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ABSTRACT
We study totally-umbilical submanifolds of Finslerian manifolds. Any
complete totally-umbilical real hypersurface (whose induced and intrinsic
connections coincide) of a locally Minkowski manifold is shown to have
diameter < 7 /ay.

1. Introduction

It is a classical result (cf. e.g. [26, vol 11, p. 30]) that the only totally-umbilical
real hypersurfaces of the Fuclidean space are the (open pieces of ) hyperplanes and
hyperspheres. The reason is that the norm f of the mean curvature vector is a
solution of the Codazzi equations (and then f = fy = const); the case of the plane
(sphere) occurs as fo = 0 (fo # 0). As to the corresponding statement in Finslerian
geometry, only partial results are known, cf. O. Varga [37], M. Matsumoto [27].

Let (M™, L(z,y)) be a real hypersurface of a locally Minkowski manifold M™*1,
Consider the following system of first order linear PDE’s:

of i O )
(1.1) Iz - N; (w’y)a_yi =0, 1<i<n

where N J‘ are the coefficients of the nonlinear connection of the induced connection
of M™. If the induced and intrinsic (Cartan) connections of M™ coincide then N;:
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are specified by:

- a | i i i
¥ =Yail00l ool =1, lvv
YT 245000l 0ol = [jkl¥Y

|jikl =g"™|ik,m|,  |ij, k| = %(%‘;f; + %‘I;:c _ ?)iz)

where g;; = 155%?’7;-,— and gijgjk = 6. When M™ is totally-umbilical in M™*+1, the
norm of the mean curvature vector of the given immersion is shown to satisfy (1.1).
In [29] the authors find all solutions of (1.1) which are positive homogeneous
of degree r, provided that M™ is a Finsler space of scalar curvature K # 0, an
assumption which amounts to a prescribed form (cf. e.g. (26.4) in [28, p. 168]) of
the obstruction: ) ) ) _
i %_0_]& NmaATI: _ maN;
Jk Tk Ori I Pym k Gym

towards the complete integrability of the Pfaflian system:

dy' + N}(m,y)da:j = 0.

As to the case of a totally-umbilical hypersurface, the R;'-k torsion is given by (4.10).
Section 2 reviews the material we need on induced bundles, Finslerian metrics, non-
linear connections and the Cartan connection of a Finslerian manifold. Section 3
reviews the imbedding Gauss-Codazzi equations of (M™, L) in an ambient Finsle-

rian manifold (M ""‘”,I). In Section 4 we exploit the structure of the horizontal
* (cf. (4.21)) and mixed (cf. (4.31)) Codazzi cquations to show that the (norm of the)
normal curvature is given by:

1 Noll = ao 22

ap = const > 0 (and thus the mean curvature of a totally-umbilical hypersurface
is constant). In particular, we prove that any totally-umbilical surface M? whose
induced and intrinsic connections coincide is either totally-geodesic (and then locally
Minkowski) or a Finsler space of negative scalar curvature —al. Along the way,
we obtain a result on the topology of totally-umbilical hypersurfaces of a locally
Minkowski manifold. There, the main ingredient is a theorem of I. Moalla, [31],
on complete Finslerian manifolds with Ricci curvature > €2 > 0. In Section 5 we
study totally-umbilical CR submanifolds (in the sense of [18]) and extend a result
of A. Bejancu, [7].
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2. Finslerian manifolds and the Cartan connection

Let M™ be a rcal n-dimensional C* differentiable manifold. Denote by T'(M™) —
M™ the tangent bundle over M™. Set V(M™) = T(M™) — j(M™), where j: M™ —
T(M™) denotes the natural imbedding of M™ in the total space of its tangent bundle,
as the zero cross-section (i.e. j(z) = 0, € To(M™), z € M™). Let m:V(M") - M™
be the natural projection. Note that V(M™) is an open submanifold of T(M™).

If (U,z%) is a local coordinate system on M™, let (r~Y(U),z,y') be the in-
duced local coordinates on V(M™). Then z' (respectively y*) are referred to as the
positional arguments (respectively directional arguments).

A Finsler encrgy E on M™ is a function E: T(M™) — [0,+00) so that i) E(u) =
0 <= uwej(M"),ii) EeC(I(M™), EeC®(V(M™), iii) E( ) = A FE(u) for
any A >0, u € V(M™), i.e. E is positive-homogeneous of degree 2, and iv) if g;; =

:;)y—ay,, then g;;(w)é°€7 is a positive-definite quadratic form, for any u € =~ ().

A pair (M™, F) is a Finslerian manifold. Tts (fundamental) Tagrangian function is
given by I = I5'/2 cf. 11. Rund, [34]. For practical purposes, several violations of the
axioms i)-iv) (in the definition of the concept of Finsler energy) are tacitly admitted.
For instance, let (M",a) be a Riemannian manifold, a € T ($%(T*M™)), and
b€ I (T*M"),agiven 1-form in M™. We define the Randers metric L: T(M™) - R
by L(u) = agz(u,u)'/? + by(u), lor any u € To(M™), £ € M™. Then (M™, 1?) is
a Finslerian manifold. Yet axiom iv) is not fully satisfied as g;;(u) has Lorenzian
signature, cf. G. Randers, [33].
Let 7=1TM™ — V(M™) be the pullback of 7'(M™) by 7. One has a commuta-
tive diagram:
ITMT s V(M7
T ™
rM")y — M©"

Here # denotles the restriction to #~17'"M™ of the natural projection V(M™) x
T(M™) — T'(M™). Cross-sections in 7 "17'"M™ are Finsler vector fields on M™. The
Liouville vector is the Finsler vector field v € I'°(x~17'M™) defined by v(u) = (u, u),
for any u € V(M™). Any tangent vector field X: M® — T'(M™) admits a natural
lift to a Finsler vector field X:V(M™) — x=11T'M™ given by X(u) = (u, X (m(u))),
for any u € V(M™). If (U,2%) is a local coordinate systcm on M", let X; dcnote
the natural lifts of the (local) tangent vector fields z2r on U. Then » = y*X; on
== H(U).

