
the particular form:

(Rr(z)ek__,,c,,,g) : Z 2" PPN @) d(w®, ene) Fos(k ~m, --1)

m21
. Z 2" el (D)™ w®, en o) 4 s(k — 7, —1),
m21
for [2] <1, where @ satisfies (16) and ) = ¢o(. . ., ko, k1, - - e Pk - ),

1 T
(w®, en o) ———( 2,8 =) s(r—n, —1), Y, 5(r, —1)s(r -n+ 1, -1),. ) .

Co

By (16) (liT(Z)C"k:,—l:(-"-n.,(O = (fl'r.—(z)(fkeo,—nU"C’—u.u> = (Rr(z)ﬁo,—l,U"_keu,()>;

hence, the matrix (¢ R-r(Z)c%o,_[,af’eo,o))pem where

(Rr(2)eg,—1,07c00) — Zz’" o P(D°®)™ (P, e,0) I 5(—p, —1), peZ,
m>1

parametrizes the m.c.u.e. of (o, 7).
If B,(y) (I- yo)! Z,>0 yal, for ly| < 1, is the resolvent of o, we can
also write the previous parametrization, for p > 0 by:

(17a)  (R-(2)eo,.-1, Re(1)e0.0)
= D s(=m=DT Y Y TP (D)™ w, ep0),

p=0 p>0m>1
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and, for p < 0:

(17b)  (R+(2)ev,—1, R; ' (¥)eo0)
= s(p,=DT 1YY TP @(D'0) (w ep),

p>0 p>20m>1

where |y] <1, |2| < 1.
Returning to the original problem of finding I € L*° (T?) such that ||l < I
and F(k,—1) = s(k,—1),k € Z, the solution must have the form

F(y,z) = Zykz_ls(k, —1) |- (z-analytic part).
keZ

This problem can also be stated as: Given f(y,2) = > ez ykz71s(k,—1), find a
z-analytic function such that ||f - hlle < 1, or as a measure matrix lifting theo-
rem: Given the weakly positive measure matrix (pa), where p11) = pigg - measure
Lebesgue in T2, dug(s,t) = f(s,t)dsdl, pi2 = Ty, find a positive matrix (p,g),
such that du), = duhy = dsdt, fig,(my, ma) - jizi (tny, mz2), if mg <O.

By the general lifting theorem, there exists a function h(s,1) analytic in ¢, such
that dpb, = dper -+ h(s,t)dsdL.

In the same way as the one-parametric case, the positive lifting of (Lhap) is de-
termined knowing Jib, (ex.;) for (k, j) € E; and a result equivalent of the proposition
(2.3) is true.

Proposition 5.2

The positive liftings of the matrix (pqp) are determined by means of the m.c.u.c.
of (o,71).

Proof. Let (S,T') be a m.c.we. of (6,7), and let, {F, : 0 < s <2r}, {F,: 0 <1 <27}
be the spectral measures associated to S and T, respectively. We construct the
matrix of numerical measures:

( (Frea,0, Fiseo0)  (Fieo, I55€0,-1)
(Fieo,—1, Eseop)  (Leo—1, Eseo—1) )

‘The measure ji;; is uniquely determined by (o, 7) and it is equal to {(Ie0,0, L54€0,0):

(€0,k3r =Ky 0) - {0F1T%2¢0,0,€00) if ke > 0,
pi1 ek ky) =

(€ky,00€0,—k; ) = (€00, T *207F1eg0) il k2 <O,
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27
vheyr 1k
/ Chi gy A1 (8,8) = pui(er, k) - (S¥1T*2e0.0,e0,0)
Jo
2
ikat
=/ e* 2t d( kg0, S *lenn)

27
/ / E”k'q("htd<n(’() 0, Fa0,0).

In order to show that 2 is uniquely determinated by (S, T), an analogous devel-
opment is valid:

<Ei().—l>(:!-k1.—kz—l> (ero,—j,T“"‘(r""fﬁn.—l) if k2 >0,
22 (Chy ks ) - Ky ks '
<(?3A‘| Jy—1, Co,—1 ) = ((T T 'Zc(),_l 1 €0,—1 ) if kz < O,

and fig,(8,1)  p2a(s,t) = (Feo~1, Fato,—1).
Ou the other hand, jiz1 is only determined if (ky, k2) € Eq:

M2y (éik, _k:Q) <Ef(),—] $ Cky—ku—1 >
= (C’-o,—h T_"’Z_I(T_k'ﬁo,())
(a*17*2 e 1 e00), il kp <0.

So by the spectral theorem,
I3 . vk kg |1
fo (Cry key) - ([’ 17k e(),_l,(in,o>

2n 2n . ]
<[ e et i, i),
JO O J0

and it can be deduced that

duh (8, 1) - e"td(Ff,m(,'_l,E,.,eo,o). O

By the resolvent formula,

27 1 .
d E (.’, -1, R 1)e
(If.r(Z)Gu.—l,Ha(y)co,o> = / (Fy ] 1_1}015/) 0,0)

/2" T d( (Fieo,—1, Eseq o)
o Jo (I—ye*)(l—zeit)
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Since dpth; (s, L) — dpai(s,t) + h(s,t)dsdt with h € HY(T?),

2w p2w —zf
(R(2) €01, Ro(y)e0y) = //(]_ [0 g a

yei*)(1 — ze't)

2w e "h(s,1) ‘
/ / (1 —yeis)(1 — zeit) ds dl
2(f(y, 2) + h(y, 2)).

Then, by (17a), the function

Sy, 2) th(y, 2) — Z s(—p,. =)y Pz~ IZ Z P2  QO(DP)™ Hw?, ep o),

p>0 p>0m>1

where @ verifies (16), is the gencral solution of the first step of the Schur algorithm.
In the following steps of the algorithm, we must use the same method that we
applied in the matricial case. So we do not repeat the argument showed there.
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