# On totally umbilical submanifolds of a locally Minkowski manifold

#### L. MARIA ABATANGELO

Universitá degli Studi di Bari, Dipartimento di Matematica
Trav. 200 via Re david 4, 70125 Bari, Italy

Received June 11, 1992. Revised February 2, 1993

#### ABSTRACT

We study totally-umbilical submanifolds of Finslerian manifolds. Any complete totally-umbilical real hypersurface (whose induced and intrinsic connections coincide) of a locally Minkowski manifold is shown to have diameter  $\leq \pi/a_0$ .

# 1. Introduction

It is a classical result (cf. e.g. [26, vol II, p. 30]) that the only totally-umbilical real hypersurfaces of the Euclidean space are the (open pieces of) hyperplanes and hyperspheres. The reason is that the norm f of the mean curvature vector is a solution of the Codazzi equations (and then  $f = f_0 = \text{const}$ ); the case of the plane (sphere) occurs as  $f_0 = 0$  ( $f_0 \neq 0$ ). As to the corresponding statement in Finslerian geometry, only partial results are known, cf. O. Varga [37], M. Matsumoto [27].

Let  $(M^n, L(x, y))$  be a real hypersurface of a locally Minkowski manifold  $M^{n+1}$ . Consider the following system of first order linear PDE's:

(1.1) 
$$\frac{\partial f}{\partial x^{i}} - N_{i}^{j}(x, y) \frac{\partial f}{\partial y^{j}} = 0, \qquad 1 \leq i \leq n$$

where  $N_j^i$  are the coefficients of the nonlinear connection of the induced connection of  $M^n$ . If the induced and intrinsic (Cartan) connections of  $M^n$  coincide then  $N_j^i$ 

are specified by:

$$\begin{split} N_{j}^{i} &= \frac{1}{2} \frac{\partial}{\partial y^{j}} \Big| \begin{matrix} i \\ 0 \ 0 \end{matrix} \Big|, \qquad \Big| \begin{matrix} i \\ 0 \ 0 \end{matrix} \Big| = \Big| \begin{matrix} i \\ j \ k \end{matrix} \Big| y^{j} y^{k} \\ \Big| \begin{matrix} i \\ j \ k \end{matrix} \Big| &= g^{im} \big| jk, m \big|, \qquad \big| ij, k \big| = \frac{1}{2} \Big( \frac{\partial g_{ik}}{\partial x^{j}} + \frac{\partial g_{jk}}{\partial x^{i}} - \frac{\partial g_{ij}}{\partial x^{k}} \Big) \end{split}$$

where  $g_{ij} = \frac{1}{2} \frac{\partial^2 L^2}{\partial y^i \partial y^j}$  and  $g^{ij}g_{jk} = \delta_k^i$ . When  $M^n$  is totally-umbilical in  $M^{n+1}$ , the norm of the mean curvature vector of the given immersion is shown to satisfy (1.1).

In [29] the authors find all solutions of (1.1) which are positive homogeneous of degree r, provided that  $M^n$  is a Finsler space of scalar curvature  $K \neq 0$ , an assumption which amounts to a prescribed form (cf. e.g. (26.4) in [28, p. 168]) of the obstruction:

$$R_{jk}^{i} = \frac{\partial N_{j}^{i}}{\partial x^{k}} - \frac{\partial N_{k}^{i}}{\partial x^{j}} + N_{j}^{m} \frac{\partial N_{k}^{i}}{\partial y^{m}} - N_{k}^{m} \frac{\partial N_{j}^{i}}{\partial y^{m}}$$

towards the complete integrability of the Pfassian system:

$$dy^i + N_i^i(x, y)dx^j = 0.$$

As to the case of a totally-umbilical hypersurface, the  $R^i_{jk}$  torsion is given by (4.10). Section 2 reviews the material we need on induced bundles, Finslerian metrics, nonlinear connections and the Cartan connection of a Finslerian manifold. Section 3 reviews the imbedding Gauss-Codazzi equations of  $(M^n, L)$  in an ambient Finslerian manifold  $(M^{n+p}, \overline{L})$ . In Section 4 we exploit the structure of the horizontal (cf. (4.21)) and mixed (cf. (4.31)) Codazzi equations to show that the (norm of the) normal curvature is given by:

$$||N_0||=a_0L^2$$

 $a_0 = \mathrm{const} > 0$  (and thus the mean curvature of a totally-umbilical hypersurface is constant). In particular, we prove that any totally-umbilical surface  $M^2$  whose induced and intrinsic connections coincide is either totally-geodesic (and then locally Minkowski) or a Finsler space of negative scalar curvature  $-a_0^2$ . Along the way, we obtain a result on the topology of totally-umbilical hypersurfaces of a locally Minkowski manifold. There, the main ingredient is a theorem of F. Moalla, [31], on complete Finslerian manifolds with Ricci curvature  $\geq e^2 > 0$ . In Section 5 we study totally-umbilical CR submanifolds (in the sense of [18]) and extend a result of A. Bejancu, [7].

### 2. Finslerian manifolds and the Cartan connection

Let  $M^n$  be a real *n*-dimensional  $C^{\infty}$  differentiable manifold. Denote by  $T(M^n) \to M^n$  the tangent bundle over  $M^n$ . Set  $V(M^n) = T(M^n) - j(M^n)$ , where  $j: M^n \to T(M^n)$  denotes the natural imbedding of  $M^n$  in the total space of its tangent bundle, as the zero cross-section (i.e.  $j(x) = 0_x \in T_x(M^n)$ ,  $x \in M^n$ ). Let  $\pi: V(M^n) \to M^n$  be the natural projection. Note that  $V(M^n)$  is an open submanifold of  $T(M^n)$ .

If  $(U, x^i)$  is a local coordinate system on  $M^n$ , let  $(\pi^{-1}(U), x^i, y^i)$  be the induced local coordinates on  $V(M^n)$ . Then  $x^i$  (respectively  $y^i$ ) are referred to as the positional arguments (respectively directional arguments).

A Finsler energy E on  $M^n$  is a function  $E: T(M^n) \to [0, +\infty)$  so that i)  $E(u) = 0 \iff u \in j(M^n)$ , ii)  $E \in \mathcal{C}^1(T(M^n))$ ,  $E \in \mathcal{C}^\infty(V(M^n))$ , iii)  $E(\lambda u) = \lambda^2 E(u)$  for any  $\lambda > 0$ ,  $u \in V(M^n)$ , i.e. E is positive-homogeneous of degree 2, and iv) if  $g_{ij} = \frac{1}{2} \frac{\partial^2 E}{\partial y^i \partial y^j}$ , then  $g_{ij}(u) \xi^i \xi^j$  is a positive-definite quadratic form, for any  $u \in \pi^{-1}(U)$ . A pair  $(M^n, E)$  is a Finslerian manifold. Its (fundamental) Lagrangian function is given by  $L = E^{1/2}$ , cf. II. Rund, [34]. For practical purposes, several violations of the axioms i) iv) (in the definition of the concept of Finsler energy) are tacitly admitted. For instance, let  $(M^n, a)$  be a Riemannian manifold,  $a \in \Gamma^\infty(S^2(T^*M^n))$ , and  $b \in \Gamma^\infty(T^*M^n)$ , a given 1-form in  $M^n$ . We define the Randers metric  $L: T(M^n) \to \mathbb{R}$  by  $L(u) = a_x(u, u)^{1/2} + b_x(u)$ , for any  $u \in T_x(M^n)$ ,  $x \in M^n$ . Then  $(M^n, L^2)$  is a Finslerian manifold. Yet axiom iv) is not fully satisfied as  $g_{ij}(u)$  has Lorenzian signature, cf. G. Randers, [33].

Let  $\pi^{-1}TM^n \to V(M^n)$  be the pullback of  $T(M^n)$  by  $\pi$ . One has a commutative diagram:

$$\begin{array}{ccc}
\pi^{-1}TM^n & \longrightarrow & V(M^n) \\
\downarrow \hat{\pi} & & \downarrow \pi \\
T(M^n) & \longrightarrow & M^n
\end{array}$$

Here  $\hat{\pi}$  denotes the restriction to  $\pi^{-1}TM^n$  of the natural projection  $V(M^n) \times T(M^n) \to T(M^n)$ . Cross-sections in  $\pi^{-1}TM^n$  are Finsler vector fields on  $M^n$ . The Liouville vector is the Finsler vector field  $v \in \Gamma^{\infty}(\pi^{-1}TM^n)$  defined by v(u) = (u, u), for any  $u \in V(M^n)$ . Any tangent vector field  $X: M^n \to T(M^n)$  admits a natural lift to a Finsler vector field  $\overline{X}: V(M^n) \to \pi^{-1}TM^n$  given by  $\overline{X}(u) = (u, X(\pi(u)))$ , for any  $u \in V(M^n)$ . If  $(U, x^i)$  is a local coordinate system on  $M^n$ , let  $X_i$  denote the natural lifts of the (local) tangent vector fields  $\frac{\partial}{\partial x^i}$  on U. Then  $v = y^i X_i$  on  $\pi^{-1}(U)$ .

The induced bundle  $\pi^{-1}TM^n \to V(M^n)$  of a Finslerian manifold  $(M^n, E)$  carries a Riemannian (bundle) metric g naturally associated with E. Indeed, let  $u \in V(M^n)$ . Set  $x = \pi(u)$ . Let  $(U, x^i)$  be a local coordinate neighborhood of x. Set

 $g_u(X,Y) = g_{ij}(u)\xi^i\eta^i$ , for any  $X,Y \in \pi_u^{-1}TM^n$  where  $X = \xi^iX_i(u)$ ,  $Y = \eta^jX_j(u)$ . Also  $\pi_u^{-1}TM^n = \{u\} \times T_x(M^n)$  is the fibre over u in  $\pi^{-1}TM^n$ . The definition of  $g_u(X,Y)$  does not depend on the choice of local coordinates around x.

Let  $w_j(\pi^{-1}TM^n) \in H^j(V(M^n); \mathbb{Z}_2)$ ,  $0 \le j \le n$ , be the Stiefel-Whitney classes of the induced bundle  $\pi^{-1}TM^n$ . As v is global and nowhere vanishing it follows that  $w_n(\pi^{-1}TM^n) = 1$ , (cf. e.g. [30, p. 39]). Thus, in general,  $\pi^*: H^n(M^n; \mathbb{Z}_2) \to H^n(V(M^n); \mathbb{Z}_2)$  is not one-to-one.

