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On a g-deformed harmonic oscillator with variable linear momentum
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ABSTRACT

A quantum mechanical model is introduced which includes variable momen-
tum. This may be associated notionally with the variable moment of inertia
model and is applied to give exact solutions 10 a g-deformed harmonic oscilla-
tor. "The eigenfunctions are given in terms of a class of g-Hermite polynomials.
When the base ¢ 1, the classical case is recovered.

1. Introduction

Recently, a great deal of interest has been manifested in various g-deformed quantum
systems, in particular the g-deformed harmonic oscillator in relation to the quantum
group SU,(2). Sce, for example, [6]. Conneclions of the same group with the variable
moment of incrtia model have also been indicated by Bonatsos, Argyres, Drenska,
Raychev and Rousev in [1]. These suggested the possibility of considering variable
lincar momentum models which might in certain cases yield exactly soluble quantum
systems. In this study, a g-analogue of the harmonic oscillator is discussed and an
analytic solution arises quite naturally.

For this purpose, the momentum operator in dimensionless form is replaced by

P ={1-0a?(1- @)} B, (1.1)
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in which the g-differential operator B is given by
q,x

oy ylgr) —y(x) |
SV St (1.2)

I°.1T1. Jackson was the first author to introduce a coherent notation on the subject, of
g-functions (sce [4]). This has been developed by several mathematicians including
Jain ([5]) and Exton ([3]) to which the reader is referred. It must be pointed out,
however, that, in this field, the notation is far from standardised.
The g-analogue of the governing equation of the harmonic oscillator considered
here is
{P? — (A—az?®) }y(z) = 0. (1.3)

As is usual with the theory of g-functions, the corresponding classical form of any
expression is recovered on pulting ¢ = 1. Hence, as expected, (1.2) then reduces
to the ordinary differential operator and (1.3) to the usual form ol the equation
associated with the classical harmonic oscillator.

2. The solution of (1.3)

If (1.3) is expanded. bearing the rules of manipulation of g-derivatives (]3]), we have,
alter a little algebra,

{1—a2®(1 —q)}{1 — ag®z*(1 - q)}qlfﬂ2 ()

- ax(l = ¢*) {1 —az®(1 —q)} 'IB’ W) (oz? — A)i(z). (2.1)

The classical technique of making an exponential substitution in order to solve the
differential equation governing the ordinary harmonic oscillator suggests that a simi-
lar approach using a suitable g-analogue of the exponential function should be made

here. Tlence, pul
2

, . —ax )
w(x) I'/,/,,‘.Z(] T )'u(:z:), (2.2)
where -
N\ .'l:"" " A\l
1%, 7q(x) 2= g 1/2 (2.3)
/a 7240 [m;q]!
and

[aiq] --la] (1—¢%) /(1 —q), [niq]! = [1]]2]- - [n]. (2.4)
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"I'he series (2.3) is convergent for all values of z if |¢] < 1. After some manipu-
lation, the lefi-hand member of (2.1) becomes

oy
Fi/q 2( I (T"Lq ) {B2u—a(l | q)zBu—a(l - az?)u} (2.5)
and (2.1) then takes the form
B2u(z) — a(l + q)zBu(z) = (@ — Nu(z). (2.6)

A power series solution of (2.6) is then possible (see [3, Chapter 2|). The even
solution is found to be the g-Hermite function

i [—v/2; % ] (ag”2?)"

— (12 ][]t

where, for convenience, we have put A = (1{1 + (11 q)[u;q]}. The g-Pochhammer
symbol is given by

[a;q,n] = [a:q][a 1 1;q][a+2;q] -+ [a +n— L;q]. [a;4,0] = 1. (2.8)

Uy - (2.7)

The ¢g-Hermite equations and its solutions have been discussed elsewhere (sce |2| for
example). Tf 7; is the »*® {erm of (2.7), then
Topr | T, = a*z?[r —v/2,¢*]  ag’2*(1—¢*) (1 —¢?) (2.9)
T v yneLene] T (-t (1- g2 ?) )
When g < 1.
T_E{&('lh 1/ 1y) s eq'2? (1 — ¢°) (2.10)
and the series (2.7) then converges if
. 1
|2?| < (2.11)

agz?(1 - q2)’
When |g| > 1, (2.7) converges for all values of z.
Following the usual classical procedure, the boundary conditions require that
the serics representation of the eigenfunction must terminate, so that for the even
solution, ¥ must be an even non-negative integer. Similarly, in the case of the odd
solution, v must be an odd positive integer. Hence, the cigenvalues {)\} arc given
by
A=Xo{1+[29][N;q]}, N .0,1,9... (2.12)

which is an exact g-analogue of the classical result.
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3. Conclusion

Unless ¢ = 1, the classical case, the eigenvalucs as given by (2.12) arc not evenly
spaced. The base ¢ may assume any value, real or complex, but in the present
context, it will be taken that g is real. If |¢| < 1, the cigenvalues become successively
more closed spaced. and reach a limiting value of

An(l y H—) (3.1)

When |g| > 1. the eigenvalues become progressively less closely spaced, and the above
analysis remains substantially the same, except that I 4(x) must be replaced by
1 / Eq(—x) for reasons of convergence (sce [4]).

References

1. D. Bonatsos, L.N. Argyres, S.B. Dreuska, P.P. Raycheve and R.P. Roussev, SU,(2) description
of rotational spectra and its relation to the variable moment of inertia model, Physics Letters B
251 (1990), 477481.

2. H. Iixton, A basic anatogue of Hermite's cquation, J. Inst. Math. Appl. 26 (1980), 315-320.

3. I1. Exton, g-Hypergeometric functions and applications, Lllis Tiorwood, Chichester, 1J.K,,
1983,

4. FH. Jackson, On g-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.

5. VK. Jain, A study of certain hypergeometric identities, Ph. D. Thesis, Dept. Maths., University
of Rookee, 1979.

6. AJ. Macfarlane, On g-analogues of the quantum harmonic oscillator and the quantum group
SU(2)4, J. Phys. A 22 (1989), 4581-4588.



