Multiple periodic solutions of some forced hamiltonian systems and the generalized saddle point theorem

MOHSEN TIMOUMI

École Normale Supérieure, 7021 Zarzouna, Tunisie

Received November 18, 1992

ABSTRACT

In this paper we prove the existence of geometrically distinct periodic solutions of

$$J\dot{u} + \nabla H(t, u) = 0$$

where H(t,x) is periodic with respect to t,x_1,\ldots,x_p and goes to zero uniformly with respect to (t,x_1,\ldots,x_p) when (x_{p+1},\ldots,x_{2N}) goes to infinity.

1. Introduction

In this note we consider the following hamiltonian system

(II)
$$J\dot{u} + \nabla II(t, u) = 0$$

Here, $H(t,x): \mathbb{R} \times \mathbb{R}^{2N} \to \mathbb{R}$ is a continuously differentiable function, periodic in t with minimal period T > 0. We are interested in the existence of multiple periodic solutions of (11).

We assume that H is periodic in a part of the variables x_i and resonant at infinity with respect to the other part of variables.

2. Tools

Before giving a variational formulation of (II), some preliminary materials on function spaces and norms is needed.

Let $L^2(S^1, \mathbb{R}^{2N})$ denote the set of 2N-tuples of T-periodic functions which are square integrable. If $u \in L^2(S^1, \mathbb{R}^{2N})$, it has a Fourier expansion

$$u = \sum_{m \in \mathbb{Z}} e^{2\pi m t J/T} \hat{u}_m,$$

where $\hat{u}_m \in \mathbb{R}^{2N}$ and $\sum_{m \in \mathbb{Z}} |\hat{u}_m|^2 < \infty$. Set

$$||u|| = \left[\sum_{m \in \mathbb{Z}} (1 + |m|) |\hat{u}_m|^2\right]^{1/2}$$

and let

$$X - W^{1/2,2}(S^1, \mathbb{R}^{2N}) = \left\{ u \in L^2(S^1, \mathbb{R}^{2N}) : ||u|| < \infty \right\}.$$

For e.g. smooth $u \in X$, set

$$Q(u) = -\int_0^T \langle J\dot{u}, u \rangle dt.$$

Then it is easy to check that

(1)
$$Q(u) = 2\pi \sum_{m \in \mathbb{Z}} m |\hat{u}_m|^2.$$

Set

$$X^{0} :: \mathbb{R}^{2N}$$

$$X^{+} = \left\{ u \in X : u(t) = \sum_{m \geq 1} e^{2\pi m t J/T} \hat{u}_{m} \ a.e. \right\}$$

$$X^{-} \quad \left\{ u \in X : u(t) = \sum_{m \leq -1} e^{2\pi m t J/T} \hat{u}_{m} \ a.e. \right\}.$$

Then $X = X^0 \oplus X^+ \oplus X^-$. In fact it is not difficult to verify that X^+, X^-, X^0 are respectively the subspaces of X on which Q is positive definite, negative definite, and null, and these spaces are orthogonal with respect to the bilinear form

$$B(u,v) = -\int_0^T \left\langle J\dot{u},v
ight
angle dt$$

associated with Q. It is also easy to check that X^0 , X^+ and X^- are mutually orthogonal in $L^2(S^1, \mathbb{R}^{2N})$.

One further analytical fact about X is needed.

Proposition I (|5|)

For $s \in [1, +\infty[$, X is compactly embedded in $L^s(S^1, \mathbb{R}^{2N})$. In particular there is an $\alpha_s > 0$ such that

$$||u||_{L^s} \le \alpha_s ||u||$$

for all $u \in X$.

Now, we consider the operator Λ defined on X by

(3)
$$\langle Au, v \rangle : - \int_0^T \left[\langle J\dot{u}, v \rangle + \langle \ddot{u}, v \rangle \right] dt$$

where $\bar{u} = \frac{1}{T} \int_0^T u(t) dt$ is the mean value of u in [0, T]. It is not difficult to check that A is continuous and invertible from X to X^* .

