Barrelledness of $L_b(\lambda_p, X)$

M. Angeles Miñarro

Dpto. Matemática Aplicada, E.T.S.I. Agrónomos, Univ. de Córdoba, 14004 Córdoba, Spain

Received January 26, 1993

ABSTRAC'I'

Given a Banach space X and a Köthe sequence space λ_p , with $1 \leq p < \infty$ or p = 0, it is known that $L_b(\lambda_p, X)$ is barrelled if λ_p satisfies Heinrich's density condition. In this note we show that if p > 1 and if λ_p does not satisfy the density condition then $L_b(\lambda_p, X)$ is barrelled if and only if every continuous linear operator from λ_p into X is compact. As a consequence we get a characterization of the distinguished spaces of type $\ell_\infty \hat{\otimes}_\pi \lambda_p$.

Let E and X denote a Fréchet and a Banach space respectively and let $L_b(E,X)$ be the space of all continuous linear maps from E into X endowed with the topology of uniform convergence on the bounded sets of E. The space $L_b(E,X)$ admits a fundamental sequence of bounded sets but in general it is not a (DF)-space, i.e., it may happen that $L_b(E,X)$ is not \aleph_0 -quasibarrelled; see [15] for a counterexample and [8] for more information. The following results concerning barrelledness of $L_b(E,X)$ are already known.

Theorem 1

- (a) [3, 2.9] Let us assume that $L_b(E, X)$ is a (DF)-space and that E satisfies the density condition (i.e., the bounded sets of E_b' are metrizable, [2]), then $L_b(E, X)$ is barrelled.
- (b) [4] Let λ_p be a Köthe sequence space with $1 \le p < \infty$ or p = 0. Then $L_b(\lambda_p, X)$ is a (DF)-space. By (a) it is barrelled if λ_p satisfies the density condition.
- (c) [2] If $L_b(E, \ell_{\infty})$ is barrelled then E satisfies the density condition.

236 Miñarro

Moreover the barrelled spaces of type $L_b(\lambda_p, \ell_q)$, with $1 \le p < \infty$, $1 \le q < \infty$, have been characterized in [4], also see [5]. However a characterization of barrelled spaces of type $L_b(\lambda_p, X)$ for a general Banach space X remained still open. This note is devoted to solve this case. As a consequence we can also give a description of the distinguished Fréchet spaces of type $\lambda_p \hat{\otimes}_{\pi} \ell_{\infty}$.

We refer the reader to [11] and [13] for notation and general theory. The Banach space c_0 will also be denoted by ℓ_0 .

DEFINITION. Let I be a countable index set and let A be a Köthe matrix on I, i.e., $A = (a_k(i))_{k \in \mathbb{N}, i \in I}$ with $0 < a_k(i) \le a_{k+1}(i)$, for every $k \in \mathbb{N}$, $i \in I$. Given $1 \le p < \infty$ or p = 0 the Köthe sequence space of order p is defined as

$$\lambda_{p}(I,A) - \left\{ (x_{i})_{i \in I} : \left\| (x_{i}) \right\|_{k} : - \left(\sum_{i \in I} |x_{i}|^{p} a_{k}(i) \right)^{1/p} < \infty, k \in \mathbb{N} \right\} \quad \text{if } 1 \le p < \infty,$$

$$\lambda_{0}(I,A) = \left\{ (x_{i})_{i \in I} : \lim_{i \in I} x_{i} a_{k}(i) = 0 \right\}, \qquad \left\| (x_{i}) \right\|_{k} : \quad \sup |x_{i}| a_{k}(i), k \in \mathbb{N}.$$

We write $\lambda_p(A)$ or even λ_p if there is no chance of confusion.

DEFINITION. Let (G, τ) be a locally convex space. A Schauder decomposition of G is a sequence of continuous operators $P_n: G \to G$, $n \in \mathbb{N}$, such that:

- (i) $P_i \circ P_j = \delta_{ij}P_j, \forall i, j \in \mathbb{N}.$
- (ii) $x = \sum_{i=1}^{\infty} P_i(x), \forall x \in G$, where the series converges in τ .

E.g., if (G,τ) has a Schauder basis $(e_n)_{n\in\mathbb{N}}$ and $(e_n^*)_{n\in\mathbb{N}}$ denotes the associated sequence of biorthogonal functionals then $(e_n^*\otimes e_n)_{n\in\mathbb{N}}$ is a finite dimensional decomposition of G. (We omit the word Schauder from now on.)