The induced bundle #~'7I'M™ — V(M™) of a Finslerian manifold (M", E)
carries a Riemannian (bundle) metric g naturally associated with E. Indeed, let
u € V(M"). Set x = m(u). Let (U, z*) be alocal coordinate neighborhood of z. Set
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9u(X,Y) = gij(u)'n’, for any X,Y € n;'TM"™ where X = € X;(u), Y = 97 X;(u).
Also 77'TM™ = {u} x To(M™) is the fibre over u in #='7M™. The definition of
gu(X,Y’) does not depend on the choice of local coordinates around z.

Let wj(r~'TM™) € Hi(V(M™);Z3), 0 < j < n, be the Sticfel-Whitney classes
of the induced bundle 7~ 'TM™. As v is global and nowhere vanishing it follows
that w(r~1TM™) = 1, (cf. e.g. [30, p. 39]). Thus, in general, w H(M™Z;) —
H™(V(M™);Z,) is not one-to-one.

A nomnlincar connection N on V(M™) is a C*® distribution:

N:u€ V(M™) — N, C T (V(M™))

so that:
Tu(V(M™)) = N, & ker(dy7)

for any u € V(M™). We shall need the bundle morphism F:T(V(M™)) — x~1TM"
given by F, X = (u,(dyr)X), for any X € Tu(V(M™)), u € V(M™). If M™ carries
a nonlinear connection N on V(M"), then F: N, — n;'TM™, u € V(M™), is
a R-linear isomorphism. Let ¢,: N, — T, (V(M")), be the natural inclusion; set
Bu = (Fuo I,u)_l, u € V(M™). The resulting bundle isomorphism 8: 7=1T'M™* — N
is the horizontal lift associated with the nonlinear connection N. Set §; = BX;,
1 < i < n. We adopt the notations 9; = 8/8z*, d; = d/dy*. Note that there cxist
functions N} € C*(x~1(U)) so that:

6; = 8; — Nid;

In the more classical language of [39] a nonlinear connection N on V(M™)is therefore
given by a Pfaffian system:

(2.1) dy’ + N;(m,y)da:j =0

"The n? functions N} are referred to as the coefficients of the nonlinear connection N
(with respect to (v='(U),z,y%) ), cf. A. Kawaguchi, [25]. A pair (V,N) consisting
of a connection V in #7'TM™ and a nonlinear connection N on V(M™) is a Finsler

connection on M". Let V be a connection in #~1T'M™. The following concept of
torsion may be associated with V:

T(X,Y)=VxFY - VyFX - F[X,Y]

for any X,Y € I(1'(V(M™))).
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Let y: 7~ 'TM™ — T(V(M™)) be the bundle morphism given by yX; = d;. The
definition of ¥ does not depend upon the choice of local coordinates. The vertical
lift is the bundle isomorphism y: 71T M™ — ker(dr). The following short sequence
of vector bundles and morphisms of vector bundles is exact:

22) o0 — =tmr L orwwmry) Lo orttmr s o

Let N be a nonlinear connection on V(M™) and P,: T(V(M™)) — ker(dr) the natu-
ral projection. Set K = y~! o P,. The resulting bundle morphism K: T(V(M™)) —
7~ 'TM™ is the Dombrowski map, cf. [14]. Then

B K
—_

0 — rlrTM" r(V(M™) — z7'T™M" — 0

is a short exact sequence. Note that f is a splitting in (2.2). For more details see
J. Vilms, [38]. TLet (V,N) be a Finsler connection on M™. Another concept of
torsion may be introduced as follows:

Ty (X,Y) = VxKY - Vy KX - K[X,Y]

for any X,Y € T'® (T(V(M"))). Using 3, 7 one decomposes the torsions 7,7} of a
given Finsler connection (V,N ) on M™ in several fragments, as follows T(X,Y) =
T(px,8Y)), C(X,¥Y) = T(vX,8Y), R(X,Y) = Ty(8X,8Y), PA(X,Y) =
T(yX,BY) and SYX,Y) = Ty(yX,7Y), for any X,Y € T (z~'TM"). As
to the terminology, T,C are referred to as the horizontal and mixed compo-
nents of 7. There is no “vertical component” of T as ’f’(’yX ,"/Y) = 0 for any
X,Y € T (x~1TM"). Note that

(2.3) R'(X,Y) = -K[pX,5Y]

Thus R! depends on the nonlinear connection N alone and R! = 0 if and only if N
is involutive. In local coordinates, if R! (X i X j) = Rf-‘J-X k then:

R\, = 6N} — §;Nj.

Let V be a connection in #71TM™. Let Ny be the distribution consisting of all
X € T(V(M™)) so that Vxv = 0, where v is the Liouville vector. If Ny is a
nonlinear connection on V(M™) then V is termed regular. Cf. H. Akbar-Zadeh, [2].
Any regular connection V in #~!TM™ gives rise to a Finsler connection (V, Nv)
on M™.
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Let (M™, E) be a Finslerian manifold and (7 ~17'M™", g) its induced Riemannian
bundle. A connection V in #=1T'M™ is metric (respectively v-metric) if Vg = 0
(respectively if V,xg = 0 for any X € I'*® (1r‘1TM") ). A Finsler connection
(V,N) on M™ is h-metric if Vgxg = 0 for any X € I‘°°(7r‘1TM"). By the
fundamental theorem of Finsler geometry, there exists a unique regular connection
Vin n~1TM™ so that i) V is metric, ii) T = §' = 0. This is the Cartan connection
of (M™,E), of. . Cartan, [12], S.S. Chern, [13]. Its nonlincar connection Ny is
the orthogonal complement of the vertical distribution ker(dr) in T(V(M™)) with
respect to the Sasaki metric, i.e. the Riemannian metric G on V(M") defined by:

G(X,Y) =g(FX,I'Y) + g(KX,KY)

for any X,Y € T'(V(M™)).
Let (V ) be a Finsler connection on M™. Denote by R the curvature 2-
form of V. It may be decomposed in several fra,gmente by setting R(X,Y)Z =
(,BX,,BY)A, P(X,Y)Z = R(')'X BY)Z and S(X,Y)Z = R(yX,v8Y)Z, for any
X,Y,Z € T®(x"'TM™). Note that R(X Y)Z = R(FX, FY)Z + P(K X, FY)Z -
P(KY,FX)Z+S(KX KY)Z,for any X,Y € I‘°°(T(V(]\'["))) Z eI>(r 1T M™).

