Collect. Math. 43, 3 (1992), 217-224
(©) 1993 Universitat de Barcelona

Multiple periodic solutions of some forced hamiltonian systems
and the generalized saddle point theorem

MoHsEN TiMouMI
Ficole Normale Supérieure, 7021 Zarzouna, Tunisie

Received November 18, 1992

ABSTRACT
In this paper we prove the existence of geometrically distinct periodic solutions
of

Ju+ VH(t,u) =0

where T/(1,x) is periodic with respect to L, &1,...,2Zp and goes 0 zero
uniformly with respect to (t, 21,...,%p) when (Zpyq,...,T2N) gOCS tO
infinity.

1. Introduction
In this note we consider the following hamiltonian system
(1) Ju - VI (,u)=0

Here, /7(t,x):R x R?N — R is a continuously differentiable function, periodic in £
with minimal period T > 0. We are interested in the existence of multiple periodic
solutions of (11).

We assume that H is periodic in a part of the variables z; and resonant at
infinity with respect to the other part of variables.
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2. Tools

Before giving a variational formulation of (IT), some preliminary materials on func-
tion spaces and norms is necded.

Let L2(S', R2N) denote the set of 2N-tuples of 7-periodic functions which are
square integrable. If u € 12(S',R?V), it has a Fourier expansion

§ :(,27""“/1 ms

mezZ

) 2
where @, € R2V and 3, oo liim|” < oc. Set

fll = [ S0+ ]

mei
X - W/22(g1 RAN) = {uel (ST, R2N) ¢ Jluf < x}

For c.g. smooth u € X, sot

-
Q(u) - —/0 (Ju,u) dt.

Then it is easy Lo check that

and let

~ 12
(1 Q(u) =-2m Z ml'u.m|
me,
Set
X() . RZN
X+ = {" cX: Z ()21rml l/l,um a.cC. }
m2>|
X~ {u €X: Z 2mmITy  ae. }
m<—1

Then X — XY@ X! ¢ X . Tn fact it is not difficult to verify that X+, X—, X° arc
respectively the subspa.cch of X on which @ is positive definite, n(.\,g_._,dtne dcﬁmt(:,
and null, and these spaces are orthogonal with respect to the bilinear form

3(u,v) -= / (Ju,v)dt

associated with Q. [t is also casy to check that X% X' and X~ are mutually
orthogonal in L?(S' R?V).
One further analytical fact about X is needed.
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Proposition 1 (|5])
For s € [1, 1-00[, X is compactly embedded in L* (5, R?N). In particular there
is an «a, > 0 such that

(2) lell . < s el

for allu e X.

Now, we consider the operator A defined on X by

»T

8)) {Au,v) - — ./0 [(J7, ) 4 (i, v)] &t

where @t = IOI u(t) dL is the mean value of u in [0,7]. Tt is not difficult to check
that A is continuous and invertible from X to X,

We recall the generalized saddle point theorem [2]. We assume that X I/xV
where 7 is a Banach space and V is a complete connected Finsler manifold of class
C2. Let It = W @ Z (topological direct sum) and I, = W,, ® Z, be a sequence of
closed subspaces with 7, ¢ Z, W,, C W, 1 <dim W,, < oo. Define

Xn - LpxV.

Denoting fr = [|, we then have f, € C'(X,,R),n > 1.

DerInerioN (|2]). Given ¢ € R, we say that f satisfics the Palais-Smale condition
with respeet o (X,,) at level ¢ if every sequence (xr) satisfying

Tn € X flan) — ¢, |dfu(zn)|| —0

possesses a subsequence which converges in X to a critical point of f. The above
*
[¢

property will be referred as the (P‘s) . condition with respect to (X n)-

Theorem I (Geueralized Saddle PPoint Theorem)

Assume there exist r > 0 and o« < 8 < 7 such that
a) [ satisfies the (PS). condition with respect to (X,) for every ¢ € [8,7];
b) f(w,v) < a for every (w,v) € W x V such that |lw| = r;
¢) f(z,v) 2 3 for every (z,v) € 4 x V,

d) flw,v) <7 for every (w,v) € W x V such that ||w| < r.
Then [~! ([,'3 ~]) contains at least cuplength(V) | 1 critical points of f.
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3. The main result

Our main result concerning the system (11) is the following one:

Theorem 1

Assume that
(H1) H(t,x) 0, VYL € [0,T)], Vz € RV,
(H2) I is periodic in the variables xy, ..., zp,
(H3) H and VI tend to zero uniformly in t,21,...,2p 85 (Tpy1,...,Z2n) tends to
infinity in R?2N-p,
Then the system (H) has at least (p + 1) T-periodic solutions.

