A note on the homotopical characterization of \mathbb{R}^n

R. AYALA AND A. QUINTERO

Departamento de Geometría y Topología, Facultad de Matemáticas, Universidad de Sevilla Apdo. 1160, 41080 Sevilla, Spain

Received June 11, 1992. Revised January 19, 1993

DEDICADO A LA MEMORIA DEL PROFESOR D. ANTONIO DE CASTRO

ABSTRACT

This note gives conditions which assure that the one-point compactification of an open manifold is a manifold. This result is used to show that the homotopical characterization of \mathbb{R}^n $(n \geq 4)$ can be derived from the Poincaré Conjecture.

The first example of a contractible open 3-manifold which is not the Euclidean space is due to J.H.C. Whitehead (see [20] for examples in dimensions \geq 3). Therefore, further homotopical conditions are needed in order to characterize Euclidean spaces among contractible open manifolds.

The following homotopical characterization of Euclidean spaces is due to L. Siebenmann $(n \ge 5)$ and M.H. Freedman (n = 4):

Theorem A ([5], [16])

Let X be a contractible open topological n-manifold $(n \ge 4)$. Then X is 1-LC at ∞ if and only if X is homeomorphic to \mathbb{R}^n .

We recall that a neighbourhood of infinity (∞) in a Hausdorff space X is a subset N such that $\overline{X-N}$ is compact. In this note we shall deal with locally compact separable metric spaces. For these spaces we may find a decreasing sequence $\{U_i\}$ of neighbourhoods of ∞ such that $\overline{X-U_i}\subseteq \operatorname{int}(\overline{X-U_{i+1}})$. Such a sequence is called a system of ∞ -neighbourhoods.

The space X is said to be 1-LC at ∞ if for any neighbourhood U of ∞ there exists a smaller neighbourhood V of ∞ such that any loop in V is nullhomotopic in U.

It is interesting to point out that the Poincaré Conjecture can be derived from the characterization of \mathbb{R}^n by using basic facts from Algebraic Topology. That is, Theorem A yields

Theorem A' ([13], [5])

Let Σ^n be a closed topological n-manifold $(n \geq 4)$ homotopically equivalent to S^n . Then Σ^n is homeomorphic to S^n .

Indeed, given $p \in \Sigma$ the open manifold $\Sigma - \{p\}$ is simply connected by Van Kampen's Theorem, and $\tilde{H}_*(\Sigma - \{p\})$ is trivial by Mayer-Victoris arguments. Then $\Sigma - \{p\}$ is contractible by the Whitehead Theorem. Since $\Sigma - \{p\}$ is 1-LC at ∞ , $\Sigma - \{p\} \cong \mathbb{R}^n$ by Theorem A, and so $\Sigma^n \cong S^n$.

In this note we show that the converse Λ') $\Rightarrow \Lambda$) also holds. In order to prove it, we shall give sufficient conditions which assure that the one-point compactification X^+ of an open manifold X is a manifold. We shall prove

Lemma B

Let X be an open homologically trivial n-manifold such that $\operatorname{pro} -\pi_1(X)$ is semistable. Then X^+ is an n-homology sphere. Furthermore, if X is 1-LC at ∞ (i.e. $\operatorname{pro} -\pi_1(X)$ is trivial), X^+ is a topological manifold. If in addition, $\pi_1(X)=0$ (i.e. X is contractible) X^+ has the same homotopy type as S^n .

Remark 1. (i) A first version of Theorem A had been previously proven by E. Luft ([10]) for a simply connected at ∞ open n-manifold X ($n \ge 5$). That is, X admits a system of simply connected ∞ -neighbourhoods. In dimensions ≥ 5 , Theorem A' was already achieved as a corollary of Luft's Theorem in [10, §4]. The Poincaré Conjecture for topological n-manifolds ($n \ge 5$) had been originally proven by M. Newman ([13]).