A nonlinear connection N on  $V(M^n)$  is a  $C^{\infty}$  distribution:

$$N: u \in V(M^n) \longrightarrow N_u \subseteq T_u(V(M^n))$$

so that:

$$T_u(V(M^n)) = N_u \oplus \ker(d_u\pi)$$

for any  $u \in V(M^n)$ . We shall need the bundle morphism  $F:T(V(M^n)) \to \pi^{-1}TM^n$  given by  $F_uX = (u,(d_u\pi)X)$ , for any  $X \in T_u(V(M^n))$ ,  $u \in V(M^n)$ . If  $M^n$  carries a nonlinear connection N on  $V(M^n)$ , then  $F_u: N_u \to \pi_u^{-1}TM^n$ ,  $u \in V(M^n)$ , is a  $\mathbb{R}$ -linear isomorphism. Let  $\iota_u: N_u \to T_u(V(M^n))$ , be the natural inclusion; set  $\beta_u = (F_u \circ \iota_u)^{-1}$ ,  $u \in V(M^n)$ . The resulting bundle isomorphism  $\beta: \pi^{-1}TM^n \to N$  is the horizontal lift associated with the nonlinear connection N. Set  $\delta_i = \beta X_i$ ,  $1 \leq i \leq n$ . We adopt the notations  $\partial_i = \partial/\partial x^i$ ,  $\dot{\partial}_i = \partial/\partial y^i$ . Note that there exist functions  $N_i \in \mathcal{C}^{\infty}(\pi^{-1}(U))$  so that:

$$\delta_i = \partial_i - N_i^j \dot{\partial}_j$$

In the more classical language of [39] a nonlinear connection N on  $V(M^n)$  is therefore given by a Pfaffian system:

(2.1) 
$$dy^{i} + N_{i}^{i}(x, y)dx^{j} = 0$$

The  $n^2$  functions  $N_j^i$  are referred to as the coefficients of the nonlinear connection N (with respect to  $(\pi^{-1}(U), x^i, y^i)$ ), cf. A. Kawaguchi, [25]. A pair  $(\nabla, N)$  consisting of a connection  $\nabla$  in  $\pi^{-1}TM^n$  and a nonlinear connection N on  $V(M^n)$  is a Finsler connection on  $M^n$ . Let  $\nabla$  be a connection in  $\pi^{-1}TM^n$ . The following concept of torsion may be associated with  $\nabla$ :

$$\hat{T}(X,Y) = \nabla_X FY - \nabla_Y FX - F[X,Y]$$

for any  $X, Y \in \Gamma^{\infty}(T(V(M^n)))$ .

Let  $\gamma: \pi^{-1}TM^n \to T(V(M^n))$  be the bundle morphism given by  $\gamma X_i = \dot{\partial}_i$ . The definition of  $\gamma$  does not depend upon the choice of local coordinates. The vertical lift is the bundle isomorphism  $\gamma: \pi^{-1}TM^n \to \ker(d\pi)$ . The following short sequence of vector bundles and morphisms of vector bundles is exact:

$$(2.2) 0 \longrightarrow \pi^{-1}TM^n \xrightarrow{\gamma} T(V(M^n)) \xrightarrow{F} \pi^{-1}TM^n \longrightarrow 0$$

Let N be a nonlinear connection on  $V(M^n)$  and  $P_v: T(V(M^n)) \to \ker(d\pi)$  the natural projection. Set  $K = \gamma^{-1} \circ P_v$ . The resulting bundle morphism  $K: T(V(M^n)) \to \pi^{-1}TM^n$  is the Dombrowski map, cf. [14]. Then

$$0 \longrightarrow \pi^{-1}TM^n \xrightarrow{\beta} T(V(M^n)) \xrightarrow{K} \pi^{-1}TM^n \longrightarrow 0$$

is a short exact sequence. Note that  $\beta$  is a splitting in (2.2). For more details see J. Vilms, [38]. Let  $(\nabla, N)$  be a Finsler connection on  $M^n$ . Another concept of torsion may be introduced as follows:

$$\hat{T}_1(X,Y) = \nabla_X KY - \nabla_Y KX - K[X,Y]$$

for any  $X,Y \in \Gamma^{\infty}(T(V(M^n)))$ . Using  $\beta$ ,  $\gamma$  one decomposes the torsions  $\hat{T},\hat{T}_1$  of a given Finsler connection  $(\nabla,N)$  on  $M^n$  in several fragments, as follows  $T(X,Y)=\hat{T}(\beta X,\beta Y)$ ,  $C(X,Y)=\hat{T}(\gamma X,\beta Y)$ ,  $R^1(X,Y)=\hat{T}_1(\beta X,\beta Y)$ ,  $P^1(X,Y)=\hat{T}(\gamma X,\beta Y)$  and  $S^1(X,Y)=\hat{T}_1(\gamma X,\gamma Y)$ , for any  $X,Y\in\Gamma^{\infty}(\pi^{-1}TM^n)$ . As to the terminology, T,C are referred to as the horizontal and mixed components of  $\hat{T}$ . There is no "vertical component" of  $\hat{T}$  as  $\hat{T}(\gamma X,\gamma Y)=0$  for any  $X,Y\in\Gamma^{\infty}(\pi^{-1}TM^n)$ . Note that

(2.3) 
$$R^{1}(X,Y) = -K[\beta X, \beta Y]$$

Thus  $R^1$  depends on the nonlinear connection N alone and  $R^1 = 0$  if and only if N is involutive. In local coordinates, if  $R^1(X_i, X_j) = R^k_{ij} X_k$  then:

$$R_{jk}^i = \delta_k N_j^i - \delta_j N_k^i.$$

Let  $\nabla$  be a connection in  $\pi^{-1}TM^n$ . Let  $N_{\nabla}$  be the distribution consisting of all  $X \in T(V(M^n))$  so that  $\nabla_X v = 0$ , where v is the Liouville vector. If  $N_{\nabla}$  is a nonlinear connection on  $V(M^n)$  then  $\nabla$  is termed regular. Cf. H. Akbar-Zadeh, [2]. Any regular connection  $\nabla$  in  $\pi^{-1}TM^n$  gives rise to a Finsler connection  $(\nabla, N_{\nabla})$  on  $M^n$ .

Let  $(M^n, E)$  be a Finslerian manifold and  $(\pi^{-1}TM^n, g)$  its induced Riemannian bundle. A connection  $\nabla$  in  $\pi^{-1}TM^n$  is metric (respectively v-metric) if  $\nabla g = 0$  (respectively if  $\nabla_{\gamma X}g = 0$  for any  $X \in \Gamma^{\infty}(\pi^{-1}TM^n)$ ). A Finsler connection  $(\nabla, N)$  on  $M^n$  is h-metric if  $\nabla_{\beta X}g = 0$  for any  $X \in \Gamma^{\infty}(\pi^{-1}TM^n)$ . By the fundamental theorem of Finsler geometry, there exists a unique regular connection  $\nabla$  in  $\pi^{-1}TM^n$  so that i)  $\nabla$  is metric, i)  $T = S^1 = 0$ . This is the Cartan connection of  $(M^n, E)$ , cf. E. Cartan, [12], S.S. Chern, [13]. Its nonlinear connection  $N_{\nabla}$  is the orthogonal complement of the vertical distribution  $ker(d\pi)$  in  $T(V(M^n))$  with respect to the Sasaki metric, i.e. the Riemannian metric G on  $V(M^n)$  defined by:

$$G(X,Y) = g(FX,FY) + g(KX,KY)$$

for any  $X, Y \in T(V(M^n))$ .

Let  $(\nabla, N)$  be a Finsler connection on  $M^n$ . Denote by  $\hat{R}$  the curvature 2-form of  $\nabla$ . It may be decomposed in several fragments by setting  $R(X,Y)Z = \hat{R}(\beta X, \beta Y)Z$ ,  $P(X,Y)Z = \hat{R}(\gamma X, \beta Y)Z$  and  $S(X,Y)Z = \hat{R}(\gamma X, \gamma \beta Y)Z$ , for any  $X,Y,Z \in \Gamma^{\infty}(\pi^{-1}TM^n)$ . Note that  $\hat{R}(X,Y)Z = R(FX,FY)Z + P(KX,FY)Z - P(KY,FX)Z + S(KX,KY)Z$ , for any  $X,Y \in \Gamma^{\infty}(T(V(M^n)))$ ,  $Z \in \Gamma^{\infty}(\pi^{-1}TM^n)$ .

#### Lemma 2.1

Let  $(M^n, E)$  be a Finslerian manifold and  $(\pi^{-1}TM^n, g)$  its induced Riemannian bundle. Let  $\nabla$  be a v-metric connection in  $\pi^{-1}TM^n$ . If  $S^1 = 0$  then, for any  $X \in \Gamma^{\infty}(\pi^{-1}TM^n)$ :

$$(2.4) \nabla_{\gamma X} v = X$$

Proof. Indeed, if

$$\nabla_{\dot{a}_i} X_i = C_{ii}^k X_k$$

then  $\nabla_{\dot{\partial}_i}g=0,\,S^i_{jk}=C^i_{jk}-C^i_{kj}=0$  and the Christoffel process yield:

$$C^i_{jk} = \frac{1}{2}g^{im}\dot{\partial}_j g_{km}$$

where  $g^{ij}g_{jk}=\delta^i_k$ . As  $g_{ij}$  are positive-homogeneous of degree 0 it follows that:

$$(2.5) C_{jk}^i y^j = C_{jk}^i y^k = 0$$

Therefore (2.4) is completely proved.  $\square$ 

Remark. Assume that  $\nabla$  is additionally regular. Then the meaning of (2.4) is that  $Z \in \ker(d\pi) \to \nabla_Z v$  gives a bundle isomorphism  $\ker(d\pi) \cong \pi^{-1}TM^n$  whose inverse is  $\gamma$ .