We recall the generalized saddle point theorem [2]. We assume that $X = E \times V$ where E is a Banach space and V is a complete connected Finsler manifold of class C^2 . Let $E = W \oplus Z$ (topological direct sum) and $E_n = W_n \oplus Z_n$ be a sequence of closed subspaces with $Z_n \subset Z$, $W_n \subset W$, $1 \le \dim W_n < \infty$. Define

$$X_n = E_n \times V$$
.

Denoting $f_n = f|_{X_n}$ we then have $f_n \in C^1(X_n, \mathbb{R}), n \geq 1$.

DEFINITION (|2|). Given $c \in \mathbb{R}$, we say that f satisfies the Palais-Smale condition with respect to (X_n) at level c if every sequence (x_n) satisfying

$$x_n \in X_n$$
, $f(x_n) \to c$, $\|df_n(x_n)\| \to 0$

possesses a subsequence which converges in X to a critical point of f. The above property will be referred as the $(PS)_c^*$ condition with respect to (X_n) .

Theorem I (Generalized Saddle Point Theorem)

Assume there exist r > 0 and $\alpha < \beta \le \gamma$ such that

- a) f satisfies the (PS)^{*} condition with respect to (X_n) for every $c \in [\beta, \gamma]$;
- b) $f(w,v) \leq \alpha$ for every $(w,v) \in W \times V$ such that ||w|| = r;
- c) $f(z,v) \ge \beta$ for every $(z,v) \in Z \times V$,
- d) $f(w,v) \le \gamma$ for every $(w,v) \in W \times V$ such that $||w|| \le r$.

Then $f^{-1}([\beta, \gamma])$ contains at least cuplength (V) + 1 critical points of f.

220 TIMOUMI

3. The main result

Our main result concerning the system (II) is the following one:

Theorem 1

Assume that

- (H1) $H(t,x) \neq 0, \forall t \in [0,T], \forall x \in \mathbb{R}^{2N}$,
- (H2) II is periodic in the variables x_1, \ldots, x_p ,
- (H3) H and ∇H tend to zero uniformly in t, x_1, \ldots, x_p as $(x_{p+1}, \ldots, x_{2N})$ tends to infinity in \mathbb{R}^{2N-p} .

Then the system (H) has at least (p+1) T-periodic solutions.

Proof. We can assume that

$$H(t,x) < 0, \qquad \forall t \in [0,T], \ \forall x \in \mathbb{R}^{2N}$$

and we consider the continuously differentiable functional

$$\varphi(u) = -\int_0^T \left[\frac{1}{2} \langle J\dot{u}, u \rangle + H(t, u) \right] dt$$

defined on the space X introduced above. One has

$$\varphi'(u)v = -\int_0^T \langle J\dot{u} + \nabla H(t,u), v \rangle dt,$$

and it is well known that the critical points of the functional φ correspond to the T-periodic solutions of the system (II).

To find critical points of φ we will apply the generalized Saddle Point Theorem to φ . Let

$$e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$$

$$Y_0 = \langle e_1, \dots, e_p \rangle$$

$$Y_1 = \langle e_{p+1}, \dots, e_{2N} \rangle$$

Let $W=Y_1 \oplus X^-$, $Z=X^+$ and V be the quotient space $Y_0/\{x+e_i\sim x,\ i=1,\dots p\}$ which is nothing but the torus T^p . Now regard the function f as defined on $E=(W\oplus Z)\times V$ and apply theorem 1. We have

$$\forall (z,v) \in Z \times V, \qquad \varphi(z+v) = -\int_0^T \left[\frac{1}{2}\langle J\dot{z},z\rangle + H(t,z+v)\right]dt.$$