Lemma 2.1

Let (M™, k) be a Finslerian manifold and (x 1T M™, g) its induced Riemannian
bundle. Let V be a v-metric connection in #=*TM™. If S* = 0 then, for any
X eTo(xITM"):

(2.4) V.yx’v =X

Proof. Indeed, if
Vs X;=CEX

then V.9 =0, S, = C}, — Ci; = 0 and the Christoffel process yield:
_;:k = ';' ankm
where giig;) = 6%. As g;; are positive-homogeneous of degree 0 it follows that:
(2.5) C'ky’ = C'ku =0
Therefore (2.4) is completely proved. O

Remark. Assume that V is additionally regular. Then the meaning of (2.4) is that
Z € ker(dr) — V4 gives a bundle isomorphism ker(dr) = 7' TM™ whose inverse
is v.
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Lemma 2.2

Let (V,N) be a Finsler connection on M™ so that i) V is v-metric, ii) §' =0,
ili) Vgxv =0 for any X € I*°(x~'TM™). Then N = Ny and V is regular.

Proof. Indeed, if X € (Nv)u CT. (V(A/[")) = N, @ ker(d,m) then X = Y ++vZ
for some Y,Z € n;1TM™. Next 0=Vxv=V,zv=Z,i.c. X€ N,. O

Let V be a regular connection obeying (2.4). Then:

ot R(X,Y)v = R(z,y),
(2.6) P(X,Y)v=P'(X,Y),  S(X,Y)o=S"(X.Y)

for any X,Y € I'® (7r‘1TJLI"). Indeed, by (2.3) one may perform the following
calculation:

R(X,Y)v = -Vigx,ev10 = ~Vp,[ax,ev|v = =7 P, [8X, Y] = R}(X,Y)

In classical language, the torsions Rj- P P;k and S;k may be obtained from the hor-

izontal, mixed and vertical curvature tensors R;-km, Pjy., and S, by contraction

* with the “supporting element” y* (e.g. R;-k = R}y,,y™)- The properties (2.6) are
of course enjoyed by the Cartan connection of (M™, E). Neverthcless we chose to
reformulate (2.6) for v-metric regular connections with $* = 0 since the main appli-
calion we have in mind concerns the induced connection of an imbedded Tinslerian
manifold. This is both metric and regular, has a vanishing S! torsion tensor field,
yet generally does not coincide with the “intrinsic” Cartan connection of the sub-

manifold, cf. e.g. [15].

3. Imbedding equations

A Minkowski space is a real vector space V, dimgV = n, carrying a Minkowskian
norm |¢[|, £ € V, i.e. i) [I€]l > 0 and [|¢]| = 0 <= £ =0, ii) [|€ + nl| < {l¢]| + [|n]l,
iii) | AEll = All€ll, A > 0, & € V and iv) there is a basis {e1,...,e,} in V such that the
function f:R™ — [0,+00) defined by f(y',...,y™) = ||y’ei]l, for any (v',...,y") €
R", is smooth along y # 0, that is f € C=(R" \ {0}).

Let (V. ]| -]|) be a Minkowski space. Then the statement iv) holds for any other
choice of lincar basis in V. For practical purposes, several violations of the axioms
i)-iv) are tacitly admited. For instance, let V = R* and ||¢]| = ([T, y‘)l/n, where
£ = (y',...,y"). This is the Berwald-Moér metric, cf. [5]. Note that i) is not
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satisfied. Also, if n is even and {ej,...,e,} is the canonical basis in R”, then f in
iv) is not defined on the whole of R™.

Let (M™, E) be a Finslerian manifold. Each tangent space T-(M™), z € M™,
has a natural structure of Minkowski space induced by E. Indeed, if u € Tz(M™)
we may set ||ulle = E(u)!/? and || - ||, is a Minkowski norm on T,(M™).

Let (V4, |- 1), (Va,||-|l) be two Minkowski spaces. Then V;, V3 are congruent if
there is a R-lincar isomorphism f: Vi — V; such that |[f(€)]}2 = ||¢]|1, for any & € V4.
Note that, given a I'inslerian manifold (M™, E), the tangent spaces at various points
of M™ (regarded as Minkowski spaces) are generally not congruent. If this occurs
(i.e. there is a Minkowski space (V,|| - ||), dimg V = n, so that (To(M™),| - lz) ~
(VoI - ]l) for any =z € M™) then (M™, E) is termed a Finsler space modeled on a
Minkowski space, cf. Y. Ichijyo, [23]. An example of Finsler space modeled on a
Minkowski space is furnished by the concept of (V, H)-manifold. Tet (V,||-]]) be
a n-dimensional Minkowski space and G = {T € GL(n,R) : ||T¢|| = ||¢||, ¢ € V'}.
Then (' is a Lie group, cf. [23]. Tet f C G be a Lie subgroup. Let M™ be a
real n-dimensional manifold carrying a H-structure B — M™. Then M™ is termed
a (V, H)-manifold. Onc endows (M?",B) with a Finsler encrgy as follows. Let
w € To(M"™), z € M™. Let (U,z*) be a local coordinate ncighborhood of z and let
{X1,.. .,Xn} be a cross-section of B defined on U (i.c. a local frame adapted to
the H-structure). Then u = £X; and we define L: T(M™) — R by L(u) = ||E'¢{]|,
where {e1,...,¢,} is a fixed basis in V. The definition of L does not depend upon
the choice of adapted frame. If u = y'(u)z2r, 32+ = AlX;, the Lagrangian [ of a
(V, Il )-manifold may be also written:

(3.1) L(z,y) = |[y' Al(2)e ]|

Let (M™, E) be a Finslerian manifold. Then M™ is a locally Minkowski manifold
if there is a C* atlas on M™ with respect to which £ depends only on directional
arguments. Any Minkowski space is a locally Minkowski manifold, in a natural way.
A (V, Il)-manifold (M™, B) is locally Minkowski if and only if the H-structure is
integrable, cf. [24, p. 14].

Let (M ”+p,F) be a real (n + p)-dimensional Finslerian manifold, p > 1. Let
Y: M™ — M"P be an immersion of a Finslerian manifold (M™, E) in M™P. As-
sume ¥ to be isometric, i.c.