#### Lemma 2.2

Let  $(\nabla, N)$  be a Finsler connection on  $M^n$  so that i)  $\nabla$  is v-metric, ii)  $S^1 = 0$ , iii)  $\nabla_{\beta X} v = 0$  for any  $X \in \Gamma^{\infty}(\pi^{-1}TM^n)$ . Then  $N = N_{\nabla}$  and  $\nabla$  is regular.

Proof. Indeed, if  $X \in (N_{\nabla})_u \subseteq T_u(V(M^n)) = N_u \oplus \ker(d_u\pi)$  then  $X = \beta Y + \gamma Z$  for some  $Y, Z \in \pi_u^{-1}TM^n$ . Next  $0 = \nabla_X v = \nabla_{\gamma Z} v = Z$ , i.e.  $X \in N_u$ .  $\square$ 

Let  $\nabla$  be a regular connection obeying (2.4). Then:

(2.6) 
$$R(X,Y)v = R^{1}(x,y), P(X,Y)v = P^{1}(X,Y), \qquad S(X,Y)v = S^{1}(X,Y)$$

for any  $X,Y\in\Gamma^{\infty}(\pi^{-1}TM^n)$ . Indeed, by (2.3) one may perform the following calculation:

$$R(X,Y)v = -\nabla_{[\beta X,\beta Y]}v = -\nabla_{P_v[\beta X,\beta Y]}v = -\gamma^{-1}P_v[\beta X,\beta Y] = R^1(X,Y)$$

In classical language, the torsions  $R^i_{jk}$ ,  $P^i_{jk}$  and  $S^i_{jk}$  may be obtained from the horizontal, mixed and vertical curvature tensors  $R^i_{jkm}$ ,  $P^i_{jkm}$  and  $S^i_{jkm}$  by contraction with the "supporting element"  $y^i$  (e.g.  $R^i_{jk} = R^i_{jkm}y^m$ ). The properties (2.6) are of course enjoyed by the Cartan connection of  $(M^n, E)$ . Nevertheless we chose to reformulate (2.6) for v-metric regular connections with  $S^1 = 0$  since the main application we have in mind concerns the induced connection of an imbedded Finslerian manifold. This is both metric and regular, has a vanishing  $S^1$  torsion tensor field, yet generally does not coincide with the "intrinsic" Cartan connection of the submanifold, cf. e.g. [15].

### Imbedding equations

A Minkowski space is a real vector space V,  $\dim_{\mathbb{R}} V = n$ , carrying a Minkowskian norm  $\|\xi\|$ ,  $\xi \in V$ , i.e. i)  $\|\xi\| \ge 0$  and  $\|\xi\| = 0 \iff \xi = 0$ , ii)  $\|\xi + \eta\| \le \|\xi\| + \|\eta\|$ , iii)  $\|\lambda\xi\| = \lambda \|\xi\|$ ,  $\lambda > 0$ ,  $\xi \in V$  and iv) there is a basis  $\{e_1, \ldots, e_n\}$  in V such that the function  $f: \mathbb{R}^n \to [0, +\infty)$  defined by  $f(y^1, \ldots, y^n) = \|y^i e_i\|$ , for any  $(y^1, \ldots, y^n) \in \mathbb{R}^n$ , is smooth along  $y \ne 0$ , that is  $f \in \mathcal{C}^{\infty}(\mathbb{R}^n \setminus \{0\})$ .

Let  $(V, \|\cdot\|)$  be a Minkowski space. Then the statement iv) holds for any other choice of linear basis in V. For practical purposes, several violations of the axioms i)-iv) are tacitly admitted. For instance, let  $V=\mathbb{R}^n$  and  $\|\xi\|=\left(\prod_{i=1}^n y^i\right)^{1/n}$ , where  $\xi=(y^1,\ldots,y^n)$ . This is the Berwald-Moór metric, cf. [5]. Note that i) is not

satisfied. Also, if n is even and  $\{e_1, \ldots, e_n\}$  is the canonical basis in  $\mathbb{R}^n$ , then f in iv) is not defined on the whole of  $\mathbb{R}^n$ .

Let  $(M^n, E)$  be a Finslerian manifold. Each tangent space  $T_x(M^n)$ ,  $x \in M^n$ , has a natural structure of Minkowski space induced by E. Indeed, if  $u \in T_x(M^n)$  we may set  $||u||_x = E(u)^{1/2}$  and  $||\cdot||_x$  is a Minkowski norm on  $T_x(M^n)$ .

Let  $(V_1, \|\cdot\|)$ ,  $(V_2, \|\cdot\|)$  be two Minkowski spaces. Then  $V_1, V_2$  are congruent if there is a  $\mathbb{R}$ -linear isomorphism  $f: V_1 \to V_2$  such that  $||f(\xi)||_2 = ||\xi||_1$ , for any  $\xi \in V_1$ . Note that, given a Finslerian manifold  $(M^n, E)$ , the tangent spaces at various points of  $M^n$  (regarded as Minkowski spaces) are generally not congruent. If this occurs (i.e. there is a Minkowski space  $(V, ||\cdot||)$ ,  $\dim_{\mathbb{R}} V = n$ , so that  $(T_x(M^n), ||\cdot||_x) \simeq$  $(V, \|\cdot\|)$  for any  $x \in M^n$ ) then  $(M^n, E)$  is termed a Finsler space modeled on a Minkowski space, cf. Y. Ichijyo, [23]. An example of Finsler space modeled on a Minkowski space is furnished by the concept of (V, H)-manifold. Let  $(V, ||\cdot||)$  be a n-dimensional Minkowski space and  $G = \{T \in \mathrm{GL}(n,\mathbb{R}) : ||T\xi|| = ||\xi||, \xi \in V\}.$ Then G is a Lie group, cf. [23]. Let  $H \subseteq G$  be a Lie subgroup. Let  $M^n$  be a real n-dimensional manifold carrying a H-structure  $B \to M^n$ . Then  $M^n$  is termed a (V, H)-manifold. One endows  $(M^n, B)$  with a Finsler energy as follows. Let  $u \in T_x(M^n), x \in M^n$ . Let  $(U, x^i)$  be a local coordinate neighborhood of x and let  $\{X_1,\ldots,X_n\}$  be a cross-section of B defined on U (i.e. a local frame adapted to the *H*-structure). Then  $u = \xi^i X_i$  and we define  $L: T(M^n) \to \mathbb{R}$  by  $L(u) = ||\xi^i e_i||$ , where  $\{c_1,\ldots,c_n\}$  is a fixed basis in V. The definition of L does not depend upon the choice of adapted frame. If  $u = y^i(u) \frac{\partial}{\partial x^i}$ ,  $\frac{\partial}{\partial x^j} = A_i^j X_j$ , the Lagrangian L of a (V, II)-manifold may be also written:

(3.1) 
$$L(x,y) = ||y^{i} A_{i}^{j}(x) e_{i}||$$

Let  $(M^n, E)$  be a Finslerian manifold. Then  $M^n$  is a locally Minkowski manifold if there is a  $C^{\infty}$  atlas on  $M^n$  with respect to which E depends only on directional arguments. Any Minkowski space is a locally Minkowski manifold, in a natural way. A (V, H)-manifold  $(M^n, B)$  is locally Minkowski if and only if the H-structure is integrable, cf. [24, p. 14].

Let  $(M^{n+p}, \overline{E})$  be a real (n+p)-dimensional Finslerian manifold,  $p \ge 1$ . Let  $\psi: M^n \to M^{n+p}$  be an immersion of a Finslerian manifold  $(M^n, E)$  in  $M^{n+p}$ . Assume  $\psi$  to be isometric, i.e.

(3.2) 
$$E(u) = \overline{E}((d\psi)u)$$

for any  $u \in T(M^n)$ . Clearly  $d\psi: V(M^n) \to V(M^{n+p})$  is an immersion, as well. The identity (3.2) may be locally written:

(3.3) 
$$E(x,y) = \overline{E}\left(\psi^{\alpha}(x), \frac{\partial \psi^{\alpha}}{\partial x^{i}}(x)y^{i}\right)$$

where  $u^{\alpha} = \psi^{\alpha}(x^{1}, \dots, x^{n})$ ,  $1 \leq \alpha \leq n+p$ , are the local equations of  $M^{n}$  in  $M^{n+p}$ . One denotes by  $(u^{\alpha})$  a local coordinate system on  $M^{n+p}$ , while  $(u^{\alpha}, v^{\alpha})$  will be the induced local coordinates on  $V(M^{n+p})$ .

Let  $(\pi^{-1}TM^{n+p}, \overline{g})$  be the induced Riemannian bundle of  $(M^{n+p}, \overline{E})$ . The natural projection  $V(M^{n+p}) \to M^{n+p}$  and  $V(M^n) \to M^n$  are denoted by the same symbol  $\pi$ . Set:

$$g_{lphaeta}=rac{1}{2}rac{\partial^2\overline{E}}{\partial v^lpha\partial v^eta}$$

Taking derivates of (3.3) with respect to the directional arguments  $y^i$  one obtains:

$$g_{ij} = g_{\alpha\beta} \frac{\partial \psi^{\alpha}}{\partial x^{i}} \frac{\partial \psi^{\beta}}{\partial x^{j}}$$

and consequently  $(D\psi)_u: \pi_u^{-1}TM^n \to \pi_{(d\psi)u}^{-1}TM^{n+p}$  defined by

$$(D\psi)_u X = ((d\psi)u, (d\psi)\hat{\pi}X)$$

for  $X \in \pi^{-1}TM^n$ , is an isometry of  $(\pi^{-1}TM^n, g_u)$  into  $(\pi_{(d\psi)u}^{-1}TM^{n+p}, \overline{g}_{(d\psi)u})$ .

Let  $E(\psi)_u$  be the orthogonal complement of  $(D\psi)_u\pi^{-1}TM^n$  in  $\pi_{(d\psi)u}^{-1}TM^{n+p}$  with respect to  $\overline{g}_{(d\psi)u}$ , for any  $u\in V(M^n)$ . The resulting rank p vector bundle  $E(\psi)\to V(M^n)$  is the normal bundle of the given immersion. Then:

(3.4) 
$$\pi^{-1}TM^{n+p} = (D\psi)\pi^{-1}TM^n \oplus E(\psi)$$

As customary, from now on we shall not distinguish notationally between x and  $\psi(x)$ , u and  $(d\psi)u$ , X and  $(D\psi)X$ , Z and  $(d(d\psi))Z$ , etc. Here  $x \in M^n$ ,  $u \in T(M^n)$ ,  $X \in \pi^{-1}TM^n$ ,  $Z \in T(V(M^n))$ .