Let $(P_n)_{n\in\mathbb{N}}$ be a decomposition in a locally convex space G. $(P_n)_{n\in\mathbb{N}}$ is said to be shrinking if the sequence of dual operators $(P'_n)_{n\in\mathbb{N}}$ is a decomposition of the strong dual of G. E.g., the canonical basis of λ_p induces a shrinking decomposition if $1 or <math>p \in 0$, moreover every decomposition in a reflexive Fréchet space is shrinking ([10]). Let us denote $Q_j: \sum_{i=1}^j P_i, j \in \mathbb{N}$. The decomposition is said to be equicontinuous if the sequence $(Q_n)_{n\in\mathbb{N}}$ is equicontinuous. Every decomposition of a barrelled space is equicontinuous. A sequence $(z_n)_{n\in\mathbb{N}}$ in G is said to be a block sequence if it has the form $z_j = (Q_{n_j} - Q_{n_{j-1}})(z_j)$ for every $j \in \mathbb{N}$ and some increasing sequence $0 = n_0 < n_1 < n_2 < \dots$

The following characterization is straightforward (also see the proof of Lemma 2.(a) below).

Lemma 1

Let $(P_n)_{n\in\mathbb{N}}$ be an equicontinuous decomposition of a locally convex space G. $(P_n)_{n\in\mathbb{N}}$ is shrinking if and only if every bounded block sequence is weakly convergent to 0.

Let K(E,X) denote the subspace of $L_b(E,X)$ of all compact operators. Given a decomposition $(P_n)_{n\in\mathbb{N}}$ in the Fréchet space E we define continuous linear operators $\circ P_n: K(E,X) \to K(E,X), f \to f \circ P_n, n \in \mathbb{N}$.

Lemma 2

- (a) Let E be a Fréchet space with a shrinking decomposition $(P_n)_{n\in\mathbb{N}}$ and let X be a Banach space. Then $(\circ P_n)_{n\in\mathbb{N}}$ is an equicontinuous decomposition of K(E,X).
- (b) Let G be a (DF)-space having an equicontinuous decomposition $(P_n)_{n\in\mathbb{N}}$ such that $P_n(G)$ is quasibarrelled for every $n\in\mathbb{N}$. Then G is quasibarrelled.

Proof. (a) The condition (i) of decompositions is clear. To prove (ii) we have to check the following equality for any $f \in K(E, X)$ and every bounded set B in E,

$$\lim_{j\to\infty}\sup_{z\in B}\left\|\left(f-f\circ Q_j\right)(z)\right\|=\lim_{j\to\infty}\sup_{z\in B}\left\|f\left((\mathrm{id}-Q_j)(z)\right)\right\|=0.$$

Let us assume on the contrary that this condition does not hold for some bounded set B and some f in K(E, X). By induction we can select sequences $(z_n)_{n\in\mathbb{N}}\subset B$ and $j(1)< j(2)< \ldots$ such that

$$\left\| f\left((Q_{j(n+1)} - Q_{j(n)})(z_n) \right) \right\| > \varepsilon, \quad n \in \mathbb{N},$$

for some $\varepsilon > 0$. Now the sequence $\left(\left(Q_{j(n+1)} - Q_{j(n)}\right)(z_n)\right)_{n \in \mathbb{N}}$ is a bounded block sequence by the equicontinuity of $(Q_n)_{n \in \mathbb{N}}$, thus it is weakly null by Lemma 1 and the hypothesis that $(P_n)_{n \in \mathbb{N}}$ is shrinking. Since f is compact we have that $\left(f\left(\left(Q_{j(n+1)} - Q_{j(n)}\right)\right)(z_n)\right)_{n \in \mathbb{N}}$ is a null sequence. A contradiction.

The fact that $(\circ P_n)_{n\in\mathbb{N}}$ is equicontinuous can be readily checked.

(b) Let $(B_n)_{n\in\mathbb{N}}$ be a fundamental sequence of bounded sets in G. If we set $C_j := \bigcup_{i\geq 1} Q_i(B_j), j\in\mathbb{N}$, then $(C_n)_{n\in\mathbb{N}}$ is also a fundamental sequence of bounded sets in G and satisfies $Q_j(C_n)\subset C_n$, for every $j,n\in\mathbb{N}$. Now the proof goes in the same way as in [7, Proposition 2]. \square

238 Miñarro

Lemma 3

Let X be a Banach space and 1 or <math>p = 0:

- (i) A continuous linear operator $T: \ell_p \to X$ is compact if and only if the image of every bounded block sequence is a null sequence.
- (ii) If there is a continuous linear operator from ℓ_p into X which is not compact then we can find a continuous linear operator $T: \ell_p \to X$ such that $||T(e_i)|| = 1$ for every $i \in \mathbb{N}$.