(3.2) E(u) = E((dy)u)

for any u € T(M™). Clearly dip: V(M™) — V(M™*P) is an immersion, as well. The
identity (3.2) may be locally written:

@)

(3.3) E(z,y) = f(zﬁ“(m),
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where u® = ¢* (a:l,. .. ,:c"), 1 £ a £ n+p, are the local equations of M™ in M»tP,
One denotes by (u“) alocal coordinate system on M™*?, while (u®,v*) will be the
induced local coordinates on V(A"+P),

Let (Tr_lTM""‘p,ﬁ) be the induced Riemannian bundle of (M'""'p,f). The
natural projection V(M™*?) — M™*P and V(M™) — M™ are denoted by the same
symbol 7. Set:

_,
Job = 2 Gyages

Taking derivates of (3.3) with respect to the directional arguments y* one obtains:

0p* 9yP
9 = 996557 o7

and consequently (D), n ;i TM™ — W(Ti:[;)uTM "+P defined by

(D$)uX = ((db)u, ()i X)

for X € n~'TM™, is an isometry of (7r"1T1M",_qu) into (w('tl:b)u’[']lln'*p,j(d,p)"_).

Let E(4). be the orthogonal complement of (D%), 7~ !1'M™ in 1r(_d11‘,})u1';‘l!”+”
with respect to §yy),, for any u € V(M™). The resulting rank p vector bundle
E(¢) — V(M™) is the normal bundle of the given immersion. Then:

(3.4) T ITM™P = (DY) 1T M™ @ E()

As customary, from now on we shall not distinguish notationally between z and
¥(z), v and (dy)u, X and (D¥)X, Z and (d(dy)) Z, etc. Herez € M™, u € T(M™),
Xen 1'TM", Z € T(V(M™)).

Let V be the Cartan connection of (M™*PE). We recall (cf. e.g. (1.1) in
[15, p. 3] or (3.1) in [1, p. 276]) the Gauss and Weingarten formulac:

(3.5) VxY =VxY +I(X,Y)
(3.6) fo = —AEX + V)'(Lé'

for any X € I°(T(V(M™))), Y € I°(x~'TM"), £ € I'°(E(y)). Here V, I,
Ae and V< are respectively the induced connection, the second fundamental form
(of %), the Weingarten operator (associated with the normal section £) and the
normal connection (in E(4)). Note that, for any £ € T (E(y)), A¢ is a cross-
section in T*(V(M™)) @ 7~ 1T'M™.
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Let v, 7 be the Liouville vectors of M™, M™*+? respectively. Then (Dv),v(u) =
T((dzt)u), for any u € V(M™), & = n(u). Therelore, the customary assumption
that M™ is tangent to the “supporting element” of M™*? (cf. c.g. [27, p. 108)]) is
superfluous. In the sequel, we do not distinguish notationally between v and .

Let F:T(V(M""”’)) — 7 1TM"™P be the bundle morphism induced by
dr: T (V(M"™P)) — T(M™+?). The following diagram has commutative squares:

0 — «iTmr Lo rvmr) L orirae g

|pv |aaw) | Dy
0 — =x-tramtr L op(y(mriey) L pipynte

We shall not distinguish notationally between v and 7, respectively I and F.
For any X,Y € T®(x~'TM") set:

(3.7) Q(X,Y) = II(yX,Y)
Then @ is the vertical sccond fundamental form (of ¥). Set Y = v in (3.5). Then:
V.xv = V,xv+Q(z,v)

for any X € T®{x~'TM"). As V is v-metric and ' =0, it follows that V enjoys
the property (2.4). Thus:

(3.8) Voyxv=X
(3.9) Q(X,v)=0
Set:

WeX = AgvX
Then W is the vertical Weingarten operator. 1t is related to @ by the identity:

E(Q(X,Y)a f) = g(l’VEX’Y)

for any X,Y € I'°(x=1TM"), £ € T®(E(%)). As ' = 0 it follows (by (3.5)) that
$! = 0 and Q is symmetric (so that (Wg)u:wlleM"' — w7 'TM™ is sell-adjoint
with respect to g, u € V(M™)).

Lemma 3.1

Let (M™*?,E) and (M", E) be two Finslerian manifolds and 1: M™ — M™t?
an isometric immersion. Let V be the induced connection in (W‘ITM",g) and
Ny = {X : Vyxov = 0}. Then Ny is a nonlincar connection on V(M™) (and
therefore V is regular).
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Proof. Indeed, if Y € N,NV,, u € V(M") then Y = vX for some X € Tl M™
and 0 = Vyv = V,xv = X, so that the sum N, 4 V,, is direct. As V, = ker(d,r) C
’l'u(V(M")) and dimy V,, = n, it is sufficient to check that dimg N, = n. Tet V
be an arbitrary connection in 7~1T'M". Let X € T(V(M™)). In local coordinates
X = Ai9; + B'9;. Then Vxv = 0 is equivalent to:

(3.10) AT + B (6F +y'Cl) =0
where Vo, X; = TF, Xy, % = I';y7. 1f V obeys to (2.5) then (3.10) yields:
BF = —A'TY

and therefore (Nv), is spanned by the tangent vectors (9; — 1%8;)(u). Thus Ny
is a C*°-differentiable n-distribution. Clearly, these considerations apply to the case
of the induced conncction. Thus, the induced connection is regular. O

Let B:7~'TM™ — N be the corresponding horizontal lift. Set:
(3.11) H(X,Y)=H(BX,Y)

for any X,Y € T*® (7r‘1’1'M “). Then H is the horizontal second fundamental form.
It is related to the horizontal Weingarten operator:

AcX = AB8X

by the identity:
y(l{(X,}’),f) = g(AEXa Y)

Set N(X) = H(X,v), No = N(v). Cf. [27], N and Np are termed the normal
curvature vector and the normal curvature, respectively. Let B:n~1TM"™P - N
be the horizontal lift corresponding to N = Nz, i.e. to the nonlincar connection of
the Cartan connection of (M™+?,E). Then:

(3.12) BX =BX +N(X)

for any X € I'°(x~'TM"). Indeed, let X € x~'TM". Then 8X € N, -
Tu(V(JW"')) C Tu(V(JM"'H’)) = N, ®V, so that BX = BY + ~Z for some

Y,Z € x;'TM™P. Here N, is short for (Nv)y. Applying F leads to ¥ = X,
(as F o = identity, F oy = 0). Next:

0=Vpxv=Vpxv—I(X,v)=V 5v— N(X)=Z - N(X)
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so that Z = N(X), and (3.12) is completely proved. Irom (3.12) and T = 0 (by the
Gauss formula (3.5)) one may derive:

(3.13) T(X,Y)+H(X,Y) - H(Y,X) = C(N(X),Y) - C(N(Y), X)

for any X, Y € I'® (Tr“TﬂI"). "Thus, the induced connection V satisfies all axioms
determining the Cartan connection of (M™*, E) except for T = 0. From (3.13) it
follows that generally T # 0. Also IT fails 1o be symmetric, in general; accordingly
A¢ is not sell-adjoint.

Let B, B be the curvature 2-forms of the Cartan connection V of (M ntp ,E) , Te-
speclively of the induced connection V. Consider the horizontal, mixed and vertical
components R, P and § of B (built with the use of 3, 7), respectively the fragments
R, P and § of B (built with the use of 8 in (3.12) and 7). As a consequence of
(3.5)--(3.6) one obtains:

(3.14)  R(X,Y)Z+P(N(X),Y)Z-P(N(Y),X)Z + S(N(X),N(Y))Z
= R(X,Y)Z + Aux.0)Y ~ Any,zyX + (Vox H) (Y, Z)
— (Vov#)(X,Z) + H(T(X,Y), Z) + Q(R}(X,Y), Z)
(8.15)  P(X,Y)Z+5(X,N(Y))z
=P(X,Y)Z + Agx,2)Y = Wrv,z2)X + (Vax H) (Y, %)
- (VorQ)(X.2) + H(C(X,Y),Z) + Q(P'(X,Y), 2)
(3.16)  S(X,Y)Z =S(X,Y)Z +Woux,nY - Wor.pX
+(V2xQ) (¥, 2) - (Vv Q) (X, 2)

for any X,Y,Z € I'°(x~'TM™). Cf. also [16, p. 90] or [1, p. 277-288].

4. Umbilical submanifolds

Let 4: M™ — M™*?P be an isometric immersion of a Finslerian manifold (M™, F) into
another (M2 ). Then 9 is totally-umbilical if H = g ® s where p = trace(H)/n
is the mean curvature vector of . )

If I, = E'/? is the Lagrangian of M™, define the Finsler 1-form ¢ = (dL) o4,
¢ € I'®(x~11*M™). Note that (r;17M")* 2 x71T*M™ (a R-linear isomorphism),
for any u € V(M™). Here n~'T*M™ — V(M™) is the pullback of the cotangent
bundle T*(M™) by 7. If ; = ¢ X; then ¢; = L/dy'. Finally, note that:

(4.1) g(X,v) = LX)
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for any X € T (r1TM ™). Repeated contraction with the supporting element in
H=gQ@uegives N=1TL.Q®uand Nog = L% (as «(v) = L). The condition that ¢ is
totally-umbilical is customary written:

(1.2) I=L"%®N,
If this is the case then, for any X € 1‘°°(1r‘1TM“), el ((D(’lL)), one has:
AcX = L72g(No,€) X
H 9 is totally-umbilical then (3.13) furnishes:
T(X,Y) =C(N(X),Y) - C(N(Y),X)
or:
(4.3) LT =2.AC(Ny,-)

One problem in Finsler geometry (cf. e.g. B.T.M. Hassan, [22]) is to classify the sub-
manifolds of (M ”‘H’,ﬁ) for which the induced connection and the intrinsic Cartan
connection of (M™, E) coincide (i.c. ' = 0). If this is the case then (4.3) yiclds:

(4.4) C(No,") = Ae

for some A € C>°(V(M™*P)). Yet 0 = C(No,v) = Ai(v) = AL so that A = 0 and
(4.4) reduces to:

(4.5) HeClhp =0

where H(X,-,X]-) = HX, and Hg = II{‘J‘-y"yj. It is an open problem whether
totally-umbilical submanifolds (with T = 0) may be classified via (4.5). We proceed
with several simplifying assumptions. Recall (cf. [28, p. 159]) that a Finslerian
manifold (M", E) is locally Minkowski if and only if Rijkm = 0 and Cjjxjm = 0.
Short bars indicate h-covariant derivates. Also, by (17.22)-(17.23) in [28, p. 144] it
follows that Pijx = 0, Pijkm = 0. Let (M"'H’,E‘-) be a locally Minkowski manifold.
Then R =0, P = 0, P'=0and VxC =0, for any X € I‘°°(W). Let ¢: M™ —
M™? be a totally-umbilical isometric immersion. The Gauss-Codazzi equations
(3.14) of M™ in M™*P become:

(4.6) R(X,Y)Z = An(y_z)X - Apx,zn)Y
(47) (Voy ) (X, Z) - (VoxH)(Y, 2) = H(T(X,¥), Z) + Q(R'(X,Y), 2)
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for any X,Y,Z € T’ (7r'1TM"). Taking into account (4.2) and the identity:
(1.8) AN X = L2 Vo)’ X

the Gauss equation (4.8) may be written:

(4.9) R(X,Y)Z = L"'“No||'2{g(Y,Z)X—g(X,Z)Y}

Set Z = v in (4.9) and use (2.6) so that obtain:

(4.10) RY(X,Y) =173

.lVo

2{,,(Y)x —L(X)Y}

In [1, p. 279] the authors introduced the horizontal scalar curvature r of (M™, E),
r=gRij, Rjx = R:-'jk. From (4.9) it follows that:

Proposition 4.1

Any totally-umbilical submanifold M™ of a locally Minkowski manifold M™+»
has nonnegative horizontal scalar curvature:

(4.11) r=n(n—1)L7||No|”

Let (V,N) be a Finsler connection on (M™,E). Let K € C® (V(M™)) be
positive-homogeneous of degree 0 in the y*’s. Then (V,N) is said to be a Finsler
connection of scalar curvature K if its R' torsion tensor field is given by:

(4.12) Ry = Kb — Kih}
where h; = 6;'- —tley, ot = y*/L, and K; is given by:

0K ,
(4.13) 3K; =L (I‘)—‘ + 310,-)

ayt
This slightly gencralizes the situation in [29, p. 552]. Indecd, if the Cartan connection
of (M™, F}) is of scalar curvature then (M™, E) is a Finsler space of scalar curvature.
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Proposition 4.2

Let p: M™ — M™? be an isometric immersion between two Finslerian mani-
folds (M™, E) and (.M"*‘”,E_). If 9 is totally umbilical and the induced connection
of M™ in M™*P js of scalar curvature K then:

(4.14) K = —L™||Nol|®

Proof. Indeed, comparing (4.10), (4.12) we obtain:
L7 f* (i} — 156}) = Kby — KR}

where f = |

’ol . Contraction with y* gives:
(4.15) L7 f* (L6} - 1j9') = —Kyy*hi

as hiy* = 0. Note that (4.13) gives K;y* = L2K. This and suitable contraction of
indices in (4.15) lead to (4.14). O

By the Euler theorem on positive-homogeneous functions ||v|| = /.. The induced
connection is metric so that:

0= (Vsxg)(v,v) = (8X)(||v|l*) — 29(Vpxv, v) = 2(8X)(L)
It follows that:
(4.16) (dL)o B =0
From (4.2) and (4.16) we obtain:
(4.17) VexH = L72g® V35 No
for any X € I'*® (7r‘1TM"). Of course (4.17) holds for a totally-umbilical submani-
fold in an arbitrary ambient Finslerian manifold. As to the Codazzi equation (4.7),
by (4.17) it may be written:
(4.18) 9(X,Z)V gy No — g(Y, Z)Vx No

= {1 (T(X,Y),2) + QR'(X,Y),2)}

for any X,Y € I'®(x~1TM™).
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The vertical distribution V = 7(7r"]TM") is involutive. Thus:
F['yX,'yH(Y,'u)] =0
Using this and the Gauss formula (3.5) one may derive:
(4.19) C(X,Y)=C(X,Y) +Q(X,Y)
for any X,Y € I' (W_ITM"). Taking into account (4.3), the symmetries of the
Cartan tensor C, and (4.19), it follows that:
(4.20) nm(T(X,Y),Z)

— L_s{l,(X)ﬁ(Q(Y$ Z),No) - L(Y)E(Q(X’ Z)aNO)}NO

As a consequence of (4.10), (4.20), the Codazzi equation (4.18) of a totally-umbilical
submanifold M™ in a locally Minkowski manifold M™+? becomes:

(1.21) L{g(X,2)Vy No — (¥, Z)V i No }
= uV){|| %] *Q(X, 2) - F(QX, 2), No) No }

- uX){||¥]*Q(Y. 2) - 7(Q(Y, 2), No) No }

for any X,Y,Z € I'*® (1r‘1TM").
Let V be a connection in #~17'M™. A regular curve a:(—¢,6) —» M™, ¢ > 0, is
an autoparallel curve of V if:
Vaiviyvr =10

along a. Here V() is the natural lift of a, i.e. the curve V(a):(—¢,¢) — V(M™"),
defined by V(a)(t) = 2x(¢), |t| < &, while v is the Liouville vector. In other words,
o is autoparallel if its natural lift V() is a horizontal curve, i.e.

dV(a

#(t) € ('NV)V(a)(t)’ lt| < e
Let N be a nonlinear connection on V(M™). A curve C:(—¢,e) — V(M"), e > 0,
is a N-path if:

dC
E-(l) € I\Tc(t), |f| <E

Thus an autoparallel curve of a regular connection V is a regular curve in M™
whose natural lift is a Ny-path. A geodesic of a Finslerian manifold (M™, E) is by
definition an autoparallel curve geodesic of its Cartan connection. Any geodesic of
a Minkowski space V is a straight line in V.

Let : M™ — M™P be an isometric immersion of (M", E) in (M™+?,E). Let
V, V' be the induced and the intrinsic (Cartan) connections of (M™, E) respectively.
Then V, V' have the same autoparallel curves (cf. [22]). The isometric immersion
¥ is totally-geodesic if any geodesic of (M™, E) is also a geodesic of (M™+? E).
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ExaMpLEs.
1) Any hyperplane in a Minkowski space V is a totally-geodesic submanifold of V.
It is an open problem whether the converse holds.
2) Let F: M™ — M™ be an isometry of a Finslerian manifold (M", E),ie. Fisa
C°°-diffeomorphism and:
E((d: F)u) = E(u)

for any u € V(M"), z € 7(u). Let K = {z € M™: F(z) = z} be the fixed
point set of F'. Any connected component L of K is totally-geodesic in (M™, F),
cf. [17]. The geometry of the second fundamental form of L in (M™", E) has not,
as yet, been studied.

3) By a result of M.G. Brown, [10], if M™ is a real hypersurface (i.c. p = 1) then ¢
is totally-geodesic if and only if No = 0. By a result of O. Varga, [37], Ny =
yields N = 0, as well (provided that p = 1). Yet IT # 0 in general.

Proposition 4.3

Let (M",E) be a totally-umbilical real hypersurface (p = 1) of the locally
Minkowski manifold (M™+',E). Then the horizontal scalar curvature of M™ van-
ishes il and only if M™ is totally-geodesic in M™*1,

Proof. We distinguish two cases. Either No = 0, and then M™ is totally-geodesic
in M™1, or No(up) # 0 for some ug € V(M™). If this is the case, there is an
open neighborhood U of zo = m(ug) in M™ so that No(u) # 0 for any u € ==1(T).
In dealing with this case, as all our considerations are local in character, we may
assume that Ng # 0 everywhere on V(M™). Let then f = “No” and choose f~1N, €
I'*°(E(4)) as unit normal on M™. Then V< (f~1Ng) = 0 and the Codazzi equation
(4.21) turns into:
9(X, 7)(8Y)() - 9(¥,2) (8X) () = 0

For arbitrary X take Y = Z, ||[Y|| = 1, Y orthogonal on X. It follows that:

(4.22) (df)oB =0
Therefore, locally, f must be a solution of the following system of PDE’s:
of j of
. _—— V"’ _— =
(4:23) G

See [29, p. 553], where all solutions of (4.23) are determined, provided that N }are the
coefficients of the nonlinear connection of the Cartan connection of a Finsler space
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of nonvanishing scalar curvature. As for totally umbilical hypersurfaces of locally
Minkowski manifolds, we may solve (4.23) by using the Gauss-Codazzi equations
(3.15), as follows. Let M™ be a submanifold of a locally Minkowski manifold M™+?.
No assumption on the codimension is necessary as yet. T'hen (3.15) turns into:

(424) S(X,N(Y))Z = P(X,Y)Z + Agux,2)Y — Waey,y X + (Vax H) (Y, 7)
— (VerQ)(X,Z) + I (C(X,Y), Z) + Q(P(X,Y), 2)

As a consequence of (3.9) we have the identity:
(4.25) (VexQ)(Y,v) =0
Set Z = v in (4.24) and use (3.9), (4.25) and ' = 0 such as to yield:

(4.26) PHX,Y) = WnmX
(4.27) (Vax 1) (Y,v) + T(C(X,Y),v) =0

for any X,Y € ['*(x~1TM"). Note that (3.8) gives:

(4.28) (Vax ) (Y,v) = (V4xN)Y — H(Y, X)
Substitution from (4.28) into (4.27) furnishes:

(4.29) (VaxN)Y = II(Y,X) - N(C(X,Y))

Assume now that M™ is totally umbilical. Then N = L7'+ ® Ny and ¢ = (dL) o~y
give the identity:
(VaxN)Y = L7 ((V4x 0)Y) No
+ L7N(Y) V5 No — L72y(X)((Y) Ny

Therefore one needs the v-covariant derivative of the Finsler 1-form ¢. This is given
by:

(4.30) L(Vyxt)Y = b(X,Y)

as a consequence of (V.y X g) (Y, v) = 0.

Here h = g — ¢ ® ¢ is the angular metric tensor of (M™, E), (cf. the terminology
in [28, p. 101]). Thus, the v-covariant derivative of the normal curvature vector N
is given by:

(VoxN)Y = L7 (Y) V.5 No + L-2{h(X,Y) - L(X)L(Y)}]Vo
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Set Y = v and use C(X,v) = 0 so that to obtain:

(4.31) V.5 No=2L7" y(X)No

Assume now that p = 1. The Codazzi equation (4.31) turns into:
J7Hdf) oy =201

or, equivalently:
d(]og(fL‘z)) oy=0

Consequently, thereis a € C*°(M™), a > 0, i.e. a scalar ficld depending on positional
arguments alone, so that:

(4.32) f=al?

Apply é6; = 0; — N,-jéj to (4.32) and use (4.16) and (4.23) such as to yicld 8;a = 0.
Thus @ = a9 = const. The (horizontal) Ricci curvature of a Finslerian manifold
(M™, ) is given by Rji = R::j,c. Let M™ be a totally-umbilical hypersurface of the
locally Minkowski manifold M™+1, By (4.9), (4.32), it follows that:

(4.33) Rjk = (n—1)a gk

Finally, Proposition 4.3 follows from (4.32)-(4.33). O

Next, we say that (M™, E) has Ricci curvature > e? if R;;£7¢% > 2 for any
X = &X; e T°(x~1TM"), || X|| = 1. By a result of F. Moalla, [31], if (M™", E)
is a complete (with respect to the distance d in [32, p. 323]) Finslerian manifold
of Ricci curvature > e? > 0 then M™ has diameter < w(n — 1)!/2e=!. The result
in [31] cannot be applied directly to (4.33) which is a contraction of the horizontal
curvature tensor of the induced connection (rather than the Cartan connection) of
M™. Yet, we have:

Theorem 4.4

Any complete totally-umbilical hypersurface M™ of a locally Minkowski man-
ifold has diameter < /ag, provided the induced and intrinsic connections of M™
coincide.

Consequently M™ is compact and (by applying the same result at the level of
the universal covering manifold) has a finite 7;(M™). Also the first Betti number of
M™ vanishes, cf. also Corollary 2 in [31, p. 2737].



170 ABATANGELO

By (4.14), (4.32), if the induced connection is of scalar curvature K then K =

—a3. Any 2-dimensional Finslerian manifold is a Finsler space of scalar curvature,
cl. [28, p. 183]. We obtain:

Theorem 4.5

Let M?% be a totally-umbilical surface in a locally Minkowski manifold M3.
If the induced and intrinsic connections of M? coincide then cither M? is totally
geodesic (and then M? is locally Minkowski, cf. [16, p. 85]) or M? is a Finsler space
of negative scalar curvature —ad.

5. Umbilical CR submanifolds

Let (Jllzm,F) be a real 2m-dimensional Finslerian manifold. A Finslerian almost
complex structure J on M?™ is an endomorphism J: v~ 11'M2?™ — x=1TM?™ so
that J2 = —J. Let (W"'TMZT",E) be the induced Riemannian bundle of (Mz"‘,f).
Then (Mzm,_lf, .I) is a Kahlerian-Tinsler space if ?j(.IX, JY) = ﬁ(X,Y), for any
X,Y € 1‘°°(r.‘1fl'112""'), and VJ = 0, where V is the Cartan connection of
(M2 ), L. [20].

Let ¢: M™ C M*™ be a submanifold of M?™ (p = 2m — n). Then M" is a
CR submanifold of (/%™ F, J) ifit carries a pair (D, D1) of Finslerian distributions
so that i) Dy is the g,-orthogonal complement of D, in 7=1TM™", ii) J,D, = D,
and iii) JuDy C E(t)y, for any u € V(M™), cf. [6], [18].