Let  $\overline{\nabla}$  be the Cartan connection of  $(M^{n+p}, \overline{E})$ . We recall (cf. e.g. (1.1) in [15, p. 3] or (3.1) in [1, p. 276]) the Gauss and Weingarten formulae:

$$(3.5) \overline{\nabla}_X Y = \nabla_X Y + \hat{I}I(X, Y)$$

$$(3.6) \overline{\nabla}_X \xi = -\hat{A}_{\xi} X + \nabla_X^{\perp} \xi$$

for any  $X \in \Gamma^{\infty}(T(V(M^n)))$ ,  $Y \in \Gamma^{\infty}(\pi^{-1}TM^n)$ ,  $\xi \in \Gamma^{\infty}(E(\psi))$ . Here  $\nabla$ ,  $\hat{H}$ ,  $\hat{A}_{\xi}$  and  $\nabla^{\perp}$  are respectively the induced connection, the second fundamental form (of  $\psi$ ), the Weingarten operator (associated with the normal section  $\xi$ ) and the normal connection (in  $E(\psi)$ ). Note that, for any  $\xi \in \Gamma^{\infty}(E(\psi))$ ,  $\hat{A}_{\xi}$  is a cross-section in  $T^*(V(M^n)) \otimes \pi^{-1}TM^n$ .

Let  $v, \overline{v}$  be the Liouville vectors of  $M^n$ ,  $M^{n+p}$  respectively. Then  $(D\psi)_u v(u) = \overline{v}((d_x\psi)u)$ , for any  $u \in V(M^n)$ ,  $x = \pi(u)$ . Therefore, the customary assumption that  $M^n$  is tangent to the "supporting element" of  $M^{n+p}$  (cf. e.g. [27, p. 108]) is superfluous. In the sequel, we do not distinguish notationally between v and  $\overline{v}$ .

Let  $\overline{F}:T(V(M^{n+p}))\to \pi^{-1}TM^{n+p}$  be the bundle morphism induced by  $d\pi:T(V(M^{n+p}))\to T(M^{n+p})$ . The following diagram has commutative squares:

We shall not distinguish notationally between  $\gamma$  and  $\overline{\gamma}$ , respectively F and  $\overline{F}$ . For any  $X,Y\in\Gamma^{\infty}(\pi^{-1}TM^n)$  set:

$$Q(X,Y) = \hat{I}I(\gamma X,Y)$$

Then Q is the vertical second fundamental form (of  $\psi$ ). Set Y = v in (3.5). Then:

$$\overline{\nabla}_{\gamma X}v = \nabla_{\gamma X}v + Q(x,v)$$

for any  $X \in \Gamma^{\infty}(\pi^{-1}TM^n)$ . As  $\overline{\nabla}$  is v-metric and  $\overline{S}^1 = 0$ , it follows that  $\overline{\nabla}$  enjoys the property (2.4). Thus:

$$(3.8) \nabla_{\gamma X} v = X$$

$$Q(X,v) = 0$$

Set:

$$W_{\xi}X = \hat{A}_{\xi}\gamma X$$

Then  $W_{\xi}$  is the vertical Weingarten operator. It is related to Q by the identity:

$$\overline{g}\big(Q(X,Y),\xi\big)=g\big(W_\xi X,Y\big)$$

for any  $X,Y \in \Gamma^{\infty}(\pi^{-1}TM^n)$ ,  $\xi \in \Gamma^{\infty}(E(\psi))$ . As  $\overline{S}^1 = 0$  it follows (by (3.5)) that  $S^1 = 0$  and Q is symmetric (so that  $(W_{\xi})_u : \pi_u^{-1}TM^n \to \pi_u^{-1}TM^n$  is self-adjoint with respect to  $g_u, u \in V(M^n)$ ).

#### Lemma 3.1

Let  $(M^{n+p}, \overline{E})$  and  $(M^n, E)$  be two Finslerian manifolds and  $\psi: M^n \to M^{n+p}$  an isometric immersion. Let  $\nabla$  be the induced connection in  $(\pi^{-1}TM^n, g)$  and  $N_{\nabla} = \{X : \nabla_X v = 0\}$ . Then  $N_{\nabla}$  is a nonlinear connection on  $V(M^n)$  (and therefore  $\nabla$  is regular).

Proof. Indeed, if  $Y \in N_u \cap V_u$ ,  $u \in V(M^n)$  then  $Y = \gamma X$  for some  $X \in \pi_u^{-1}TM^n$  and  $0 = \nabla_Y v = \nabla_{\gamma X} v = X$ , so that the sum  $N_u + V_u$  is direct. As  $V_u = \ker(d_u \pi) \subseteq T_u(V(M^n))$  and  $\dim_{\mathbb{R}} V_u = n$ , it is sufficient to check that  $\dim_{\mathbb{R}} N_u = n$ . Let  $\nabla$  be an arbitrary connection in  $\pi^{-1}TM^n$ . Let  $X \in T(V(M^n))$ . In local coordinates  $X = A^i \partial_i + B^i \dot{\partial}_i$ . Then  $\nabla_X v = 0$  is equivalent to:

(3.10) 
$$A^{i}\Gamma_{i0}^{k} + B^{i}(\delta_{i}^{k} + y^{j}C_{ij}^{k}) = 0$$

where  $\nabla_{\partial_i} X_j = \Gamma_{ij}^k X_k$ ,  $\Gamma_{i0}^k = \Gamma_{ij}^k y^j$ . If  $\nabla$  obeys to (2.5) then (3.10) yields:

$$B^k = -A^i \Gamma_{i0}^k$$

and therefore  $(N_{\nabla})_u$  is spanned by the tangent vectors  $(\partial_i - \Gamma_{i0}^j \dot{\partial}_j)(u)$ . Thus  $N_{\nabla}$  is a  $\mathcal{C}^{\infty}$ -differentiable *n*-distribution. Clearly, these considerations apply to the case of the induced connection. Thus, the induced connection is regular.  $\square$ 

Let  $\beta: \pi^{-1}TM^n \to N$  be the corresponding horizontal lift. Set:

(3.11) 
$$H(X,Y) = \hat{H}(\beta X,Y)$$

for any  $X,Y \in \Gamma^{\infty}(\pi^{-1}TM^n)$ . Then H is the horizontal second fundamental form. It is related to the horizontal Weingarten operator:

$$A_{\xi}X = \hat{A}_{\xi}\beta X$$

by the identity:

$$\overline{g}(H(X,Y),\xi) = g(A_{\xi}X,Y)$$

Set N(X) = H(X, v),  $N_0 = N(v)$ . Cf. [27], N and  $N_0$  are termed the normal curvature vector and the normal curvature, respectively. Let  $\overline{\beta}$ :  $\pi^{-1}TM^{n+p} \to \overline{N}$  be the horizontal lift corresponding to  $\overline{N} = N_{\overline{\nabla}}$ , i.e. to the nonlinear connection of the Cartan connection of  $(M^{n+p}, \overline{E})$ . Then:

$$\beta X = \overline{\beta}X + \gamma N(X)$$

for any  $X \in \Gamma^{\infty}(\pi^{-1}TM^n)$ . Indeed, let  $X \in \pi^{-1}TM^n$ . Then  $\beta X \in N_u \subseteq T_u(V(M^n)) \subseteq T_u(V(M^{n+p})) = \overline{N}_u \oplus \overline{V}_u$  so that  $\beta X = \overline{\beta}\overline{Y} + \gamma \overline{Z}$  for some  $\overline{Y}, \overline{Z} \in \pi_u^{-1}TM^{n+p}$ . Here  $N_u$  is short for  $(N_{\nabla})_u$ . Applying F leads to  $\overline{Y} = X$ , (as  $F \circ \beta$  = identity,  $F \circ \gamma = 0$ ). Next:

$$0 = \nabla_{\beta X} v = \overline{\nabla}_{\beta X} v - H(X, v) = \overline{\nabla}_{\gamma \overline{Z}} v - N(X) = \overline{Z} - N(X)$$

so that  $\overline{Z} = N(X)$ , and (3.12) is completely proved. From (3.12) and  $\overline{T} = 0$  (by the Gauss formula (3.5)) one may derive:

$$(3.13) T(X,Y) + H(X,Y) - H(Y,X) = \overline{C}(N(X),Y) - \overline{C}(N(Y),X)$$

for any  $X,Y\in\Gamma^\infty(\pi^{-1}TM^n)$ . Thus, the induced connection  $\nabla$  satisfies all axioms determining the Cartan connection of  $(M^n,E)$  except for T=0. From (3.13) it follows that generally  $T\neq 0$ . Also H fails to be symmetric, in general; accordingly  $A_\xi$  is not self-adjoint.

Let  $\overline{B}$ , B be the curvature 2-forms of the Cartan connection  $\overline{\nabla}$  of  $(M^{n+p}, \overline{E})$ , respectively of the induced connection  $\nabla$ . Consider the horizontal, mixed and vertical components  $\overline{R}$ ,  $\overline{P}$  and  $\overline{S}$  of  $\overline{B}$  (built with the use of  $\overline{\beta}$ ,  $\gamma$ ), respectively the fragments R, P and S of B (built with the use of  $\beta$  in (3.12) and  $\gamma$ ). As a consequence of (3.5)–(3.6) one obtains:

$$(3.14) \quad \overline{R}(X,Y)Z + \overline{P}(N(X),Y)Z - \overline{P}(N(Y),X)Z + \overline{S}(N(X),N(Y))Z$$

$$= R(X,Y)Z + A_{H(X,Z)}Y - A_{H(Y,Z)}X + (\nabla_{\beta X}H)(Y,Z)$$

$$- (\nabla_{\beta Y}H)(X,Z) + H(T(X,Y),Z) + Q(R^{1}(X,Y),Z)$$

$$(3.15) \overline{P}(X,Y)Z + \overline{S}(X,N(Y))Z$$

$$= P(X,Y)Z + A_{Q(X,Z)}Y - W_{H(Y,Z)}X + (\nabla_{\gamma X}H)(Y,Z)$$

$$- (\nabla_{\beta Y}Q)(X,Z) + II(C(X,Y),Z) + Q(P^{1}(X,Y),Z)$$

$$(3.16) \overline{S}(X,Y)Z = S(X,Y)Z + W_{Q(X,Z)}Y - W_{Q(Y,Z)}X + (\nabla_{\gamma X}Q)(Y,Z) - (\nabla_{\gamma Y}Q)(X,Z)$$

for any  $X, Y, Z \in \Gamma^{\infty}(\pi^{-1}TM^n)$ . Cf. also [16, p. 90] or [1, p. 277–288].