- (ii) The first antecedent of Luft's Theorem and Theorem A is the Stallings Theorem for simply connected at ∞ open PL-manifolds of dimension ≥ 5 ([7, I.1]). The Stallings Theorem gave a proof of the Poincaré Conjecture for PL-manifolds different to the original proof due to S. Smale ([18]). See [7, I.1.4].
- (iii) In dimensions ≥ 5 , the hypotheses of Theorem A can be actually reduced to the hypotheses of the Stallings Theorem. Indeed, the Kirby-Siebenmann obstruction $o(X) \in H^4(X; \mathbb{Z}_2)$ vanishes for any contractible open topological n-manifold X $(n \geq 5)$, therefore X always admits a structure of PL-manifold (see [9]). On the other hand, by [17, 3.10] it is known that 1-LC at ∞ condition is actually equivalent to 1-connectedness at ∞ for PL-manifolds of dimension ≥ 5 . Similarly for Luft's Theorem.

Before proving Lemma B we give some notations and results.

If X is a space with one end (i.e. X has a system of ∞ -neighbourhoods $\{U_i\}$ with U_i connected), we consider the inverse sequence (pro-group)

$$\operatorname{pro} - \pi_k(X) = \left\{ \pi_k(X) \leftarrow \pi_k(U_1) \leftarrow \pi_k(U_2) \leftarrow \cdots \right\}$$

where the bonding morphisms are induced by inclusions and changing of base points. In a similar way we can consider the Abelian pro-group

$$\operatorname{pro}-H_k(X) = \left\{ H_k(X) \leftarrow H_k(U_1) \leftarrow II_k(U_2) \leftarrow \cdots \right\}$$

They are called the k-th homotopy and homology pro-group of X, respectively.

In the category $\operatorname{pro} - \mathcal{G}r$ of pro-groups and pro-morphisms we say that a pro-group \underline{X} is semistable (stable) if \underline{X} is isomorphic in $\operatorname{pro} - \mathcal{G}r$ to a pro-group \underline{Y} whose bonding morphisms are onto (isomorphisms). We refer the reader to [11] for details on the category $\operatorname{pro} - \mathcal{G}r$.

In the proof of Lemma B we shall also use the groups $H_n^{\infty}(X)$ of locally finite cycles of X. Namely, the n-th homology of the complex $C_*^{\infty} = \{C_n^{\infty}(X)\}$ defined by the formal sums $\sum n_{\sigma}\sigma$, where σ is a singular simplex in X and n_{σ} is an integer such that the set $\{n_{\sigma}; \operatorname{Im}(\sigma) \cap K \neq \emptyset, n_{\sigma} \neq 0\}$ is finite for any compact subset $K \subseteq X$.

If $C_*^c(X) = C_*^\infty(X)/C_*(X)$, where $C_*(X)$ is the singular chain complex of X, we have the long exact sequence

$$\cdots \to H_n(X) \to H_n^{\infty}(X) \to H_n^{e}(X) \to H_{n-1}(X) \to \cdots$$
 (1)

The groups $H_*^e(X)$ are called the homology groups of X at ∞ , and they are related to pro $-H_*(X)$ by the following exact sequence (see [6, 3.5.13])

$$0 \longrightarrow \varprojlim^{1} \left(\operatorname{pro} - H_{n+1}(X) \right) \longrightarrow H_{n+1}^{e}(X) \longrightarrow \varprojlim \left(\operatorname{pro} - H_{n}(X) \right) \longrightarrow 0$$
 (2)

The crucial point in the proof of Lemma B will be the following result ([1, 1.4] for $n \ge 5$ and [14, 2.5.1] for n = 4).

Theorem C

Let Y be a generalized n-manifold $(n \ge 4)$ whose singular set S(Y) is 1-LCC embedded in Y and $\dim(S(Y)) \le 0$. Then Y is a topological manifold.