Let (M ",D,'DL) be a totally-umbilical CR submanifold of the Kahlerian-
Finsler space (JMZWL,E,J). We assume as usual that the induced and intrinsic
connections of M"™ coincide. If (M Zm,f) is a Riemannian manifold then, by a re-
sult of A. Bejancu, [7], M™ is totally-geodesic in (Mzm,f), provided that M™ is
proper (i.e. D, # 0, Dy # ;' TM™, u € V(M™)). This, in turn, relies on a result
of D.E. Blair & B.Y. Chen, [9], asscrting that D+ is involutive. The main difficulty
in bringing A. Bejancu’s result to Finslerian geometry lies in the fact that DL is not
any longer a distribution on M™, but rather a Finslerian distribution:

DLiue V(M™) — DL CnlTM™
Cf. also [19]. We shall neced the following:

Lemma 5.1

Let v be the Liouville vector of M™. If M™ is totally umbilical in M*™ and
» € D, then F[,BX,ﬂY] € D+, for any X,Y € D+,
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We establish the following:

Theorem 5.2

Let (JW”,'D,'D'L) be a totally umbilical CR submanifold of the Kéhlerian-Finsler
space (Mz’" E J) Assume that (Mzm F) is locally Minkowski and dimg DL > 1.
Then (M™, E) is a locally Minkowski manifold immersed in (M?™,E) as a totally-
geodesic submanifold.

Proof. Let tan, nor be the canonical projections associated with (3.4) (where p =
2m —n, ¥ = 1) and set aX = tan(JX), bX = nor(JX), t{ = ta.n(Jf), f¢€
nor(JX), for any X € 1‘°°(7r_1T1W"), £€ I‘°°(E(L)). As a consequence of V.J = 0
and of (3.5)-(3.6) we obtain:

(5.1) (Voxa)Y = Ayy X + tH(X,Y)
(5.2) (Vyxa)Y = Wy X +1Q(X,Y)
(5.3) (Vexb)Y = fH(X,Y) - Il (X,aY)
(5.4) (Vaxb)Y = fQ(X,Y) — Q(X,aY)

for any X,Y € IT'® (7r'1TM"). Then, as M™ is totally-umbilical, (5.1) leads to:
Abe - Abe = —aT(X,Y) - G.F[,BX,,BY]

for any X,Y € DL. Using Lemma 5.1, the fact that D& C ker(ay), u € V(M™),
and T = 0 (as the induced and intrinsic connections of M™ coincide) we obtain:

(5.5) Avy X = ApxY

for any X,Y € Dt. Note that tu € DL (where ny = trace(Hl)). Set then Y =1 p
in (5.5) and use the umbilicity of M™ so that to yield:

(56) 9k, 0X ) tp = glp, btp) X

As dimg Dy > 1, u € V(M™), we may consider X € D+ orthogonal on tu and such
that X, # 0, u € V(M"). Then (5.6) reduces to 0 = F(u,btu) X = —||tp|| X so
that:

(5.7) tu=20
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Again as a consequence of VJ = 0 and (3.5)(3.6) we have:

(5.8) (Voxt)€ = Ape X —adeX
(5.9) (Vaxt)€ = WyeX — aWeX
(5.10) (Vox f)§ = —H(X,1€) — bAX
(5.11) (Vax £)€ = —Q(X,t€) — bW X

for any X,Y € I'°(x"1TM"), ¢ € I (E(r)). Set € = pin (5.8) and take the inner
product of the resulting identity with Y € l‘°°(7r‘1TM"'). We obtain:

(5.12) 9((Voxt)m,Y) = -[|u*g(ax,Y)

Let X € I°(r~1TM™) so that aX # 0 (everywhere on V(M™)). Set Y = aX in
(5.12). At this point we may use (5.7) and the fact that ¢ is D+-valued while a is
D-valued, so that to yield:

0=g(tVpxpaX) = [|laX||* |||

and Theorem 5.2 is completely proved. O

Proof of Lemma 5.1. With any Finslerian manifold (M™",E) we may associate
a h-dillerentiation operator d*, cf. [36]. That is, if ® is a Finslerian r-form on
M™ then (d"®)(Xo,X1,...,Xn) = (d®™) (8Xo0,BX1,...,BX,), for any X; €
T (x='TM"), 0 < j < n. Here ®7(2,,...,7,) = $(FZy,...,F7,), Zy €
I'°(T(V(M™))), 1 < @ < n. Also 8 is the horizontal lift with respect to the non-
linear connection of (M™, E), cf. [4], the operator d" satisfies the complex condition
(dh)2 = 0 if and only if B! = 0. Given a Kihlerian-Finsler space (M*™,E,J),
by a result of [21], VJ = 0 yields d"Q = 0, where Q(X,Y) = g(X,JY),
X,Y € I (x~'TM?™). Consider now X,Y € DL, Z € D. Then:

0 =3(d"Q)(X.7,2)
= -Q(r[BXx,pY),z) - Q(F[3z,6X],Y) - Q(r[BY,BZ], X)

Note that N(X) =0 (as N = Lt®p and v € D) for any X € DL. Thus, by (3.12),
B = 8 on DL. We obtain

(5.13) Q(r[sX,8Y],2) = Q(F[LuUZyyp.8X],Y) - UF[LUZ)yp, Y], X)
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Let (v);' be the orthogonal complement of (v), = R- (u,u) in D, u € V(M™).
Proving Lemma 5.1 amounts to checking that:

Q(F[BX,HY],Z) = 0

for any Z € D. This follows easily from (5.13) when Z € (v)*. The remaining case
is Z =wv. Set Z = v in (5.13) such as to yield:

(514)  B(F[BX,6Y),0) = I{A(F[yu.6X],V) - A(F [vu, 671, %)}

(cf. also (4.16)). Using (3.13) (with M™ totally-umbilical and T = 0) gives:

(5.15) C(N(X),Y) =C(N(Y),X)

for any X,Y € I°(x~'TM™). Set Y = v in (5.15) and use (2.5). As N(v) = [2p

this procedure leads to:

E([J,X) =0
or:
(5.16) F[‘/[I,,EX] = v'wX
for any X € I'®(x~'TM"). Note that, as a consequence of (3.12) and the fact that

ker(dr) is involutive, we may replace X in (5.16) by 8X. Indeed F = 0 on ker(dr).
As this point we may substitute from (5.16) into (5.14) such that:

AF[pX,pY],0) = L*{R(V.uX,Y) - 0,7, X) ]

= 2*{ () @(X, 7)) ~ (X, VI ¥) = 5(Vr,¥,JX) } = 0

for any X,Y € DL. The proof of Lemma 5.1 is complete. O
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