# 4. Umbilical submanifolds

Let  $\psi: M^n \to M^{n+p}$  be an isometric immersion of a Finslerian manifold  $(M^n, E)$  into another  $(M^{n+p}, \overline{E})$ . Then  $\psi$  is totally-umbilical if  $H = g \otimes \mu$  where  $\mu = \operatorname{trace}(H)/n$  is the mean curvature vector of  $\psi$ .

If  $L = E^{1/2}$  is the Lagrangian of  $M^n$ , define the Finsler 1-form  $\iota = (dL) \circ \gamma$ ,  $\iota \in \Gamma^{\infty}(\pi^{-1}T^*M^n)$ . Note that  $(\pi_u^{-1}TM^n)^* \cong \pi_u^{-1}T^*M^n$  (a  $\mathbb{R}$ -linear isomorphism), for any  $u \in V(M^n)$ . Here  $\pi^{-1}T^*M^n \to V(M^n)$  is the pullback of the cotangent bundle  $T^*(M^n)$  by  $\pi$ . If  $\iota_i = \iota X_i$  then  $\iota_i = \partial L/\partial y^i$ . Finally, note that:

$$(4.1) g(X,v) = L\iota(X)$$

for any  $X \in \Gamma^{\infty}(\pi^{-1}TM^n)$ . Repeated contraction with the supporting element in  $H = g \otimes \mu$  gives  $N = L \iota \otimes \mu$  and  $N_0 = L^2 \mu$  (as  $\iota(v) = L$ ). The condition that  $\psi$  is totally-umbilical is customary written:

$$(4.2) II = L^{-2}a \otimes N_0$$

If this is the case then, for any  $X \in \Gamma^{\infty}(\pi^{-1}TM^n)$ ,  $\xi \in \Gamma^{\infty}((E(\psi)))$ , one has:

$$A_{\xi}X = L^{-2}\overline{g}(N_0,\xi)X$$

If  $\psi$  is totally-umbilical then (3.13) furnishes:

$$T(X,Y) = \overline{C}(N(X),Y) - \overline{C}(N(Y),X)$$

or:

$$LT = 2 \iota \wedge \overline{C}(N_0, \cdot)$$

One problem in Finsler geometry (cf. e.g. B.T.M. Hassan, [22]) is to classify the submanifolds of  $(M^{n+p}, \overline{E})$  for which the induced connection and the intrinsic Cartan connection of  $(M^n, E)$  coincide (i.e. T=0). If this is the case then (4.3) yields:

$$(4.4) \overline{C}(N_0,\cdot) = \lambda \iota$$

for some  $\lambda \in C^{\infty}(V(M^{n+p}))$ . Yet  $0 = \overline{C}(N_0, v) = \lambda \iota(v) = \lambda L$  so that  $\lambda = 0$  and (4.4) reduces to:

$$H_{00}^{\alpha}C_{\alpha\beta}^{\rho}=0$$

where  $H(X_i,X_j)=H_{ij}^{\alpha}X_{\alpha}$  and  $H_{00}^{\alpha}=H_{ij}^{\alpha}y^iy^j$ . It is an open problem whether totally-umbilical submanifolds (with T=0) may be classified via (4.5). We proceed with several simplifying assumptions. Recall (cf. [28, p. 159]) that a Finslerian manifold  $(M^n,E)$  is locally Minkowski if and only if  $R_{ijkm}=0$  and  $C_{ijk|m}=0$ . Short bars indicate h-covariant derivates. Also, by (17.22)-(17.23) in [28, p. 144] it follows that  $P_{ijk}=0$ ,  $P_{ijkm}=0$ . Let  $(M^{n+p},\overline{E})$  be a locally Minkowski manifold. Then  $\overline{R}=0$ ,  $\overline{P}=0$ ,  $\overline{P}^1=0$  and  $\overline{\nabla}_X\overline{C}=0$ , for any  $X\in\Gamma^{\infty}(\overline{N})$ . Let  $\psi\colon M^n\to M^{n+p}$  be a totally-umbilical isometric immersion. The Gauss-Codazzi equations (3.14) of  $M^n$  in  $M^{n+p}$  become:

(4.6) 
$$R(X,Y)Z = A_{H(Y,Z)}X - A_{H(X,Z)}Y$$
(4.7) 
$$(\nabla_{\beta Y}H)(X,Z) - (\nabla_{\beta X}H)(Y,Z) = H(T(X,Y),Z) + Q(R^{1}(X,Y),Z)$$

for any  $X, Y, Z \in \Gamma^{\infty}(\pi^{-1}TM^n)$ . Taking into account (4.2) and the identity:

$$(4.8) A_{N_0}X = L^{-2} ||N_0||^2 X$$

the Gauss equation (4.6) may be written:

(4.9) 
$$R(X,Y)Z = L^{-4} ||N_0||^2 \{g(Y,Z)X - g(X,Z)Y\}$$

Set Z = v in (4.9) and use (2.6) so that obtain:

(4.10) 
$$R^{1}(X,Y) = L^{-3} ||N_{0}||^{2} \{\iota(Y)X - \iota(X)Y\}$$

In [1, p. 279] the authors introduced the horizontal scalar curvature r of  $(M^n, E)$ ,  $r = g^{ij}R_{ij}$ ,  $R_{jk} = R^i_{ijk}$ . From (4.9) it follows that:

# Proposition 4.1

Any totally-umbilical submanifold  $M^n$  of a locally Minkowski manifold  $M^{n+p}$  has nonnegative horizontal scalar curvature:

$$(4.11) r = n(n-1)L^{-4}||N_0||^2$$

Let  $(\nabla, N)$  be a Finsler connection on  $(M^n, E)$ . Let  $K \in \mathcal{C}^{\infty}(V(M^n))$  be positive-homogeneous of degree 0 in the  $y^i$ 's. Then  $(\nabla, N)$  is said to be a Finsler connection of scalar curvature K if its  $R^1$  torsion tensor field is given by:

$$(4.12) R_{jk}^{i} = K_{j}h_{k}^{i} - K_{k}h_{j}^{i}$$

where  $h_j^i = \delta_j^i - \iota^i \iota_j$ ,  $\iota^i = y^i/L$ , and  $K_i$  is given by:

$$3K_{i} = L\left(L\frac{\partial K}{\partial y^{i}} + 3K\iota_{i}\right)$$

This slightly generalizes the situation in [29, p. 552]. Indeed, if the Cartan connection of  $(M^n, E)$  is of scalar curvature then  $(M^n, E)$  is a Finsler space of scalar curvature.

# Proposition 4.2

Let  $\psi: M^n \to M^{n+p}$  be an isometric immersion between two Finslerian manifolds  $(M^n, E)$  and  $(M^{n+p}, \overline{E})$ . If  $\psi$  is totally umbilical and the induced connection of  $M^n$  in  $M^{n+p}$  is of scalar curvature K then:

$$(4.14) K = -L^{-4} ||N_0||^2$$

Proof. Indeed, comparing (4.10), (4.12) we obtain:

$$L^{-3}f^2(\iota_k\delta^i_j-\iota_j\delta^i_k)=K_jh^i_k-K_kh^i_j$$

where  $f = ||N_0||$ . Contraction with  $y^k$  gives:

(4.15) 
$$L^{-3} f^2 \left( L \delta_j^i - \iota_j y^i \right) = -K_k y^k h_j^i$$

as  $h_k^i y^k = 0$ . Note that (4.13) gives  $K_i y^i = L^2 K$ . This and suitable contraction of indices in (4.15) lead to (4.14).  $\square$ 

By the Euler theorem on positive-homogeneous functions ||v|| = L. The induced connection is metric so that:

$$0 = (\nabla_{\beta X} g)(v, v) = (\beta X)(||v||^2) - 2g(\nabla_{\beta X} v, v) = 2\iota(\beta X)(L)$$

It follows that:

$$(4.16) (dL) \circ \beta = 0$$

From (4.2) and (4.16) we obtain:

$$\nabla_{\beta X} H = L^{-2} g \otimes \nabla_{\beta X}^{\perp} N_0$$

for any  $X \in \Gamma^{\infty}(\pi^{-1}TM^n)$ . Of course (4.17) holds for a totally-umbilical submanifold in an arbitrary ambient Finslerian manifold. As to the Codazzi equation (4.7), by (4.17) it may be written:

$$(4.18) g(X,Z)\nabla_{\beta Y}^{\perp} N_0 - g(Y,Z)\nabla_{\beta X}^{\perp} N_0$$
$$= L^2 \left\{ H\left(T(X,Y),Z\right) + Q\left(R^1(X,Y),Z\right) \right\}$$

for any  $X, Y \in \Gamma^{\infty}(\pi^{-1}TM^n)$ .

The vertical distribution  $V = \gamma(\pi^{-1}TM^n)$  is involutive. Thus:

$$F[\gamma X, \gamma H(Y, v)] = 0$$

Using this and the Gauss formula (3.5) one may derive:

$$(4.19) \overline{C}(X,Y) = C(X,Y) + Q(X,Y)$$

for any  $X,Y \in \Gamma^{\infty}(\pi^{-1}TM^n)$ . Taking into account (4.3), the symmetries of the Cartan tensor  $\overline{C}$ , and (4.19), it follows that:

(4.20) 
$$II(T(X,Y),Z)$$

$$= L^{-3} \left\{ \iota(X) \overline{g}(Q(Y,Z),N_0) - \iota(Y) \overline{g}(Q(X,Z),N_0) \right\} N_0$$

As a consequence of (4.10), (4.20), the Codazzi equation (4.18) of a totally-umbilical submanifold  $M^n$  in a locally Minkowski manifold  $M^{n+p}$  becomes:

(4.21) 
$$L\left\{g(X,Z)\nabla_{\beta Y}^{\perp}N_{0} - g(Y,Z)\nabla_{\beta X}^{\perp}N_{0}\right\}$$
$$= \iota(Y)\left\{\|N_{0}\|^{2}Q(X,Z) - \overline{g}(Q(X,Z),N_{0})N_{0}\right\}$$
$$- \iota(X)\left\{\|N_{0}\|^{2}Q(Y,Z) - \overline{g}(Q(Y,Z),N_{0})N_{0}\right\}$$

for any  $X, Y, Z \in \Gamma^{\infty}(\pi^{-1}TM^n)$ .