Proof. (i) The "only if" part is clear since every bounded block sequence is weakly null in ℓ_p . Conversely, let us assume that T is not compact. Then we can find a weakly null sequence $(z_n)_{n\in\mathbb{N}}$ in ℓ_p such that $||T(z_n)|| - 1$, $n\in\mathbb{N}$. By using a "gliding hump" argument we shall construct a bounded block sequence $(\bar{z}_n)_{n\in\mathbb{N}}$ such that $||T(\bar{z}_n)|| \geq 1/2$ for every $n\in\mathbb{N}$, a contradiction with the hypothesis. In fact, let us denote $Q_j(z):=(z_1,\ldots,z_j,0,0,\ldots)$, with $z\in\ell_p$, $j\in\mathbb{N}$. We take $j(1)\in\mathbb{N}$ such that $||T(Q_{j(1)}(z_1))||\geq 1/2$ and set $z_1:=Q_{j(1)}(z_1)$. Now the sequence $(Q_{j(1)}(z_n))_{n\in\mathbb{N}}$ converges to 0 in norm, hence can select $n(2)\in\mathbb{N}$ such that $||T((\mathrm{id}-Q_{j(1)})(z_{n(2)}))||>1/2$; next we choose j(2)>j(1) such that $||T((Q_{j(2)}-Q_{j(1)})(z_{n(2)}))||>1/2$ and set $\bar{z}_2:=(Q_{j(2)}-Q_{j(1)})(z_{n(2)})$. We observe that $(Q_{j(2)}(z_n))_{n\in\mathbb{N}}$ converges to 0 in norm and repeat the argument above; by induction we construct the announced bounded block sequence $(\bar{z}_n)_{n\in\mathbb{N}}$.

(ii) Let $T: \ell_p \to X$ be a continuous linear operator which is not compact. By (i) there is a bounded block sequence $(z_n)_{n\in\mathbb{N}}$ such that $||T(z_n)|| \geq \rho$ for some $\rho > 0$ and every $n \in \mathbb{N}$. There is a continuous linear operator $R: \ell_p \to \ell_p$ mapping e_i into $||T(z_i)||^{-1}z_i$ for every $i \in \mathbb{N}$ (e.g. see [12, 2.a.1]). Then $T \circ R: \ell_p \to X$ is the operator that we are looking for. \square

Remark. Given a continuous linear map $T: \ell_1 \to X$ it is enough to check that $(T(e_n))_{n \in \mathbb{N}}$ is a null sequence to assure that T is compact. However this is not true if 1 or <math>p = 0. We exhibit a simple example for the case p = 2. We define the operator $T: \ell_2 \to \ell_2$, $(x_i) \to (x_1, (x_2 + x_3)/2^{1/2}, (x_4 + x_5 + x_6)/3^{1/2}, \ldots)$. It can be readily checked that T is a continuous linear mapping and it is not compact though $(T(e_n))_{n \in \mathbb{N}}$ converges to 0.

Theorem 2

Let 1 or <math>p = 0 and let λ_p be a Köthe sequence space without the density condition. Given any Banach space X the following are equivalent:

- (i) $L(\lambda_p, X) K(\lambda_p, X)$.
- (ii) $L(\ell_p, X) = K(\ell_p, X)$.
- (iii) $L_b(\lambda_p, X)$ is barrelled.

Proof. The equivalence of (i) and (ii) is clear since every continuous linear operator from λ_p into X factorizes through ℓ_p and since λ_p is not a Montel space and hence has a complemented copy of ℓ_p .

 $(i)\Rightarrow (iii)$ Let us denote by $(P_n)_{n\in\mathbb{N}}$ the 1-dimensional shrinking decomposition of λ_p associated to the canonical basis. By Lemma 2.(a), $(\circ P_n)_{n\in\mathbb{N}}$ is an equicontinuous decomposition of $K(\lambda_p,X)$, moreover $\circ P_j(K(\lambda_p,X))$ is isomorphic to X for every $j\in\mathbb{N}$. On the other hand $L_b(\lambda_p,X)$ is a (DF)-space ([4]) and coincides with $K(\lambda_p,X)$ by hypothesis. It follows that $L_b(\lambda_p,X)$ is quasibarrelled by Lemma 2.(b) and it is barrelled since it is complete.

