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ABSTRACT

In [7] the Hahn-Schur Theorem from summability was used to give a simple
proof of a result of Bennett on the weak sequential completeness of the a-
dual of a monotone sequence space ([2]). In this note we point out that the
same method of proof employed in [7] can be used to give a generalization
of Bennett’s result to a wider class of sequence spaces than the monotone
spaces. As was the case in [7], the methods are also applicable to vector-
valued sequence spaces.

1. Introduction

Let E be a vector space of real-valued sequences. The a-dual of E, E®, is defined to
be the space of all real-valued sequences y = (y;) such that Yoo, yizi is absolutely
convergent for every z = (z;) € E; we write y -z = Y0, y;z; when y € E%,
¢ € E. If ¥ contains the vector space @ of all sequences which are eventually 0,
then (E,E*) form a dual pair under the bilinear map y - z. We denote the weak
topology on E“ from this pairing by o(E®, E). The space E is said to be monotone
if the sequence tx = (t;z;) € E for every z € E and sequence t = (t;) in my,
the space of all sequences with finite range. Bennett showed that (E*,o(E?, E)) is
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sequentially complete whenever E is a monotone space ([2]). Bennett’s proof used
some deep results from functional analysis, but a simple proof based on the Hahn-
Schur Theorem was given in [7]. We show the methods of [7] can be used to give an
extension of Bennett’s Theorem.

2. The scalar case

DerINITION 1. A family F C P(N), the power set of N, which contains the finite
subsets of N is called a Hahn-Schur family (HS-family) if whenever ¢! € £' and
lim; Z_je.A tj- cxists for all A € F, then t = (¢;) € £!, when ¢; = lim; tj-, and
limg|[#"~¢]|, = 0.

If 7 = P(N), then F is an HS:family by the classical Hahn-Schur Theorem
([1], Corollary 15, p. 41); however, proper subsets of P(N) can be HS-families. For

example, we can obtain a class of HS-families using the following results of J. Sember
and R. Samaratunga ([6]).

DEFINITION 2. A family F C P(N) is a finitely quasi-o-family (or an FQo-family)
if 73 Foy = {A C N: Ais finite} and for each disjoint sequence (A,) of members
of Fo, there exists a subsequence (Ay, ) such that {J, 4,, € F.

If A C N, let C4 be the characteristic function of A. We denote by F the linear
span of {C4: A € F}.
The following thecorem shows that an FQo-family is a Ilahn-Schur family.

Theorem 3 ([6], Theorem 2.5)

Let F C P(N) be any FQo-family and let (t) C £'. The following are equiva-
lent:
(i) t* = 0 in o(&*, F)
(i) * = 0 in ||-|,.

Let E be a sequence space containing & and if  is a sequence, let C 4z denote
the pointwise product of C4 and z. If y € E®, note C4y € E® for every y € E°
since E® is monotone. We now define the property of the sequence spaces which we
will consider.

DEFINITION 4. Let
A={ACN:CsE* > E%is o(E*, E) sequentially continuous}.

If A is an HS-family, then E will be said to have the Hahn-Schur property (HS-
property).
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Note that any monotone space has the HS-property since A = P(N) and

Cay-z=y-Cypzforevery ACN, ye€ E* z € E. We now give our general-
ization of Bennett’s Theorem.

Theorem 5

If E has the HS-property, then E® is o(E®, E) sequentially complete.

Proof. Let (y*) be a o(E“, E)-Cauchy sequence and let y; = lim; yi. We first show
that y = (y;) € £*. For any z € E, and any A € A, lim; Cay’ - z = lim; D iea ViT;
exists since C 4 is o(L, E) sequentially continuous. Since A is an I1S family,

(vjz;) € £

This implies that y € E£%. Because

oo
i E: i | =
hsn |yjz, - sz]| =0,
i=1

y' — y in o(E%, E), which proves the result. O

Remark 6. Note that if £ has the HS-property, then Cq: E* — E? is o(E*,E)-
scquentially continuous for all A C N. Let M(E) = {(y:))2; : (z:w)2, € £
V(zi){2, € E}, that is, the multiplier space of E.