We recall that a locally compact separable metric space Y is said to be a generalized n-manifold if Y is a finite-dimensional ANR and if, for each $y \in Y$, $H_k(Y, Y - \{y\}; \mathbb{Z})$ is isomorphic to $H_k(\mathbb{R}^n, \mathbb{R}^n - \{0\}; \mathbb{Z})$ for all k. An n-homology sphere is a generalized manifold Y such that $H_*(Y; \mathbb{Z}) \cong H_*(S^n; \mathbb{Z})$.

We say that Y is 1-LCC at y provided that each neighbourhood U of y contains another neighbourhood V such that any loop in $V - \{y\}$ is nullhomotopic in $U - \{y\}$. Therefore Y is 1-LC at ∞ if and only if the one-point compactification Y^+ is 1-LCC at ∞ .

Proof of Lemma B. Firstly, notice that X has one end by [7, 1.1.7].

a) X^+ is an ANR. Indeed, by using [4, 4.4], it is enough to check the stability of pro $-H_q(X)$ for all $q \geq 0$. Notice that the semistability of pro $-\pi_1(X)$ implies the nearly 1-movability condition in [4, 4.4].

We start with the Poincaré Duality isomorphism $H_q^{\infty}(X) \cong H^{n-q}(X)$ (see [11, III.11.2]). Thus, $H_n^{\infty}(X) \cong \mathbb{Z}$ and $H_q^{\infty}(X)$ is trivial otherwise. Now the exact sequence (1) yields $H_n^e(X) \cong \mathbb{Z}$ and $H_q^e(X) = 0$ if $q \neq n$. Using (2) we get $\lim_{n \to \infty} (\operatorname{pro} - H_{n-1}(X)) \cong \mathbb{Z}$ and $\lim_{n \to \infty} (\operatorname{pro} - H_q(X))$ and $\lim_{n \to \infty} (\operatorname{pro} - H_m(X))$ are trivial if $m, q \geq 0, m \neq n-1$. We now can use [11, Th. 12, p. 175] and [11, Corol. 8, p. 177] to get

$$\operatorname{pro} - H_{n-1}(X) \cong \mathbb{Z}$$
 and $\operatorname{pro} - H_q(X)$ trivial otherwise. (3)

b) X^+ is a generalized manifold. Using a), it only remains to show

$$II_*(X^{\top}, X^{+} - \{\infty\}) \cong II_*(\mathbb{R}^n, \mathbb{R}^n - \{0\}).$$
 (4)

As X^+ is already an ANR, X^+ is locally contractible at $\infty \in X^+$ by [11, Th. 7, p. 40]. Therefore, if $\{U_i\}$ is an ∞ -neighbourhood system of X, we may assume that $U_i' \cup \{\infty\}$ is contractible in U_{i-1}' . So, the pro-group $\{H_q(U_i')\}$ is trivial for all q, and the levelwise exact sequence in $\operatorname{pro} - \mathcal{G}r$,

$$\longrightarrow \left\{ H_q \big(U_i' \big) \right\} \longrightarrow \left\{ H_q \big(U_i', U_i \big) \right\} \longrightarrow \operatorname{pro} -H_{q-1} (X) \longrightarrow \left\{ H_{q-1} \big(U_i' \big) \right\}$$

yields an isomorphism $\{H_q(U_i',U_i)\}\cong \operatorname{pro}-H_{q-1}(X)$ for all q. Since the first progroup is isomorphic to the constant pro-group $H_q(X^+,X^+-\{\infty\})$ by excision, (4) follows from (3).

By b), if X is 1-LC at ∞ , then X^+ is a topological manifold by Theorem C.

c) X^+ is a homology sphere. In fact, as X is G-orientable for any Abelian group G, we have the isomorphisms

$$II_{n-q}(X;G) \cong H_c^q(X;G) \cong II^q(X^+;G) \tag{5}$$

where the former is the Poincaré Duality isomorphism and the latter is given in [8, 27.3] since $\check{H}^q(\{\infty\}; G) = 0$ for each $q \neq 0$. Here \check{H}^q denotes the Čech cohomology.