Let  $\nabla$  be a connection in  $\pi^{-1}TM^n$ . A regular curve  $\alpha:(-\varepsilon,\varepsilon)\to M^n$ ,  $\varepsilon>0$ , is an autoparallel curve of  $\nabla$  if:

$$\nabla_{\frac{dV(\alpha)}{dt}}v=0$$

along  $\alpha$ . Here  $V(\alpha)$  is the natural lift of  $\alpha$ , i.e. the curve  $V(\alpha): (-\varepsilon, \varepsilon) \to V(M^n)$ , defined by  $V(\alpha)(t) = \frac{d\alpha}{dt}(t)$ ,  $|t| < \varepsilon$ , while v is the Liouville vector. In other words,  $\alpha$  is autoparallel if its natural lift  $V(\alpha)$  is a horizontal curve, i.e.

$$\frac{dV(\alpha)}{dt}(t) \in (N_{\nabla})_{V(\alpha)(t)}, \qquad |t| < \varepsilon$$

Let N be a nonlinear connection on  $V(M^n)$ . A curve  $C: (-\varepsilon, \varepsilon) \to V(M^n)$ ,  $\varepsilon > 0$ , is a N-path if:

$$\frac{dC}{dt}(t) \in N_{C(t)}, \qquad |t| < \varepsilon$$

Thus an autoparallel curve of a regular connection  $\nabla$  is a regular curve in  $M^n$  whose natural lift is a  $N_{\nabla}$ -path. A geodesic of a Finslerian manifold  $(M^n, E)$  is by definition an autoparallel curve geodesic of its Cartan connection. Any geodesic of a Minkowski space V is a straight line in V.

Let  $\psi: M^n \to M^{n+p}$  be an isometric immersion of  $(M^n, E)$  in  $(M^{n+p}, \overline{E})$ . Let  $\nabla, \nabla'$  be the induced and the intrinsic (Cartan) connections of  $(M^n, E)$  respectively. Then  $\nabla, \nabla'$  have the same autoparallel curves (cf. [22]). The isometric immersion  $\psi$  is totally-geodesic if any geodesic of  $(M^n, E)$  is also a geodesic of  $(M^{n+p}, \overline{E})$ .

EXAMPLES.

- 1) Any hyperplane in a Minkowski space V is a totally-geodesic submanifold of V. It is an open problem whether the converse holds.
- 2) Let  $F: M^n \to M^n$  be an isometry of a Finslerian manifold  $(M^n, E)$ , i.e. F is a  $C^{\infty}$ -diffeomorphism and:

$$E((d_x F)u) = E(u)$$

for any  $u \in V(M^n)$ ,  $x \in \pi(u)$ . Let  $K = \{x \in M^n : F(x) = x\}$  be the fixed point set of F. Any connected component L of K is totally-geodesic in  $(M^n, E)$ , cf. [17]. The geometry of the second fundamental form of L in  $(M^n, E)$  has not, as yet, been studied.

3) By a result of M.G. Brown, [10], if  $M^n$  is a real hypersurface (i.e. p=1) then  $\psi$  is totally-geodesic if and only if  $N_0=0$ . By a result of O. Varga, [37],  $N_0=0$  yields N=0, as well (provided that p=1). Yet  $\Pi \neq 0$  in general.

# Proposition 4.3

Let  $(M^n, E)$  be a totally-umbilical real hypersurface (p = 1) of the locally Minkowski manifold  $(M^{n+1}, \overline{E})$ . Then the horizontal scalar curvature of  $M^n$  vanishes if and only if  $M^n$  is totally-geodesic in  $M^{n+1}$ .

Proof. We distinguish two cases. Either  $N_0=0$ , and then  $M^n$  is totally-geodesic in  $M^{n+1}$ , or  $N_0(u_0)\neq 0$  for some  $u_0\in V(M^n)$ . If this is the case, there is an open neighborhood U of  $x_0=\pi(u_0)$  in  $M^n$  so that  $N_0(u)\neq 0$  for any  $u\in \pi^{-1}(U)$ . In dealing with this case, as all our considerations are local in character, we may assume that  $N_0\neq 0$  everywhere on  $V(M^n)$ . Let then  $f=\|N_0\|$  and choose  $f^{-1}N_0\in \Gamma^\infty(E(\psi))$  as unit normal on  $M^n$ . Then  $\nabla^\perp(f^{-1}N_0)=0$  and the Codazzi equation (4.21) turns into:

$$g(X,Z)(\beta Y)(f) - g(Y,Z)(\beta X)(f) = 0$$

For arbitrary X take Y = Z, ||Y|| = 1, Y orthogonal on X. It follows that:

$$(4.22) (df) \circ \beta = 0$$

Therefore, locally, f must be a solution of the following system of PDE's:

$$\frac{\partial f}{\partial x^{i}} - N_{i}^{j}(x, y) \frac{\partial f}{\partial y^{j}} = 0$$

See [29, p. 553], where all solutions of (4.23) are determined, provided that  $N_j^i$  are the coefficients of the nonlinear connection of the Cartan connection of a Finsler space

of nonvanishing scalar curvature. As for totally umbilical hypersurfaces of locally Minkowski manifolds, we may solve (4.23) by using the Gauss-Codazzi equations (3.15), as follows. Let  $M^n$  be a submanifold of a locally Minkowski manifold  $M^{n+p}$ . No assumption on the codimension is necessary as yet. Then (3.15) turns into:

$$(4.24) \quad \overline{S}(X, N(Y))Z = P(X, Y)Z + \Lambda_{Q(X,Z)}Y - W_{H(Y,Z)}X + (\nabla_{\gamma X}H)(Y, Z) - (\nabla_{\beta Y}Q)(X, Z) + H(C(X,Y), Z) + Q(P^{1}(X,Y), Z)$$

As a consequence of (3.9) we have the identity:

$$(4.25) \qquad (\nabla_{\beta X} Q)(Y, v) = 0$$

Set Z = v in (4.24) and use (3.9), (4.25) and  $\overline{S}^1 = 0$  such as to yield:

$$(4.26) P^{1}(X,Y) = W_{N(Y)}X$$

$$(4.27) \qquad (\nabla_{\gamma X} II)(Y, v) + II(C(X, Y), v) = 0$$

for any  $X, Y \in \Gamma^{\infty}(\pi^{-1}TM^n)$ . Note that (3.8) gives:

$$(4.28) \qquad (\nabla_{\gamma X} H)(Y, v) = (\nabla_{\gamma X} N)Y - H(Y, X)$$

Substitution from (4.28) into (4.27) furnishes:

$$(4.29) \qquad (\nabla_{\gamma X} N) Y = II(Y, X) - N(C(X, Y))$$

Assume now that  $M^n$  is totally umbilical. Then  $N=L^{-1}\iota\otimes N_0$  and  $\iota=(dL)\circ\gamma$  give the identity:

$$(\nabla_{\gamma X} N) Y = L^{-1} ((\nabla_{\gamma X} \iota) Y) N_0$$
  
+ 
$$L^{-1} \iota(Y) \nabla_{\gamma X}^{\perp} N_0 - L^{-2} \iota(X) \iota(Y) N_0$$

Therefore one needs the v-covariant derivative of the Finsler 1-form  $\iota$ . This is given by:

$$(4.30) L(\nabla_{\gamma X}\iota)Y = h(X,Y)$$

as a consequence of  $(\nabla_{\gamma X} g)(Y, v) = 0$ .

Here  $h = g - \iota \otimes \iota$  is the angular metric tensor of  $(M^n, E)$ , (cf. the terminology in [28, p. 101]). Thus, the *v*-covariant derivative of the normal curvature vector N is given by:

$$\left(\nabla_{\gamma X}N\right)Y=L^{-1}\iota(Y)\nabla_{\gamma X}^{\perp}N_{0}+L^{-2}\left\{h\left(X,Y\right)-\iota(X)\iota(Y)\right\}N_{0}$$

Set Y = v and use C(X, v) = 0 so that to obtain:

(4.31) 
$$\nabla_{\gamma X}^{\perp} N_0 = 2L^{-1} \iota(X) N_0$$

Assume now that p = 1. The Codazzi equation (4.31) turns into:

$$f^{-1}(df)\circ\gamma=2L^{-1}\iota$$

or, equivalently:

$$d(\log(fL^{-2}))\circ\gamma=0$$

Consequently, there is  $a \in C^{\infty}(M^n)$ , a > 0, i.e. a scalar field depending on positional arguments alone, so that:

$$(4.32) f = aL^2$$

Apply  $\delta_i = \partial_i - N_i^j \dot{\partial}_j$  to (4.32) and use (4.16) and (4.23) such as to yield  $\partial_i a = 0$ . Thus  $a = a_0 = \text{const.}$  The (horizontal) Ricci curvature of a Finslerian manifold  $(M^n, E)$  is given by  $R_{jk} = R_{ijk}^i$ . Let  $M^n$  be a totally-umbilical hypersurface of the locally Minkowski manifold  $M^{n+1}$ . By (4.9), (4.32), it follows that:

$$(4.33) R_{ik} = (n-1) a_0^2 g_{ik}$$

Finally, Proposition 4.3 follows from (4.32)–(4.33).