Corollary 7

If M = {A:Cs € M(E)} is an HS-family, then E* is o( E®, E) sequentially
complete.

Proof. Let (y*) C E® and assume y* — 0 in o(E*,E). Forany Ae M,Cuz € E
for all z € E. Therefore

Cay'-z =y -Chz — 0,

so Cq: E* — E® is o(E*, E) sequentially continuous. M is an HS-family so the
result follows [rom the theorem. O

If £ is a monotone space, M = {4 : A € M(E)} = P(N), so Theorem 5, in
principle, generalizes the result of Bennett that E monotone implies E® is o(E*, E)
sequentially complete ([2]).

We present an example of a nonmonotone space E with the HS-property, using
the following result of Richard Haydon. "This will show that Theorem 5 gives a

gencralization of Bennett’s Theorem. Haydon’s terminology and notation have been
changed for consistency.
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Proposition 8 ([3], Proposition 1E)

There is an algebra U C P(N) which is an FQo-family, but for no infinite A C N
do we have P(A) = {ANB: BeU}.

A technical lemma also is needed:

Lemma 9
Let A C P(N) be a set algebra. Then Yz € A, the support of z

supp(z) ={n € N:z, #0} € A.

Proof. Fach z € Ais a simple function and so can be written as Yy, aCs, S € A
Without loss of gencrality we can assume that the S;’s are pairwise disjoint and that
a; # 0 Vi (if not, a standard disjointification procedure can be used). So

supp(z) = U S;i €A

i=1
since A is an algebra. O
We can now present
EXAMPLE 10. A nonmonotone sequence space E containing ® with the HS-property.

Let U be the algebra in Proposition 8 and £ = U. ® C FE since U contains the
finite subsets of N. E is nonmonotone because for any infinite A € U 3 B C A such
that B¢ U. By Lemma 9, Cp ¢ E so F is not monotone.

Let (y") be a o(E*, E)-null sequence. Then, by Theorem 3, (y*) is ||-||{-null.
This implies that C4y™ — 0in ||-||;, VA C N and therefore Cy4 is o(E?, E) sequen-
tially continuous.

We next show that the 1IS-property is not necessary for E® to be o(E*, F)

sequentially complete. For this we nced the following definition and theorem of
Noll.

Let
I={{n,n+1,....,0n+k}:n,k € N},
that is, the set of all finite subintervals of N. A sequence (In) C Iy is increasing if
min(l,41) > max([,) Vn.
DEFINITION 11 ([5]). Let E be a sequence space containing ®. E is said to have
the weak gliding hump property (WGIIP) if given any z € E and any increasing
(Iz) C fo, there cxists a subsequence (1., ) such that Cy, L, % €E.
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Theorem 12 ([5], Theorem 6)

Let E be a sequence space containing ® and having the WGHP. Then E® is
o(EP, E) sequentially complete, where EP = {y : 32, yiz; converges for every
T € E}.

Remark 13. Every monotone space has the WGHP. It is not difficult to confirm that
cs = {(z;) : 372, =i converges} is a nonmonotone space with the WGHP.

We now construct the example.

EXAMPLE 14. Choose z € cs\¢! such that sup; {|z|} = 1, and let F = {A C N :

Y ica % converges}. Then F is a scquence space containing ® that is nonmonotone
and has the WGHY. This follows from the remark above.

Let
E=co+F={z+y:z€coycF}

E is nonmonotone and has the WGIP. Since cf = cg = and F C mg, E* =
EP=¢'. Thus, by Theorem 12, £* is o( E*, E) scquentially complete. However, £
does not have the HS-property, as we now show.