Let (z_n, v_n) be a minimizing sequence: $\varphi(z_n, v_n) \to \inf_{Z \times V} \varphi$ then by (H3) and the formula (1), (z_n) is bounded in X. Therefore, up to a subsequence, there exists $(z_0, v_0) \in Z \times V$ such that (z_n) (resp. (v_n)) is weakly convergent to z_0 (resp. v_0). Moreover, the embedding map $X \to L^2$, $u \to u$ is compact, so $z_n \to z_0$ in L^2 . Then, by taking a subsequence if it is necessary, we can assume that $z_n(t) \to z_0(t)$ a.e. and by Lebesgue Theorem, we have

$$\int_0^T H(t, z_n + v_n) dt \longrightarrow \int_0^T H(t, z_0 + v_0) dt.$$

Now, it is not difficult to see that $\varphi(z_n + v_n) \to \varphi(z_0 + v_0)$ and then φ attains its minimum on $Z \times V$ at (z_0, v_0) . We then have

$$\beta = \inf_{Z \times V} \varphi \ge - \int_0^T H(t, z_0 + v_0) dt.$$

Let $0 < \alpha < \beta$, we have for all $(u, v) \in W \times V$

$$arphi(u+v)=-\int_0^T \left[rac{1}{2} \langle J \hat{\widetilde{u}}, \widetilde{u} \rangle + H(t, u_1+\widetilde{u}+v) \right] dt$$

where u_1 is the mean value of u and $\tilde{u} = u - u_1$. By (112) and formula (1), it is easy to see that

$$\lim_{\|\tilde{u}\|\to\infty}\varphi(u+v) \quad -\infty, \quad \lim_{\|\tilde{u}\|\to\infty}\varphi(u+v) \leq 0 \quad \text{uniformly in } v.$$

So there exists r > 0 such that

$$\forall (u, v) \in W \times V, \qquad ||u|| - r \Rightarrow \varphi(u + v) \leq \alpha.$$

 φ is also bounded from above on $B_r \times V$ by a constant $\gamma \geq \beta$, where B_r is the closed disc in W centered in zero, with radius r.

Now, we will prove that for all $c \in [\beta, \gamma]$, φ satisfies the Palais-Smale condition at level c with respect to

$$E_n$$
 $\left[Y_1 \odot \left\{u \in X : u(t) = \sum_{1 \le |m| \le n} e^{2\pi mtJ/T} \hat{u}_m\right\}\right] \times V, \quad n \in \mathbb{N}.$

Let (u_n) be a sequence such that

$$u_n \in E_n, \ \forall n \in \mathbb{N}; \ \varphi(u_n) \to c; \ \|d\varphi_n(u_n)\| \to 0$$

222 Timoumi

where $\varphi_n = \varphi|_{E_n}$. Set

$$u_n - u_n + \widetilde{u}_n + v_n$$
, with $u_n \in Y_1$.

By the formula (1), (4) we have

$$(5) \qquad \varphi'(u_n) \cdot \left(\widetilde{u}_n^+ - \widetilde{u}_n^-\right) = 2\pi \sum_{1 \le |m| \le n} |m| \left|\widetilde{u}_m\right|^2 - \int_0^T \left\langle \nabla H(t, u_n), \widetilde{u}_n^+ - \widetilde{u}_n^- \right\rangle dt$$

and we deduce by the assumption (113) the inequality

$$\|\widetilde{u}_n\|^2 \le \operatorname{const} \|\widetilde{u}_n\|$$

so (\widetilde{u}_n) is bounded in X and we can assume that $\widetilde{u}_n(t) \to \widetilde{u}(t)$ a.e. We claim that (\overline{u}_n) is bounded. Otherwise, by Lebesgue theorem, we have

(6)
$$\lim_{n\to\infty} \int_0^T H(t, u_n + \widetilde{u}_n + v_n) dt = 0$$

and

(7)
$$\lim_{n\to\infty} \int_0^T \left| \nabla H(t, u_n + \widetilde{u}_n + v_n) \right|^2 dt = 0$$

By Hölder inequality

$$\left| \int_{0}^{T} \left\langle \nabla H(t, u_{n}), \widetilde{u}_{n}^{\perp} - \widetilde{u}_{n}^{\perp} \right\rangle dt \right| \leq \left| \nabla H(t, u_{n}) \right|_{L^{2}} \left| u_{n} \right|_{L^{2}}$$

$$\leq \left| \nabla H(t, u_{n}) \right|_{L^{2}} \left\| \widetilde{u}_{n} \right\| \leq M \left| \nabla H(t, u_{n}) \right|_{L^{2}},$$

we deduce from (7) that

$$\int_0^T \langle \nabla H(t, u_n), \widetilde{u}_n^+ - \widetilde{u}_n^- \rangle dt \longrightarrow 0, \quad \text{if } n \to \infty.$$