Next, we say that  $(M^n, E)$  has Ricci curvature  $\geq e^2$  if  $R_{jk}\xi^j\xi^k \geq e^2$  for any  $X = \xi^i X_i \in \Gamma^\infty(\pi^{-1}TM^n)$ ,  $\|X\| = 1$ . By a result of F. Moalla, [31], if  $(M^n, E)$  is a complete (with respect to the distance d in [32, p. 323]) Finslerian manifold of Ricci curvature  $\geq e^2 > 0$  then  $M^n$  has diameter  $\leq \pi (n-1)^{1/2} e^{-1}$ . The result in [31] cannot be applied directly to (4.33) which is a contraction of the horizontal curvature tensor of the induced connection (rather than the Cartan connection) of  $M^n$ . Yet, we have:

#### Theorem 4.4

Any complete totally-umbilical hypersurface  $M^n$  of a locally Minkowski manifold has diameter  $\leq \pi/a_0$ , provided the induced and intrinsic connections of  $M^n$  coincide.

Consequently  $M^n$  is compact and (by applying the same result at the level of the universal covering manifold) has a finite  $\pi_1(M^n)$ . Also the first Betti number of  $M^n$  vanishes, cf. also Corollary 2 in [31, p. 2737].

By (4.14), (4.32), if the induced connection is of scalar curvature K then  $K = -a_0^2$ . Any 2-dimensional Finslerian manifold is a Finsler space of scalar curvature, cf. [28, p. 183]. We obtain:

#### Theorem 4.5

Let  $M^2$  be a totally-umbilical surface in a locally Minkowski manifold  $M^3$ . If the induced and intrinsic connections of  $M^2$  coincide then either  $M^2$  is totally geodesic (and then  $M^2$  is locally Minkowski, cf. [16, p. 85]) or  $M^2$  is a Finsler space of negative scalar curvature  $-a_0^2$ .

### 5. Umbilical CR submanifolds

Let  $(M^{2m}, \overline{E})$  be a real 2m-dimensional Finslerian manifold. A Finslerian almost complex structure J on  $M^{2m}$  is an endomorphism  $J: \pi^{-1}TM^{2m} \to \pi^{-1}TM^{2m}$  so that  $J^2 = -I$ . Let  $(\pi^{-1}TM^{2m}, \overline{g})$  be the induced Riemannian bundle of  $(M^{2m}, \overline{E})$ . Then  $(M^{2m}, \overline{E}, J)$  is a Kählerian-Finsler space if  $\overline{g}(JX, JY) = \overline{g}(X, Y)$ , for any  $X, Y \in \Gamma^{\infty}(\pi^{-1}TM^{2m})$ , and  $\overline{\nabla}J = 0$ , where  $\overline{\nabla}$  is the Cartan connection of  $(M^{2m}, \overline{E})$ , cf. [20].

Let  $\iota: M^n \subseteq M^{2m}$  be a submanifold of  $M^{2m}$  (p=2m-n). Then  $M^n$  is a CR submanifold of  $(M^{2m}, \overline{E}, J)$  if it carries a pair  $(\mathcal{D}, \mathcal{D}^{\perp})$  of Finslerian distributions so that i)  $\mathcal{D}_u^{\perp}$  is the  $g_u$ -orthogonal complement of  $\mathcal{D}_u$  in  $\pi^{-1}TM^n$ , ii)  $J_u\mathcal{D}_u = \mathcal{D}_u$  and iii)  $J_u\mathcal{D}_u^{\perp} \subseteq E(\iota)_u$ , for any  $u \in V(M^n)$ , cf. [6], [18].

Let  $(M^n, \mathcal{D}, \mathcal{D}^\perp)$  be a totally-umbilical CR submanifold of the Kählerian-Finsler space  $(M^{2m}, \overline{E}, J)$ . We assume as usual that the induced and intrinsic connections of  $M^n$  coincide. If  $(M^{2m}, \overline{E})$  is a Riemannian manifold then, by a result of A. Bejancu, [7],  $M^n$  is totally-geodesic in  $(M^{2m}, \overline{E})$ , provided that  $M^n$  is proper (i.e.  $\mathcal{D}_u \neq 0$ ,  $\mathcal{D}_u \neq \pi_u^{-1}TM^n$ ,  $u \in V(M^n)$ ). This, in turn, relies on a result of D.E. Blair & B.Y. Chen, [9], asserting that  $\mathcal{D}^\perp$  is involutive. The main difficulty in bringing  $\Lambda$ . Bejancu's result to Finslerian geometry lies in the fact that  $\mathcal{D}^\perp$  is not any longer a distribution on  $M^n$ , but rather a Finslerian distribution:

$$\mathcal{D}^\perp\!\!: u \in V(M^n) \longrightarrow \mathcal{D}_u^\perp \subseteq \pi_u^{-1}TM^n$$

Cf. also [19]. We shall need the following:

#### Lemma 5.1

Let v be the Liouville vector of  $M^n$ . If  $M^n$  is totally umbilical in  $M^{2m}$  and  $v \in \mathcal{D}$ , then  $F[\beta X, \beta Y] \in \mathcal{D}^{\perp}$ , for any  $X, Y \in \mathcal{D}^{\perp}$ .

We establish the following:

#### Theorem 5.2

Let  $(M^n, \mathcal{D}, \mathcal{D}^{\perp})$  be a totally umbilical CR submanifold of the Kählerian-Finsler space  $(M^{2m}, \overline{E}, J)$ . Assume that  $(M^{2m}, \overline{E})$  is locally Minkowski and  $\dim_{\mathbb{R}} \mathcal{D}_u^{\perp} > 1$ . Then  $(M^n, E)$  is a locally Minkowski manifold immersed in  $(M^{2m}, \overline{E})$  as a totally-geodesic submanifold.

Proof. Let tan, nor be the canonical projections associated with (3.4) (where  $p=2m-n, \ \psi=\iota$ ) and set  $aX=\tan(JX), \ bX=\max(JX), \ t\xi=\tan(J\xi), \ f\xi=\max(JX),$  for any  $X\in\Gamma^{\infty}(\pi^{-1}TM^n), \ \xi\in\Gamma^{\infty}(E(\iota)).$  As a consequence of  $\nabla J=0$  and of (3.5)-(3.6) we obtain:

(5.1) 
$$(\nabla_{\beta X} a) Y = A_{bY} X + t H(X, Y)$$

$$(5.2) \qquad (\nabla_{\gamma X} a) Y = W_{bY} X + t Q(X, Y)$$

$$(5.3) \qquad (\nabla_{\beta X}b)Y = fII(X,Y) - II(X,aY)$$

$$(5.4) \qquad (\nabla_{\gamma X} b) Y = fQ(X, Y) - Q(X, aY)$$

for any  $X,Y \in \Gamma^{\infty}(\pi^{-1}TM^n)$ . Then, as  $M^n$  is totally-umbilical, (5.1) leads to:

$$\Lambda_{bY}X - A_{bX}Y = -aT(X,Y) - aF[\beta X, \beta Y]$$

for any  $X,Y\in\mathcal{D}^{\perp}$ . Using Lemma 5.1, the fact that  $\mathcal{D}_{u}^{\perp}\subseteq\ker(a_{u}),\ u\in V(M^{n}),$  and T=0 (as the induced and intrinsic connections of  $M^{n}$  coincide) we obtain:

$$A_{bY}X = A_{bX}Y$$

for any  $X, Y \in \mathcal{D}^{\perp}$ . Note that  $t \mu \in \mathcal{D}^{\perp}$  (where  $n\mu = \operatorname{trace}(H)$ ). Set then  $Y = t \mu$  in (5.5) and use the umbilicity of  $M^n$  so that to yield:

(5.6) 
$$\overline{g}(\mu, bX)t\mu = \overline{g}(\mu, bt\mu)X$$

As dim<sub> $\overline{x}$ </sub>  $\mathcal{D}_u^{\perp} > 1$ ,  $u \in V(M^n)$ , we may consider  $X \in \mathcal{D}^{\perp}$  orthogonal on  $t\mu$  and such that  $X_u \neq 0$ ,  $u \in V(M^n)$ . Then (5.6) reduces to  $0 = \overline{g}(\mu, bt\mu)X = -\|t\mu\|^2 X$  so that:

$$(5.7) t\mu = 0$$

Again as a consequence of  $\overline{\nabla}J = 0$  and (3.5)-(3.6) we have:

$$(5.8) \qquad (\nabla_{\beta X} t) \xi = \Lambda_{f \xi} X - a A_{\xi} X$$

$$(5.9) \qquad (\nabla_{\gamma X} t) \xi = W_{f \xi} X - a W_{\xi} X$$

$$(5.10) \qquad (\nabla_{\beta X} f) \xi = -II(X, t\xi) - b\Lambda_{\xi} X$$

(5.11) 
$$(\nabla_{\gamma X} f) \xi = -Q(X, t\xi) - bW_{\xi} X$$

for any  $X,Y \in \Gamma^{\infty}(\pi^{-1}TM^n)$ ,  $\xi \in \Gamma^{\infty}(E(\iota))$ . Set  $\xi = \mu$  in (5.8) and take the inner product of the resulting identity with  $Y \in \Gamma^{\infty}(\pi^{-1}TM^n)$ . We obtain:

(5.12) 
$$g((\nabla_{\beta X}t)\mu, Y) = -\|\mu\|^2 g(aX, Y)$$

Let  $X \in \Gamma^{\infty}(\pi^{-1}TM^n)$  so that  $aX \neq 0$  (everywhere on  $V(M^n)$ ). Set Y = aX in (5.12). At this point we may use (5.7) and the fact that t is  $\mathcal{D}^{\perp}$ -valued while a is  $\mathcal{D}$ -valued, so that to yield:

$$0 = g(t\nabla_{\beta X}\mu, aX) = ||aX||^2 ||\mu||^2$$

and Theorem 5.2 is completely proved.  $\Box$ 

Proof of Lemma 5.1. With any Finslerian manifold  $(M^n, E)$  we may associate a h-differentiation operator  $d^h$ , cf. [36]. That is, if  $\Phi$  is a Finslerian r-form on  $M^n$  then  $(d^h\Phi)(X_0, X_1, \ldots, X_n) = (d\Phi^H)(\beta X_0, \beta X_1, \ldots, \beta X_n)$ , for any  $X_j \in \Gamma^\infty(\pi^{-1}TM^n)$ ,  $0 \leq j \leq n$ . Here  $\Phi^H(Z_1, \ldots, Z_n) = \Phi(FZ_1, \ldots, FZ_n)$ ,  $Z_\alpha \in \Gamma^\infty(T(V(M^n)))$ ,  $1 \leq \alpha \leq n$ . Also  $\beta$  is the horizontal lift with respect to the nonlinear connection of  $(M^n, E)$ , cf. [4], the operator  $d^h$  satisfies the complex condition  $(d^h)^2 = 0$  if and only if  $R^1 = 0$ . Given a Kählerian-Finsler space  $(M^{2m}, \overline{E}, J)$ , by a result of [21],  $\overline{\nabla}J = 0$  yields  $d^h\overline{\Omega} = 0$ , where  $\overline{\Omega}(X,Y) = \overline{g}(X,JY)$ ,  $X,Y \in \Gamma^\infty(\pi^{-1}TM^{2m})$ . Consider now  $X,Y \in \mathcal{D}^\perp$ ,  $Z \in \mathcal{D}$ . Then:

$$0 = 3(d^{h}\overline{\Omega})(X,Y,Z)$$
  
=  $-\overline{\Omega}(F[\overline{\beta}X,\overline{\beta}Y],Z) - \overline{\Omega}(F[\overline{\beta}Z,\overline{\beta}X],Y) - \overline{\Omega}(F[\overline{\beta}Y,\overline{\beta}Z],X)$ 