Proof. We can assume that,
H(l,x) <0, Vi€ [0,T], Vz € RV

and we consider the continuously differentiable functional

plu) = — /TH(J&,'U) | 11t m)] dt
JO

defined on the space X introduced above. One has

.
o'(u)v - — / (Ji+ VH(t,u),v)dt,
Jo

and it is well known that the critical points of the functional ¢ correspond to the
T-periodic solutions of the system (H).
To find critical points of ¢ we will apply the genceralized Saddle Point 'Theorem
to p. Let
ei = (0,...,0,1,0,...,0)
i-th
Yo = (e;,...,c¢p>
Y; = (em |,...,(£2,\r>

Let W =Y, 4 X~ Z =Xt and V be the quotient space Yy / {x+e ~ux i-
1,...p} which is nothing but, the torus 7”. Now regard the function [ as defined on
L= (W®Z) x V and apply theorem 1. We have

T
ar)eZx Ve plein) = [ [J082) 1z 4] b
J0
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Let, (2n,vx) be a minimizing sequence: @(zn,vn) — inlzxv p then by (H3) and the
formula (1), (z,) is bounded in X. Therefore, up to a subsequence, there exists
(20,v0) € Z x V such that (2.) (resp. (vs)) is weakly convergent to 2o (resp. vo).
Morcover, the embedding map X — L2, u — u is compact, 50 2, — 2o in I2. Then,
by taking a subsequence il it is necessary, we can assume that 2,(t) — zo(t) a.e. and
by Lchesgue Theorem, we have

T T
/ H(l, zn +vn) dt —»/ H(t,zo | vo)dt.
Jo 0

Now, it is not difficult 10 sce that ¢(zn + va) — (20 -1 vo) and then p attains its
minimum on Z x V al, (zo, 'vu). We then have

-
3 = i > — " ) L.
B /12(/(,0 > /0 I (t,z0 1 o) dt

Let 0 < a < 3, we have for all (u,v) e W x V

7' -
olu | )= —/ [%(Iﬁ,ﬁ) b It i | @ |-’U)] dt
JO

where u; i$ the mean value of v and % = v —u,. By (112) and formula (1), it is casy
Lo see that

lim ¢(u-+v) -—-o00, lim @gluiv)<0 uniformly in v.
3 —oc || o0

So there exists » > 0 such that
Y(u,v) e W xV, lull =7 -= p(u 1 v) <a.

i is also bounded from above on 3. x V by a constant v > 3, where f3, is the closed
disc in W centered in zero, with radius r.

Now, we will prove that for all ¢ € [/3, 'y], i salisfics the Palais-Smale condition
at level ¢ wilh respect to

r, [Y1 o} {u eX:ult)y= Y 62”""t'1/"'17-,,l}:| xV, meN.
1< m|<n

Let (uy) be a sequence such that

Un € F,, Yn € Ny p(u,) — ¢ ||dgon(u")” — 0



222 TINMOUMI
where p, |, . Set
Uy Up | Upn | Up, with u,, € Y;.

By the formula (1), (1) we have

" ’l'
(5)  ¢'(uwa)- (@ —ay) 2r > || [fim|” — / (VI un), T - 71, ) di
1<|m|<n 70
and we deduce by the assumption (113) the inequality

iz H2 < const ||.||

so () is bounded in X and we can assume that 7, (L) — %(t) a.c. We claim that
(i) is bounded. Otherwise, by Lebesgue theorem, we have

"
(6) lim / H (4 -+ Ty 4 vn) dt - 0
n—mn0 . ()
and
T 2
(7) lim [VH(Lwn t U | va)| dt = 0
n— 2 . ()

By l6lder inequality

-
‘ (VL)) — 1, )de
JO

< IVH(t""‘"”)ll;‘z |'“'""v|1,‘1-
< |\VH(tua)],, (@] < MIVH (L0,
we deduce from (7) that
T
/0 (VH(bun), @k — 3y )dl — 0, if n — oo.
IXlsewhere, we have

len(wa) - (@) = )| < [l (un) .

Ul < M ||} ()| .

and so
@n(tn) - (lh =) — 0,  ifn-»o00.
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Consequently, we deduce from (5) that (#.) goes to zero in X and therefore by (6)

-
e(un) = Z m|ﬂm|2 —/ H(t,un)dt — 0, n — 00
I<|m|<n 0

in contradiction with ¢(u,) — ¢ > 0. Then (u,) is bounded in E and we can assume
that v, — uw in F.

Now, let P, (resp. @) be the projector from F to E, (resp. i), we have
= UnZO Fu..soloralluekE,

u-: Pout-Quuy Pou—u, Quu—0 whenn — oo.

Elsewhere, we have
@' (u) v = (Au,v) + (B(u),v)

where A is the lincar operator introduced in the paragraph 2 and

(B(u),v) =/T [(—VH(t,u),v) | (ﬁ,z‘;)] dt.
0

‘T'he operator B is compact, therefore B(u,) — B(u). Let f, be a representative of
¢'(un) in X given by the Riesz Theorem, then

Aun + B(ug) = [n + QnB(un).

Since Q.DB(u,) — 0 and A is a continuously invertible opcrator, then u, —
A~1B(u), which proves that y satisfies the (PS):.

@ verifies all the generalized Saddle Point Theorem assumptions, so ¢ has
at least cuplength(V) -+ 1 critical points, and since V is the torus 7P, then
cuplength(V) = p and the theorem is proved. O

Remark. Writing z = (2,...,Zsn) and taking p € {1,...,2N — 1}, we can replace

(H2) and (113) respectively by

(H2’) II is periodic in the variables Zg(1),. .+, To(p)s

(113") H and VI tend to zero uniformly int, s (1), . . - s To(p) 88 (To(pi1)s - - 1 La(2N))
tends to infinity in R2V—?, where ¢ is a permutation of the set {1, ., 2N }
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