Elsewhere, we have

$$\left|\varphi_n'(u_n)\cdot\left(\widetilde{u}_n^+-\widetilde{u}_n^-\right)\right|\leq \left\|\varphi_n'(u_n)\right\|_{X^*}\left\|\widetilde{u}_n\right\|_{X}\leq M\left\|\varphi_n'(u_n)\right\|_{X^*}$$

and so

$$\varphi'_n(u_n) \cdot (\widetilde{u}_n^+ - \widetilde{u}_n^-) \longrightarrow 0, \quad \text{if } n \to \infty.$$

Consequently, we deduce from (5) that (\tilde{u}_n) goes to zero in X and therefore by (6)

$$\varphi(u_n) = \pi \sum_{1 \le |m| \le n} m |\hat{u}_m|^2 - \int_0^T H(t, u_n) dt \longrightarrow 0, \qquad n \to \infty$$

in contradiction with $\varphi(u_n) \to c > 0$. Then (u_n) is bounded in E and we can assume that $u_n \to u$ in E.

Now, let P_n (resp. Q_n) be the projector from E to E_n (resp. E_n^{\perp}), we have $E = \overline{\bigcup_{n\geq 0} E_n}$, so for all $u \in E$,

$$u = P_n u + Q_n u$$
; $P_n u \to u$, $Q_n u \to 0$ when $n \to \infty$.

Elsewhere, we have

$$\varphi'(u) \cdot v = \langle Au, v \rangle + \langle B(u), v \rangle$$

where A is the linear operator introduced in the paragraph 2 and

$$\langle B(u), v \rangle = \int_0^T \left[\langle -\nabla H(t, u), v \rangle + \langle \bar{u}, \bar{v} \rangle \right] dt.$$

The operator B is compact, therefore $B(u_n) \to B(u)$. Let f_n be a representative of $\varphi'(u_n)$ in X given by the Riesz Theorem, then

$$Au_n + B(u_n) = f_n + Q_n B(u_n).$$

Since $Q_nB(u_n) \to 0$ and A is a continuously invertible operator, then $u_n \to A^{-1}B(u)$, which proves that φ satisfies the $(PS)_c^*$.

 φ verifies all the generalized Saddle Point Theorem assumptions, so φ has at least cuplength(V) + 1 critical points, and since V is the torus T^p , then cuplength(V) = p and the theorem is proved. \square

Remark. Writing $x = (x_1, ..., x_{2N})$ and taking $p \in \{1, ..., 2N - 1\}$, we can replace (H2) and (H3) respectively by

- (H2') II is periodic in the variables $x_{\sigma(1)}, \ldots, x_{\sigma(p)}$,
- (H3') H and ∇H tend to zero uniformly in $t, x_{\sigma(1)}, \ldots, x_{\sigma(p)}$ as $(x_{\sigma(p+1)}, \ldots, x_{\sigma(2N)})$ tends to infinity in \mathbb{R}^{2N-p} , where σ is a permutation of the set $\{1, \ldots, 2N\}$.

224 TIMOUMI

References

- 1. A. Fonda and A.C. Lazer, Subharmonic solutions of conservative systems with non-convex potentials, to appear.
- 2. G. Fournier, D. Lupo, M. Ramos and M. Willem, *Limit relative category and critical point theory*, to appear.
- 3. F. Giannoni, Periodic solutions of dynamical systems by a Saddle Point Theorem of Rabinowitz, Nonlinear analysis, Theory, Methods and Applications 13, 6 (1989), 707-719.
- 4. J.Q. Liu, Λ generalized Saddle Point Theorem, *Journal of differential equations* 82 (1989), 372–385.
- 5. P.M. Rabinowitz, Minimax methods in critical point theory with application to differential equations, CBMS Reg. Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, RI, 1986.