Note that N(X) = 0 (as  $N = L \iota \otimes \mu$  and  $v \in \mathcal{D}$ ) for any  $X \in \mathcal{D}^{\perp}$ . Thus, by (3.12),  $\overline{\beta} = \beta$  on  $\mathcal{D}^{\perp}$ . We obtain

$$(5.13) \quad \overline{\Omega}\big(F\big[\beta X,\beta Y\big],Z\big) = \overline{\Omega}\big(F\big[L\iota(Z)\gamma\mu,\beta X\big],Y\big) - \overline{\Omega}\big(F\big[L\iota(Z)\gamma\mu,\beta Y\big],X\big)$$

Let  $\langle v \rangle_u^{\perp}$  be the orthogonal complement of  $\langle v \rangle_u = \mathbb{R} \cdot (u, u)$  in  $\mathcal{D}_u$ ,  $u \in V(M^n)$ . Proving Lemma 5.1 amounts to checking that:

$$\overline{\Omega}(F[\beta X, \beta Y], Z) = 0$$

for any  $Z \in \mathcal{D}$ . This follows easily from (5.13) when  $Z \in \langle v \rangle^{\perp}$ . The remaining case is Z = v. Set Z = v in (5.13) such as to yield:

$$(5.14) \qquad \overline{\Omega}(F[\beta X, \beta Y], v) = L^{2}\{\overline{\Omega}(F[\gamma \mu, \beta X], Y) - \overline{\Omega}(F[\gamma \mu, \beta Y], X)\}$$

(cf. also (4.16)). Using (3.13) (with  $M^n$  totally-umbilical and T=0) gives:

(5.15) 
$$\overline{C}(N(X),Y) = \overline{C}(N(Y),X)$$

for any  $X,Y\in\Gamma^{\infty}\left(\pi^{-1}TM^{n}\right)$ . Set Y=v in (5.15) and use (2.5). As  $N(v)=L^{2}\mu$  this procedure leads to:

$$\overline{C}(\mu, X) = 0$$

or:

(5.16) 
$$F\left[\gamma\mu,\overline{\beta}X\right] = \overline{\nabla}_{\gamma\mu}X$$

for any  $X \in \Gamma^{\infty}(\pi^{-1}TM^n)$ . Note that, as a consequence of (3.12) and the fact that  $\ker(d\pi)$  is involutive, we may replace  $\overline{\beta}X$  in (5.16) by  $\beta X$ . Indeed F=0 on  $\ker(d\pi)$ . As this point we may substitute from (5.16) into (5.14) such that:

$$\overline{\Omega}(F[\beta X, \beta Y], v) = L^{2} \left\{ \overline{\Omega}(\overline{\nabla}_{\gamma\mu}X, Y) - \overline{\Omega}(\overline{\nabla}_{\gamma\mu}Y, X) \right\} 
= L^{2} \left\{ (\gamma\mu)(\overline{g}(X, JY)) - \overline{g}(X, \overline{\nabla}_{\gamma\mu}JY) - \overline{g}(\overline{\nabla}_{\gamma\mu}Y, JX) \right\} = 0$$

for any  $X,Y\in\mathcal{D}^{\perp}$ . The proof of Lemma 5.1 is complete.  $\square$ 

### References

- 1. L.M. Abatangelo, S. Dragomir and S. Hojo, On submanifolds of Finsler spaces, *Tensor*, N.S. 47 (1988), 272-285.
- 2. H. Akbar-Zadeh, Les espaces de Finsler et certaines de leurs généralisations, Ann. Sci. École Norm. Sup. 80, 3 (1963), 1-79.
- 3. H. Akbar-Zadeh, Sur les sous-variétes des variétes Finsleriennes, C.R. Acad. Sci. Paris 266 (1968), 193-210.
- 4. O. Amici, B. Casciaro and S. Dragomir, On the cohomology of Finsler manifolds, *Colloq. Math. Soc. Janos Bolyai* 46 (1984), 57-82.
- G. Asanov, The Finslerian structure of space-time defined by its absolute parallelism, Ann. des Phys. 34, 7 (1977), 169-174.
- 6. A. Bejancu, Complex Finsler spaces and CR structures, An. St. Univ. Iasi 33 (1987), 159-165.
- 7. A. Bejancu, Umbilical CR submanifolds of a complex space form, *Rend. Mat. App.* 15, 3 (1980), 431-446.
- 8. A. Bejancu, Geometry of CR submanifolds, D. Reidel Publ. Co., Dordrecht, 1986.
- 9. D.E. Blair and B.Y. Chen, On CR submanifolds of Hermitian manifolds, *Israel J. Math.* 34, 4 (1979), 353-363.
- M.G. Brown, A study of tensors which characterize a hypersurface of a Finsler Space, Canad. J. Math. 20 (1968).
- 11. M.G. Brown, Gaussian curvature of a subspace in a Finsler Space, *Tensor*, N.S. 19 (1968), 195-202.
- 12. E. Cartan, Les espaces de Finsler, Actualites 79, Paris, 2<sup>nd</sup> edit., 1971.
- 13. S.S. Chern, On the Euclidean connections in a Finsler space, *Proc. Nat. Acad. Sci. U.S.A.* 29 (1943), 33-37.
- 14. P. Dombrowski, On the geometry of the tangent bundles, J. Reine Angew. Math. 210 (1962), 73-88.
- 15. S. Dragomir, Submanifolds of Finsler spaces, Confer. Sem. Mat. Univ. Bari 217 (1986), 1-15.
- 16. S. Dragomir, Submanifolds in Finsler spaces of scalar curvature, *Ricerche Mat.* 37, 1 (1988), 85-95.
- 17. S. Dragomir, The theorem of K. Nomizu on Finsler manifolds, Ann. Univ. Timişoara, Ser. St. Mat. 19 (1981), 117-127.
- 18. S. Dragomir, Cauchy-Riemann submanifolds of Kählerian-Finsler spaces, *Collect. Math.* 40, 3 (1989), 225-240.
- 19. S. Dragomir, π-distributions on differentiable manifolds, An. St. Univ. Iaşi 28 (1982), 55-58.
- S. Dragomir and S. Ianus, On the holomorphic sectional curvature of Kählerian Finsler spaces, I, Tensor, N.S. 39 (1982), 95-98; II, Rend. Mat. Appl. 3, 4 (1983), 757-763.
- 21. A. Farinola, A characterization of the Kähler condition on Finsler spaces, *Boll. Un. Mat. Ital.* 2-A, 7 (1988), 59-64.
- 22. B.T.M. Hassan, Subspaces of a Finsler space, Sem. de Geometrie si Topologie 54, 1980, Univ. din Timisoara.
- 23. Y. Ichijyo, Finsler manifolds modeled on a Minkowski space, J. Math. Kyoto Univ. 16 (1976), 639-652.

- 24. Y. Ichijyo, On the conditions for a  $\{V, H\}$ -manifold to be locally Minkowski or conformally flat, J. Math. Tokushima Univ. 13 (1979), 13-21.
- 25. A. Kawaguchii, On the theory of nonlinear connections I, Introduction to the theory of general nonlinear connections, *Tensor*, N.S. 2 (1952), 123–142.
- 26. S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. II, Intersci. Publishers, New York, 1969.
- 27. M. Matsumoto, The induced and intrinsic Finsler connections of a hypersurface and Finslerian projective geometry, J. Math. Kyoto Univ. 25, 1 (1985), 107-144.
- 28. M. Matsumoto, Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Kyoto, 1986.
- 29. M. Matsumoto and L. Tamássy, Scalar and gradient vector fields of Finsler spaces and holonomy groups of nonlinear connections, *Demonstratio Math.* 13, 2 (1980), 551-564.
- 30. J. Milnor and J. Stasheff, *Characteristic Classes*, Princenton Univ. Press, Princenton, New Jersey, 1974.
- 31. F. Moalla, Espaces de Finsler complets a courbure de Ricci positive, C.R. Acad. Sci. Paris 258 (1964), 2251-2254.
- 32. F. Moalla, Sur quelques théorèmes globaux en géométrie Finslerienne, Ann. Mat. Pura Appl. 73, 4 (1966), 319-365.
- 33. G. Randers, On an asymmetric metric in the four-space of general relativity, *Phis. Rev.* 59, 2 (1941), 195-199.
- 34. H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, Berlin-Heidelberg-Göttingen, 1959.
- 35. H. Rund, The theory of subspaces in a Finsler spaces I-II, *Math. Z.* 56 (1952), 363-375; Ibid. 57 (1953), 193-210.
- 36. M. Tarina and P. Enghis, Formalisme extérieur dans la géométrie de Finsler d'un fibré vectoriel, Proc. Nat. Sem. on Finsler Spaces, Braşov, 3 (1984), 89-97.
- 37. O. Varga, Über den innern und induzierten Zusammenhang fur Hyperflächen in Finslerschen Räumen, *Publ. Math. Debrecen* 8 (1961), 208-217.
- 38. J. Vilms, Connections on tangent bundles, J. Diff. Geom. 1 (1967), 235-243.
- 39. G. Vrânceanu, Lectii de geometrie diferentială, vol I-IV, Ed. Acad. R.S.R., București, 1980.