We construct an increasing sequence (/) C fp such that U,In =Nand 1<
Yier, |zl < 2 for all n. Let ny be the smallest integer such that Ytz > 1y
exists because (z;) ¢ €. Since

n
sup{lzil} =1, ) Ja| <2
t i=1

Set I = {1,...,n1}. Choose n3 to be the smallest integer such that

n2

Y lmlz,

i=nj+1

and set I = {n; + 1,...,n2}. Continue inductively.
For notational convenience let z" = Ci1,z. Since z" € ®, we can consider the
sequence (2") to be contained in £ = ¢!, and show that 2™ — 0 in o(L*, E).
Ifwe Ethen w=u+v,u€cy,veEF. First assume w € ¢g. Then

oo oo
|z'n. . ,wl — Z Z?'UJ;' < sup |'¢D,| Z Iz?l
=1 i>min(I,) i=1

< sup 2|w]— 0
i>min(I5)
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asn — o0o. Nextifwe F,w = a1Ca,+a2C4, 4+ -+anCa,,, A; € F Vi. Therefore

2" w=2"(01Cs; + -+ anCa,) = Z a;i(Cy, - 2™).

i=1
Since 3. 4. 2 exists, Cy, - 2™ — 0 as n — 00. So

m

Zai(cﬁi 2")—0

as n — oc, and we can conclude that (2") is o( £, E)-null.

However, since 1 < 372, |27'| < 2 for all n, the sum of the positive or negative
terms in the sequence (27)2, must equal or exceed 1/2 in absolute value for each
n. Without loss of generality assume that there exists an increasing sequence (nk)
such that the sum of the positive terms in the sequence 2™ is at least 1/2. Let
A=UpZ;{i: 2™ > 0}. Since N € F , 2™ - Cy — 0, but |[C4z™ - Cx| > 1/2 for all
k. So C, is not a( E“, E)-sequentially continuous.

By the remark following Theorem 5, this completes the proof.

3. The vector case

Let X be a topological vector space. Denote by E(X) an X-valued sequence space.
All X-valued sequence spaces will be assumed to contain ®(X), the vector space of
all sequences with finite support.

For topological vector spaces X and Y, let L(X,Y) denote the continuous
linear operators from X into Y. Following Maddox ([4]) we can define the B-dual
of E(X) = I (with respect to Y) by EPY = {(Ax) C L(X,Y) : Yoreg Axzi
converges ¥ (zx) € E}. I Y is a normed space, the a-dual of E is defined by
EYY = {(Ay) C L(X,Y) : 2, | Axzx|| converges V (z) € E}. Tn contrast to the
scalar case, even when F is monotone, the o and 8 duals may be different.

Proposition 15

Let co(X) = {(:)2; : lim; ||zi|| = 0}, and €°(X) = {(z:)2, : (=i, is
bounded}. If X and Y are infinite-dimensional Banach spaces, then E(X)*Y #
E(X)PY for E(X) = ¢o(X) or £°(X).
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Proof. The Dvoretsky-Rogers Theorem states that if Y is an infinite-dimensional
Banach space and (A,) a sequence of positive numbers satisfying 300, A2 < oo,
then 3(yn) C Y such that ||ys|| = Ax and 3,2, y» is unconditionally (and therefore
subscries) convergent.

For K(X) = £2(X) or ¢y(X), choose (y,) C Y such that ||y,|| = 1/n2/3
and Y77, yn is subscries convergent. For any sequence (z,) C co(X) satisfying
|2/l = 1/n1/® we can find, by the Hahn-Banach Theorem, a sequence (z',) C X'
such that |[27|| = 1 and < zl,,2, >=||25||. Definec A,: X — Y by

A (z)=<zl,2> 9, n=1,2,3,...
and note that
1\ 2/3
Ian(@ < el onll < () el
so A, € L(X,Y).