 $(iii) \Rightarrow (ii)$ Assume that there is a continuous linear operator from ℓ_p into X which is not compact. From Lemma 3 there is a continuous linear operator $\varphi: \ell_p \to X$ such that $\|\varphi(e_i)\| - 1$, for every $i \in \mathbb{N}$. We have to show that $L_b(\lambda_p, X)$ is not barrelled. According to the results of [1] since λ_p does not have the density condition it contains a complemented subspace isomorphic to $\lambda_p(\mathbb{N}^2, B)$ where the matrix B satisfies:

(B1)
$$b_1(i,j) = 1, \forall i,j \in \mathbb{N}$$
.

(B2)
$$b_n(i,j) \quad b_1(i,j), \forall i \geq n, \text{ and } \lim_{i \to \infty} b_{n+1}(n,j) = \infty, \forall n \in \mathbb{N}.$$

It is enough to check that $L_b(\lambda_p(B), X)$ is not barrelled. Let U_n and V denote the n-th unit ball of $\lambda_p(B)$ and the closed unit ball of X, respectively, and set $\mathcal{B}_k := \{g \in L_b(\lambda_p(B), X); g(U_k) \subset V\}$. Then $\mathcal{W} := \bigcup_{k \geq 1} \mathcal{B}_k$ is a bornivorous absolutely convex set in $L_b(\lambda_p(B), X)$. Since $L_b(\lambda_p(B), X)$ is a (DF)-space it follows from [13, 8.2.27] that \mathcal{W} contains a barrel. Hence, it now suffices to prove that \mathcal{W} is not a 0-neighbourhood. If it were we could find a bounded set A in $\lambda_p(B)$ such that

$$\mathcal{U}: \left\{ f \in L_b(\lambda_p(B), X); f(A) \subset \|\varphi\|V \right\} \subset \frac{1}{2}\mathcal{W}$$
 (1)

Let M_i : $\sup\{\|x\|_i; x \in A\}$. Given $i \in \mathbb{N}$ we use (B2) to select n(i) such that $\|e_{i,n(i)}\|_{i+1} = b_{i+1}(i,n(i)) > 2^i M_{i+1}$. It is important to remark that by (B1,2) the basic sequence $(e_{i,n(i)})_{i\in\mathbb{N}}$ is equivalent to the canonical basis of ℓ_p . We denote by H the sectional subspace spanned by $(e_{i,n(i)})_{i\in\mathbb{N}}$, by ψ an isomorphism from H onto ℓ_p such that $\psi(e_{i,n(i)}) = e_i$, $i \in \mathbb{N}$ and denote by π the canonical projection from $\lambda_p(B)$ onto H. Now we define $f: \varphi \circ \psi \circ \pi \in L_b(\lambda_p(B), X)$. We first check that f belongs to \mathcal{U} . Let us assume 1 , the case <math>p = 0 is similar.

Given $x \in A$ and $i \in \mathbb{N}$ we have

$$|x_{i,n(i)}|^p 2^i M_{i+1} \le |x_{i,n(i)}|^p ||e_{i,n(i)}||_{i+1} \le ||x||_{i+1} \le M_{i+1},$$

240 Miñarro

whence $|x_{i,n(i)}|^p \leq 2^{-i}$, therefore

$$\|\psi \circ \pi(x)\| = \left(\sum_{i=1}^{\infty} |x_{i,n(i)}|^p\right)^{1/p} \le 1$$

for every $x \in A$. It follows that $\varphi \circ \psi \circ \pi(A)$ is contained in $\|\varphi\|V$ and consequently f belongs to \mathcal{U} . On account of (1) there are $j \in \mathbb{N}$ and $g \in \mathcal{B}_j$ such that f = g/2. However note that $\|f(e_{i,n(i)})\| = \|\varphi(e_i)\| = 1$, for every $i \in \mathbb{N}$. On the other hand $e_{j,n(j)}$ belongs to U_j by (B1,2) whence $\|g(e_{j,n(j)})\| \leq 1$. A contradiction. \square

The following examples follow by the Theorem above; we also use [9].

Corollary 1

Let 1 or <math>p = 0 and let λ_p be a Köthe sequence space without the density condition. Then:

- (i) $L_b(\lambda_p, X)$ is barrelled if X has the Schur property.
- (ii) If X contains a copy of c_0 , $L_b(\lambda_p, X)$ is not barrelled.
- (iii) $L_b(\lambda_p, L_1[0,1])$ is barrelled if and only if either p > 2 or p = 0.
- (iv) $L_b(\lambda_0, X)$ is barrelled if X is reflexive.