As a consequence of (5) we get $H^q(X^+;G) \simeq H^q(S^n;G)$ for any Abelian group and any q. As an easy application of the Universal Coefficient Theorem (see [11, I.4.17]) we obtain that X^+ is a homology sphere.

Assume $\pi_1(X) = 0$. As X^+ is locally contractible at the point $\infty \in X^+$, there is a neighbourhood V of ∞ in X^+ such that $\pi_1(V) \to \pi_1(X^+)$ is trivial. Now $\pi_1(X^+) = 0$ as a consequence of the Van Kampen Theorem, and the homological Whitehead Theorem shows that X^+ is homotopically equivalent to S^n . \square

Remark 2. If D^n is a Davis manifold $(n \ge 4)$ (see [3]), it is known that $\text{pro} - \pi_1(D)$ is semistable but D is not 1-LC at infinity. Therefore, D^+ is a generalized homology sphere with $\{\infty\}$ as singular set.

Remark 3. (i) Although in dimension 3 the Poincaré Conjecture is still open, the statements of Theorem A and Theorem A' are equivalent in this dimension (see [19, Cor. 2]). In addition, D. Repovs has informed us that he has independently proven Lemma B in the case of 3-manifolds (see [15, Th. 3]).

(ii) The Kirby-Siebenmann obstruction is a basic tool in the proof of Theorem 1.4 in [1]. There is a proof of this result which does not use the Kirby-Siebenmann obstruction (see [2, VII.40.2]).

References

- 1. J.L. Bryant and R.C. Lacher, Resolving zero-dimensional singularities in generalized manifolds, *Math. Proc. Camb. Philos. Soc.* **83** (1978), 403–413.
- 2. R.J. Daverman, Decompositions of manifolds, Academic Press, 1986.
- 3. M.W. Davis, Groups generated by reflections and spherical manifold not covered by Euclidean spaces, *Ann. Math.* 117 (1983), 293–324.
- 4. J. Dydak, Local n-connectivity of quotient spaces and one-point compactifications, Shape Theory and Geometric Topology, Proceedings, Dubrovnik, 1981. S. Mardešić and J. Segal eds., Lecture Notes in Math. 870, Springer, 1981.
- 5. M.II. Freedman, The topology of four dimensional manifolds, *J. Differential Geometry* 17 (1982), 357–453.

- 6. R. Geoghegan, *Topology Methods in Group Theory*, Draft. Dept. of Mathematics, SUNY at Binghantom.
- 7. L. Glaser, Geometrical Combinatorial Topology, II, Van Nostrand, 1972.
- 8. M.J. Greenberg, Lectures on Algebraic Topology, Benjamin, 1967.
- 9. R.C. Kirby and L.C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742-749.
- 10. E. Luft, On contractible open manifolds, Inv. Math. 4 (1967), 192-201.
- 11. S. Mardešić and J. Segal, Shape Theory, North-Holland, 1982.
- 12. W. Massey, Homology and cohomology theory, Marcel Dekker, 1978.
- 13. M.H.A. Newman, The engulfing theorem for topological manifolds, *Λnn. of Math.* **84** (1966), 555–571.
- 14. F. Quinn, Ends of maps III: Dimension 4 and 5, J. Differential Geometry 17 (1982), 503-521.
- 15. D. Repovs, Λ criterion for compactification of open 3-manifolds, Preprint, Institute of Mathematics, University of Ljubljana, 1992.
- 16. L.C. Siebenmann, On detecting Euclidean Space homotopically among topological manifolds, *Inv. Math.* 6 (1968), 245–261.
- 17. L.C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, thesis, Princeton, 1965.
- 18. S. Smale, Generalized Poincaré's Conjecture in dimensions greater than four, *Ann. of Math.* 74 (1961), 391–406.
- 19. C.T.C. Wall, Open 3-manifolds which are 1-connected at infinity, *Quart. J. Math.* 16 (1965), 263-268.
- D.G. Wright, Contractible open maniolfds which are not covering spaces, Topology 31 (1992), 281–292.