For any (2,) € £°(X), Ynry AnTn = Yoo, (2", 2n) yn converges because

(w;’xﬂ)

< llzallllzall < sup [|za]| < oo,
n

and unconditional convergence is equivalent to bounded multiplier convergence in
Banach spaces ([8], Thm. 5, p. 417). Since (z,) is arbitrary, this implies that

(Aq) € €2(X)PY C co(X)PY.
However (2,) € ¢o(X), and

o0 O
> lAnzall = Y- [(2h20)
n=1 n=1

oo 1 1/3 1 2/3 © 1
->) G) =2 =

n=1

|yl

S0
(An) € co(X)*Y D £=(X)>Y,
See also [1] p. 22. O

We introduce another dual space which seems to be more appropriate than the
a-dual for a vector valued generalization of Theorem 5. We define the o-dual of E
to be E°Y = {(Ax) C L(X,Y): Y re1 Ak is subscries convergent V(z) € E}.
If I is monotone, EFY = E°Y, but Proposition 15 shows that, in general, E*Y #
E°Y even when F is monotone. We show that the dual space E°Y allows a very
straightforward generalization of Theorem 5. For this generalization we require the
following vector form of the Hahn-Schur Theorem.



184 SWARTZ AND STUART

Theorem 16 ([1], Theorem 1, p. 75)

Let G be a normed group and z;; € G Vi,j € N. Assume that the rows of
the matrix (z;;) are subseries convergent and lim; z;; = z; exists for cach j. If
(22 ;e ij) is convergent in G for each A C' N, then

(i) the series 3 z; is subseries convergent and
(i) imi 3° ;¢ 4 2ij = 20 e 4 ; uniformly for A C N.

As in the scalar case, a vector-valued sequence space E(X) is monotone if and
only if for any z € E(X) and A C N, Cyz € E(X). Since E°Y is monotone,
Ca:E°Y — E°Y. We denote the weak topology on E°Y by w(E°Y,E); T - Tin
w(E°Y,E) if and only if T" -z = > iy Tlz; converges in Y VY (z;) € E(X).

We have the following generalization of Definition 4.

DEFINITION 17. Let X and Y be normed vector spaces. An X-valued sequence
space E(X) 2 @(X) will be said to have the ahn-Schur Property (HS-property)
il C4:EY - E°Y s w(E°Y, E) sequentially continuous V A C N. As in the scalar
case, if E(X) is monotone, then it has the HS-property.

We say that the pair (X,Y) has the Banach-Steinhaus property if (T;) C
L(X,Y) and lim Tjz = Tz exists for each z € X implics that T € L(X,Y), i.e.,
if the conclusion of the classical Banach-Steinhaus Theorem holds. If X is an F-
space or if X is barrelled and Y is a locally convex space, the pair (X, Y) has the
Banach-Steinhaus property ([8]).

We have a vector generalization of Theorem 5.

Theorem 18

Let (X,Y) have the Banach-Steinhaus property and let E(X) be an X -valued
sequence space with the HS-property. Then E°Y is w(E°Y, E) sequentially com-
plete.

Proof. Let (1) C E°Y be a w(E°Y, E)-Cauchy sequence. Since Tz = lim,-Tj.z‘
exists for all 2 € X, T; € L(X,Y) by the Banach-Steinhaus property. We want to
show that T = (T}) € E°Y and T* — T in w(E°Y, E). Let z = (z;) € E(X). By
hypothesis,
liﬁn CaT! -z = lizm Z T}:I;J-
jeA

exists for every A C N .

Therefore, Theorem 16 implies 3 Tz; is subseries convergent ¥ (z;) € E(X),
so T' € E°Y and lim; Yiealiz; = 2 jea Tiz; uniformly for A C N. This means
T - T in w(E°Y,E). O
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Remark 19. If E(X) is monotone, then £(X) has the 1IS-property, so E°Y = EBY
is w(E’Y, E) sequentially complete (see Theorem 8 of [7]).
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