As a further consequence we give a characterization of the Fréchet spaces of type $\ell_{\infty}\hat{\otimes}_{\pi}\lambda_{p}$, with 1 or <math>p = 0, that are distinguished. A Fréchet space is said to be distinguished if its strong dual is barrelled (or equivalently bornological). Many authors have recently been concerned with distinguished Fréchet spaces (see [6] for a survey). In particular the Fréchet spaces of type $\ell_{q}\hat{\otimes}_{\pi}\lambda_{p}$ which are distinguished were characterized in [4, 7], when $1 \le p < \infty$ or p = 0, $1 \le q < \infty$ or q = 0. The case $q = \infty$ remained open (see [13, 13.11.3]).

Corollary 2

Let X be a Banach space and let 1 or <math>p = 0:

- (i) If λ_p satisfies the density condition then $X \hat{\otimes}_{\pi} \lambda_p$ is distinguished.
- (ii) If λ_p does not satisfy the density condition then $X \hat{\otimes}_{\pi} \lambda_p$ is distinguished if and only if $L(\ell_p, X') = K(\ell_p, X')$; in particular, then $\ell_{\infty} \hat{\otimes}_{\pi} \lambda_p$ is distinguished if and only if either p = 0 or 2 .

Proof. According to the results of [14] (also see [5]) the strong dual of $X \hat{\otimes}_{\pi} \lambda_p$ is isomorphic to $L_b(\lambda_p, X')$. Thus statement (i) is a particular case of [3, 1.7] and (ii) is a consequence of Theorem 2. To show the case $X = \ell_{\infty}$ one should check that $L(\ell_p, \ell_{\infty}') = K(\ell_p, \ell_{\infty}')$ (or equivalently $L(\ell_{\infty}, \ell_p') = K(\ell_{\infty}, \ell_p')$) if and only if p = 0 or $2 and this is already done in [9]. <math>\square$

Acknowledgments. The research of the author has been partially supported by DGICYT projecto número PB91/0845. The author is also indebted to the referee for improving the manuscript.

References

- 1. F. Bastin and J. Bonet, Locally bounded noncontinuous linear forms on strong duals of non distinguished Köthe echelon spaces, *Proc. Amer. Math. Soc.* 108 (1990), 769–774.
- K.D. Bierstedt and J. Bonet, Stefan Heinrich's density condition for Fréchet spaces and the characterization of the distinguished Köthe echelon spaces, Math. Nuchr. 135 (1988), 149–180.
- 3. K.D. Bierstedt and J. Bonet, Density conditions in Fréchet and (DF)-spaces, *Rev. Matem. Univ. Complutense Madrid* 2, no. suplementario (1989), 59–76.
- 4. J. Bonet and J.C. Díaz, The problem of topologies of Grothendieck and the class of Fréchet T-spaces, *Math. Nachr.* **150** (1991), 109–118.
- J. Bonet, J.C. Díaz and J. Taskinen, Tensor stable Fréchet and (DF) spaces, Collect. Math. 42, 2 (1991), 83–120.
- 6. J. Bonet and S. Dierolf, On distinguished Fréchet spaces, pp. 201–214 in *Progress in Functional Analysis*, Math. Studies 170, North-Holland, 1992.
- 7. J.C. Díaz and M.A. Miñarro, Distinguished Fréchet spaces and the projective tensor product, *DOGA Tr. J. Math.* 14 (1990), 191–208.
- S. Dierolf, On spaces of continuous linear mappings between locally convex spaces, Note di Math. 5 (1985), 147–255.
- 9. J. Johnson, Remarks on Banach spaces of compact operators, *J. Funct. Anal.* **32** (1979), 304–311.
- N.J. Kalton, Schauder decompositions in locally convex spaces, Proc. Camb. Phil. Soc. 68 (1970), 377-392.
- G. Köthe, Topological Vector Spaces, I, II, Springer, Berlin, Heidelberg, New York, 1969, 1979.
- 12. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I, Springer, 1977.
- 13. P. Perez Carreras and J. Bonet, *Barrelled Locally Convex Spaces*, Math. Studies 131, North Holland, Amsterdam, 1987.
- J. Taskinen, Counterexamples to "problème des topologies" of Grothendieck, Ann. Acad. Sci. Fenn. Λ 63, 1986.
- J. Taskinen, The projective tensor product of Fréchet Montel spaces, Studia Math. 91 (1988), 17–30.